

Chaire Galaxies et Cosmologie

Ré-ionisation: perspectives

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Futures observations

Optique – Infrarouge:

Détecter les galaxies primordiales Sources de réionisation JWST Infrarouge lointain: SPICA

Millimétrique: ALMA

Centimétrique-métrique:

Détecter le gaz atomique du Milieu inter-galactique Lofar-NenuFAR SKA

Formation d'étoiles au début de l'Univers

Etoiles $10-1000M_{\odot}$ selon le taux d'accrétion

Age sombre z=200-30 ?? Mission spatiale?

Aube cosmique z=30-15 Premières étoiles, Tb(HI) Traceur de densité et Ts JWST Mars 2021

EoR z=15-6 Bulles autour des premières galaxies, Le milieu ionisé percole 21cm LOFAR/NenuFAR/SKA Cross-corrélation avec Lyα

Hirano et al 2014

Histoire HI de la réionisation

Plusieurs étapes: Aube cosmique, après l'âge sombre Hydrogène plus froid que le fonds→ absorption Formation d'étoiles, chauffage → émission

Prichard & Loeb 2010

Chauffage par les rayons X

Rayons X émis par les restes de supernovae ou les mini-quasars

 $\sigma_{\rm HI} = 6.3 \ 10^{-18} \ (hv/13.6 eV)^{-3} \ cm^{-2}$

 $\lambda(X-ray) \gg \lambda(UV)$ $\sigma_{HI}(X) \ll \sigma_{HI}(UV)$

Datta et al 2016

Quel telescope?

Première lumière de l'Univers: JWST

- Que sont les premières galaxies?
- Masses de leurs étoiles, PopIII?
- Sont-elles la cause de la reionisation?

- NIR Ultra-profond (1.4 nJy)
- Spectres QSO: forêt Ly-α
- Spectres galaxies: raies de Balmer (210⁻¹⁹ ergs/cm²/sec)

Perspectives avec JWST

Modèle semi-analytique de prédiction des galaxies et formation d'étoiles A grand z, les petites M forment plus d'étoiles qu'à $z=0 \rightarrow photons LyC$

10⁰

 10^{-1}

 10^{-}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

11

12

14 = z = 15

-12

[N mag⁻¹ Mpc⁻

Φ

Les galaxies de JWST produiront 40-80% de la réionisation

6.5m

0.6-28µm

Lagrange

z = 4

z = 5

z = 8

z = 9z = 10

Z = 7

Taux d'ionisation attendu

dN/dt: Supposant f_{esc} =0.20, TDR γ =1.4, spectre α =2 des sources

— Valeur critique pour garder l'Univers réionisé

Yung et al 2020

Absorptions/transmissions

Observations devant les QSO à 5< z < 8 Fluctuations 3x celles attendues par le champ UVB ou la densité

→Fluctuation de xHI et de T: transmissions donnent QHII, T (chauffage durant l'ionisation)

Causes physiques des absorptions

Sur-densité, Température, UVB (Γ), Gradient de vitesse Les simulations permettent de mieux inverser les observations

Relation entre sur-densité $\Delta = \delta \rho / \rho$ et température, Loi d'échelle T $\propto \rho^{\gamma}$ ou T $\propto \Delta^{(\gamma-1)}$

Gaikwad et al 2020

Température-densité

Gaz froid γ = 1.22 Gaz chaud γ =1.92

ATON= transfert de Rayonnement $\gamma=0.95-1.5$ Gaz très inhomogène (Patchy) $\gamma=0.95-1.5$

L40N2048_COLD

 $T_0 = 7413 \text{ K}, \ \gamma = 1.22$

 $\log \Delta$

2

3

-1

6.0

5.5

4.5

4.0

-1

0

 $L_{5.0}^{5.0}$

L40N2048 HOT

 $T_0 = 14191 \text{ K}, \ \gamma = 1.02$

B

3

2

Gaikwad et al 2020

Comparaison modèles-observations

froid (rouge), intermédiaire (orange) et chaud (bleu)

Meilleur modèle: chaud T=11 000 K, γ =1.2<u>+</u>0.18 Surtout largeur en vitesse des transmissions

Gaikwad et al 2020

Gaikwad et al 2020

Prédictions de la formation d'étoiles (z)

Calcul de f_{esc} pour les AGN, basé sur l'observation des rayons X Pour les étoiles $f_{esc} = f_0 (1+z)^{\beta} \beta > 1$ calé sur les observations

Contraintes: τ_e (CMB), LAE, forêt Ly α , UVB

Dayal et al 2020

Photons qui s'échappent

La production de photons ionisants croît avec la masse stellaire (SF et AGN) La formation d'étoiles domine sur les AGN à tous les z

Mais fesc est inférieure pour SF →les AGN ionisent plus à z~6 et pour les M_{*} intermédiaires

. Coude Mc de la fonction de masse $F(M) \propto M^{-\alpha} \exp^{-M/Mc}$

Dayal et al 2020

Efficacité pour ioniser

JWST pourra confirmer ces prédictions

La contribution des AGN ne domine pas en général, mais il existe une époque (z=6) où à grande masse, ils dominent Globalement la SF dans les petites masses < 10^9 Mo domine AGN= jusqu'à z=6 1%, à z=4 10-20% de toute la réionisation

Dayal et al 2020

PopIII non dominantes

Transfert Radiatif, bandes LW de H₂, dispersion des métaux
 La SF est retardée par le feedback, la réionisation inhomogène
 → Les métaux ont le temps de se disperser
 Visbal et al 2020

PopIII explosent en SN à production de paires

Pourrait être la première observation d'une instabilité de production de paires → mort d'une étoile très massive.
Equilibre entre pression lumineuse et gravité
Les rayons gamma produisent des paires électron / positron
→ Pression réduite
L'instabilité crée un effondrement incontrôlable

PISN=Pair-Instability SN

Surtout visible en NIR Qques analogues proches détectées?

Combien d'explosions de PISN?

En utilisant les lentilles gravitationnelles

Avec les futurs instruments, il sera possible de détecter ~15-20 PISN derrière les amas de galaxies proches à z>5 Et quelques unités jusqu'à z~10 (survey de 1 degré², 5 ans, Wong+19)

Gal-Yam 2012

Comparaison avec les autres supernovae

Plus d'énergie, plus de durée (1 an au lieu de 2-3 mois)

Les plus massives connues

Courbe de lumière en ~360j (12 mois) 100x puissance d'une SNII ordinaire

$$\begin{split} E_{kin} &= 10^{53} ergs \\ E_{lum} &> 10^{51} ergs \end{split}$$

PTF Palomar Transient Factory

ZTF Zwicky Transient Facility → LSST Vera Rubin

Gal-Yam 2012

SPICA: télescope spatial infrarouge

SAFARI: spectro 35-230 μm (3" à 35 μm)SMI: spectro-photomètre 17-36 μm Champ 12'x10'B-BOP= B-fields with BOlometers and Polarizers 75-420 μm

Projet Japon-Europe 2.5m refroidi à ~6K

Res=300-28000 Plus grand champ de vue que JWST (0.6-28µm)

Que va observer SPICA? Photométrie avec Spica, jusqu'à z=6 Lookback time (Gyr) 12 6 8 10 0 2 0 **SPICA** SM DEEP SPECTROSCOPY IR* IR. **PHOTOMETR** log Ψ (M_{sun} y⁻¹ Mpc⁻³) Peu-d'info Z>4-2 UV * X-ray. Black hole acc. rate IR. star formation rate (x3300) X-ray--3 3 5 8 6 redshift Spinoglio et al 2017

Diagnostics de raies

Excitation des raies: AGN, starbursts

Gaz Circum-Galactique CGM

Peeples et al 2019

Simulations du CGM

Noir/Bleu Ly-limit Orange/rouge, DLA

Galaxies z>6 avec ALMA

Diverses raies de CO, CI.. s $CO(7-6) \rightarrow 2.6 \text{mJy}$ Aussi CI(2-1) Raie de [CII] à 158µm $\rightarrow 1.1 \text{mm } z=6$

[CII] une des raies principales pour refroidir ISM

Smit et al 2018

Evolution cosmique de H₂

Observations profondes de HDF-N, 3mm, *Decarli et al 2014, 16* A³Cosmos, compilation ALMA, *Liu et al 2019*

Comparaison avec les modèles semi-analytiques (Popping 2019)

Réionisation avec SKA

Aujourd'hui précurseurs LoFAR, NenuFAR, HERA MWA

SKA opérationnel à partir de 2028

Comment l'Univers est ré-ionisé? Fin de l'âge sombre: aube cosmique

Comment s'assemblent les structures? Formation et évolution des galaxies Histoire de la formation d'étoiles

Nature de l'énergie sombre

Re-déploiement 2015

Le coût de SKA ~1 milliard euros

En 2014, le Conseil de SKA met une limite à **650 Meuros**

Retardant le SKA1-survey
 Reduisant SKA1-mid à 70%
 Reduisant SKA1-low à 50%

2017: Départ sur de nouvelles bases

Nouvelle science: 2000 pages, 135 chapitres, publié en 2015
Organisations de 13 pays sont membres
de SKAO – Australia, Canada, China, France, Germany, India, Italy, New Zealand, South Africa, Spain, Sweden, the Netherlands, UK
40% de la population mondiale!

SKA1-Low

50-350 MHz ($\Delta v = 300$ Mhz)

SKA1 Low: 130,000 dipoles, en 512 réseaux de 256 stations sur le site de Boolardy en Australie de l'Ouest 50% dans un coeur de 1 km 50% amas de 6 stations sur trois bras spiraux modifiés base maximum = 65 km.

SKA1-Mid

0.35 – 24 GHz (15–24 GHz 2^{ème} phase)

SKA1-Mid: 133 antennes x15m +64 x13.5m Meerkat Karoo site en Afrique du Sud 50% dans coeur, aléatoirement distribuées dans 2 km 3 spirales logarithmiques Base maximum = 150 km

Comparaison des sensibilités

Comparaison des vitesses de survey

Exploring the Universe with the world's largest radio telescope

Comparaison des résolutions

Exploring the Universe with the world's largest radio telescope

Accélération de l'Univers: SNIa, CMB, BAO

Echantillon « Panthéon »1048 SN 0.01 < z < 2.3Scolnic et al 2018 Ω_{m} : $P = w \rho$ $w(a) = w_0 + w_a (1-a)$ avec a = 1/(1+z)

 $\Omega_{\rm m}$ =0.307+0.012 w=-1.026+0.041

Planck 2019

Energie noire: état actuel

Modèle de concordance, entre CMB, Supernovae Ia, Structures à grande échelle (LSS) (weak lensing, BAO= Baryonic Oscillations)

Contraintes actuelles: Planck + surveys

Comment résoudre la tension H₀, BAO

Faire varier la courbure? \rightarrow courbure positive

R18 *Riess et al* 2018

DE en interaction?

Un grand nombre de paramètres (>6) sont variés Di Valentino et al 2018, 2019

BAO z=0.8-2.2 des quasars e-BOSS (DR14 SDSS-IV)

147 000 quasars sur 2040 °²

Compatible avec ΛCDM $\Omega_{\rm m} = 0.3, \, \Omega_{\Lambda} = 0.7$

Les QSO sont de très bons traceurs! Première détection BAO 1<z<2

Ata et al 2018

Full BAO: incluant Lya

Survey en absorption Ly α

Absorption de la raie Lyα à z=2.3 Delubac et al 2014

Points rouges vs simul QSO (gris) H(z)/(1+z) r_d

Bautista et al 2017

Surveys HI pour BAO avec SKA-1

Tout le ciel: 4 10⁶ gal z=0.2 3π sr Survey Grand-champ 2 10⁶ gal z=0.6 5000 deg² Survey champ profond 4 10⁵ gal z=0.8 50 deg²

Plus competitif: HI carte d'intensité 30 000 deg² jusqu'à z=3 Large et profond, grand volumes, ~Euclid

SKA2 parviendra au meilleur échantillon 1 milliards de galaxies en HI au total

Cisaillement faible 10 milliards de galaxies en continu radio

BAO Radiales et transverses

IM: HI Intensity mapping Gal: surveys galaxies HI

B1 basse fréquence B2 haute fréquence

Maartens et al 2015

Comparaison des volumes couverts

Galaxies HI vs cartes d'intensité

Premiers résultats cartes intensité HI (GBT)

BAO avec SKA1 cartes d'intensité

Stations LOFAR

HBA 110-240 MHz LBA 10-80 MHz

International LOFAR Telescope (ILT)

LBA (10/30

HBA (110-240 MHz)

(split) NL HBA + LBA station

Image du Pole Nord Céleste (NCP)

Limite de la confusion

Residu après soustraction de 28,000 sources calibrées en 122 directions par station, par fréquence par ~20 min integration *Ré-intégrées sur la carte*

Espoir: que cette émission soit lisse en fréquence

Image V.N. Pandey

Δv =60 MHz, Champ 20° x 20° - Beam 3'

Après calibration dépendant de la direction

NCP, 140h, 134-146 MHz, z=9.1 Zone 4x4° pour regarder le signal

Difficulté: soustraire les avant-plans, confus

LOFAR limites supérieures (5% des data)

 $2\,\sigma$ upper limits at $k\,{=}\,0.1\,{\rm hMpc^{-1}}$

Corrélation croisée 21cm Ly α

Corrélation croisée 3D, vs redshift

Prédiction 2D des observations

Cross-corrélation avec galaxies (pas de pondération de Tb)

10 essais de simulations pour donner le scatter

LAE choisies dans les simulations EW > 20 ÅCross-corrélation avec LAE 10^{2} 10^{-1} $|\tilde{\Delta}^2_{21,\mathrm{LAE}}(k)|$ 10^{0} 10^{-1} 10^{-} without LOFAR noise without LOFAR noise 10^{-3} $FOV=7^{\circ 2}$ FOV=1.7°2 0.5 $r_{21,\mathrm{LAE}}(k)$ 0.0-0.5-1.0 10^{0} 10^{0} 10^{-} 10^{-1} k (h Mpc $^{-1}$) k (h Mpc $^{-1}$)

Vrbanec et al 2016

Prédictions avec SKA

Cross-corrélation avec LAE, détectées avec Subaru-HSC

Vrbanec et al 2020

Nouvelle Extension à Nancay upgrade de LOFAR

NenuFAR

New Extension in Nançay Upgrading LOEAR

Premières observations

Depuis Juillet 2019 330h observées sur le NCP en test 30-85MHz

2020: 1000h 30-85MHz z=46-15 Aube cosmique Corrélateur complet

96 stations de 19 antennes= 1824

Premiers résultats

Grands espoirs sur la plus grande surface à ces fréquences Infirmation ou confirmation d'un signal à 78 MHz??

Résumé

- Premier milliard d'années: galaxies JWST, SPICA, ALMA Absorbants (QSO, GRB)
- Le signal à 21cm est essentiel pour découvrir le premier Gyr de l'Univers: Age sombre, Aube cosmique, EoR,

Dans le futur:

- → Exploitation de 100% des data de LOFAR et précurseurs
- ➔ Résultats de NenuFAR
- → SKA1- MID
- → SKA