

Chaire Galaxies et Cosmologie

Sursauts Gamma (GRB): Théories

Françoise Combes

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Diversité des modèles

- → Contraintes des observations
- → Deux catégories de sursauts
- → Afterglows et environnement
- → Mécanismes de rayonnement
- → Simulations numériques

Contraintes des observations

Luminosités 10^{48} - 10^{55} erg Mais cassure de la courbe de lumière \rightarrow jet \rightarrow Ouverture 2-10° Beaming, réduction de 100- $10^3 \rightarrow 10^{48}$ - 10^{52} erg

Ultra- relativiste: V superluminique pour GRB 030329

 Γ pas trop petit, pour éviter l'annihilation $\gamma \rightarrow \gamma$ paires e- e+ Γ plutôt 100-700!

Vitesse superluminique

X

Un GRB 030329 observé en VLBI (z=0.1685) Flux (cm) 50 fois plus fort que tout autre objet

0.07mas (0.2 pc) 25 j après le burst, et 0.17 mas (0.5 pc) 83 jours après le burst \rightarrow V= 3-5c

Problème de compacité

Grande variabilité \rightarrow boule de feu très petite (ms ou 300km) Flux énorme, grande densité de radiation

Les rayons de grande énergie (GeV) ne peuvent sortir que si les γ mous (<MeV) n'existent pas $\rightarrow \Gamma > 100$

Il faut que le milieu soit optiquement mince vis-à-vis du processus de formation de Paires

Zou & Piran 2010

Structure du jet: cassure

Nakar & Piran 2003

Beaming et Structure du jet

Ondes de choc: internes pour le sursaut principal Chocs externes: afterglow

Bimodalité des observations

Durée des sursauts: permet de distinguer les deux types de sources (séparation par 2s)

GRB Longs: Hypernovae, ou collapsar **GRB Courts:** fusion d'objets compacts

Les deux sont cataclysmiques

L'objet central final peut toutefois prolonger l'action par des vents, jet ultra-relativiste, accrétion, chocs, spin-down et perte d'énergie cinétique

GRB longs: effondrement d'une supernova

Etoile très massive > 50 M_{\odot} Cœur de Fer SN type Ic (**WR** sans enveloppe) Forme un trou noir Galaxies-hôte bleues Formation d'étoiles Faible métallicité Grand z ~9

GRB980425/SN1998bw GRB030329/SN2003dh

Y. Grosdidier (U. Montreal) et al., WFPC2, HST, NASA

GRBs courts: fusion d'étoiles à neutrons

Moins nombreux que les longs GRBs Aucune supernova en coincidence Plus faible redshift < 1.3 Galaxies-hôte de tous types

GRBs courts: scénario

Fusion de deux étoiles à neutrons

Ejection du jet de particules relativistes Effondrement du cœur en trou noir + disque d'accrétion

Explosion d'une étoile massive en supernova

GRBs longs: scénario

Ejection du jet de particules relativistes au-delà de la nébuleuse Effondrement du cœur en trou noir

Ahumada et al 2021

GRB200826A: une supernova

L'afterflow après 10jours, montre la signature d'une SN (optique avec GEMINI) Galaxie hôte identifiée, avec le spectre d'une SN

Nébuleuse de supernova

Supernova: GRB manqués

Il existe beaucoup plus de SN que de GRB 100 à 1000 fois plus Même pris en compte le beaming

Jet relativiste peu énergique

Jet perdu pour les rayons γ

→ Les jets ne sont pas tous capables de sortir en gamma
 Masse, Rotation, Métallicité

Jet sortant d'une étoile Wolf-rayet

WR, R=10⁶km Phase (1Myr) de forts vents stellaires Enveloppes H, He éjectées, SN Ibc Le cœur s'effondre en trou noir

Pour un GRB, -- Rotation -- Masse

-- métallicité faible

Zhang, Woosley, Heger 2004

Certains S-GRB: sursauts de magnétars

Certains se répètent: une 3^{ème} catégorie de GRB?
 → SGR « Soft Gamma-ray Repeaters » 3-4 connus dans la MW
 Les magnétars ont des sursauts géants (MGF)
 Incompatibles avec une fusion BNS ou BHNS (pas de GW)
 GRB070222 prototype + 4 locaux (<5 Mpc)

Statistiques des S-GRB

4 S-GRB sont des MGF Incompatibles avec des fusions d'objets compacts Population jeune d'étoiles

 \rightarrow 2% des S-GRB

Objets faibles difficiles à détecter à grande distance > 5 Mpc Pourtant **plus fréquents**

Explosions de CC-SN >0.5% deviennent magnétars 0.02 flare/an

Burns et al 2021

Mécanisme pour extraire l'énergie

Le jet est automatiquement a collimaté, si les champs dominent

Rosswog et al 2003

b

Modèle où l'énergie EM domine l'énergie cinétique des particules

Champ B poloidal devient toroidal à 100km Γ ~3 10⁴ tombe à 100 après 100sec

E provenant du spin du BH Blanford 2002

Energie électromagnétique

Energie extraite

Fusion de NS t=18ms

LogΓ

 $\nu\bar{\nu} \rightarrow e^+e^-$

Rosswog et al 2003

Rotation, spin nécessaires \rightarrow dynamo, champ B

Afterglow: chocs « forward/reverse »

Grande variabilité \rightarrow boule de feu très petite (ms ou 300km) Flux énorme, grande densité de radiation

Zigao Dai

Distribution de l'énergie

DURANT LE SURSAUT

AFTERGLOW

- 1 >25 keV γ rays: 65%
- 2 1-10 keV X-rays: 7%
- 3 **Optical: 0.1%**
- 4 Radio ?
- 5 MeV/GeV/TeV v ? >10%?
- 6 Gravitational radiation ?

Hurley 2004

- 1 >25 keV γ rays: 7%
- 2 1-10 keV X-rays: 9%
- 3 Optical: 2%
- 4 Radio: 0.05%

Kilonova après une fusion NS-NS

Nucléosynthèse: r-process

T> 10^{9} K, Nn > 10^{22} /cm³ Les neutrons peuvent être absorbés jusqu'à ce que l'énergie de séparation =0 \rightarrow Radioactivité β Puis autre ligne d'accrétion des neutrons

Comment sont formés les éléments?

Les éléments formés dans les fusions d'étoiles à neutron

H		Big Bang fusion					Dying low-mass stars			Exploding massive stars							He 2
-Li 3	Be 4	Cosmic				Me	Merging neutron stars			Exploding white dwarfs			С 6	-N 7	0 8	F 9	Ne 10
Na	Mg 12	fission				sta							Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga ³¹	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr ³⁸	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru	Rh 45	Pd 46	Ag 47	Cd 48	- In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	<u>م</u>	Hf 72	.Ta 73	W 74	Re ₇₅	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr	Ra	~															
87	88		La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	-Yb 70	Lu 71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Wikipedia: Cmgle Data: Jennifer Johnson (OSI							Cmglee (OSU)	

Les éléments formés dans les fusions d'étoiles à neutron

H			Bi	ig	Etoiles de faible masse]	Etoiles massives SNII				Synthèse par l'homme Pas d'isotope stable					
Li 3	Be 4	Rayons Cos- miques			Fusion étoiles à neutrons			Naines blanches SNIa				B 5	С 6	N 7	0 8	F 9	Ne 10	
Na 11	Mg 12											AI 13	Si 14	P 15	S 16	Cl 17	Ar 18	
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	27 27	Ni 28	Cu 29	Zn 30	Ga ³¹	Ge 32	As 33	Se ³⁴	Br 35	Kr 36	
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54	
Cs 55	Ba	°	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86	
Fr 87	Ra	۹	La	Ce	Pr	Nd	Pm	Sm	Fu	Gd	Tb	Dv	Ho	Fr	Tm	Yb	-	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Les SN et GRB jouent un grand rôle

GRB170817: Les diverses possibilités

Deux composantes dans la kilonova Le spectre observé tranche Nd(Z=60) La(Z=57)

Tidal dynamical

 $v \approx 0.2c - 0.3c$

Squeezed dynamical

 $v \approx 0.2c - 0.3c$

Disk wind

Neutron star + neutron star

Long-lived neutron-star remnant

 $v \leq 0.1c$

.

Rouge: riche en éléments r-process les plus lourds A>140 Bleu: éléments les plus légers A<140 *Kasen et al 2017*

GRB170817A 1.7 sec après GW170817 La signature des éléments lourds arrive plus tard

Kasen et al 2017

Effondrement ou non, retardé ou rapide

Retardé: Champ B fort \rightarrow GRB Si trou noir, pas de GRB

Non effondré

GR-MHD simulations: EOS? Ruiz & Shapiro 2017

NGC 4993 (MUSE) Lyman et al 2017

Rayons gamma Tanvir et al 2017 NGC 4993 HST ACS WFC3 ACS/WFC F606W WFC3/IR F110W WFC3/IR F160W

WFC3/IR F160W

Aug 22, 2017

Aug 26, 2017

Aug 28, 2017

Le rayonnement rémanent

10"

NA

Pourquoi GRB170817 si faible?

Biais de detection Et difficulté d'obtenir une distance pour des sursauts courts

Certains attribués à des galaxies lointaines pourraient être dus à des galaxies proches + offset

➔ Il faudrait reconsidérer les attributions

Taux de fusions en 2018-19 des NS-NS était de 0.04-100 Aujourd'hui 1-50 !

Plateau X et réinjection

1^{ère} phase: soft Continuation du burst Puis plus hard-> jet

Cusumano et al 2006

Accélération dans les chocs

- Fluide se déplaçant avec le facteur de Lorentz Γ
- Après le choc, la vitesse des particules est randomisée La densité est multipliée par 4
- Dans le reférentiel au repos, Énergie $\Gamma^2 \text{ mc}^2$
- Compression, accroissement de B, accélération des particules

Référentiel du fluide

Kumar & Zhang 2015

 $E \propto nR^3 \Gamma^2 \rightarrow R \propto (E/n)^{1/3} \Gamma^{-2/3}$

Plusieurs chocs

Le jet arrive (région 4) avec Γ_0 Deux chocs se succèdent: en bleu le choc qui s'avance dans le milieu ambiant n1, avec $\gamma 2$ En rose, le choc inverse Avec $\gamma_3 = \gamma_2$ et Même pression $p_3 = p_2$

Mais densités différentes

Energie magnétique σ faible

Le reverse choc décélére et chauffe les éjecta → Observation d'un flash optique (GRB990123)

Kumar & Zhang 2015

Plateau dans les X

Dans 50% des sources

Ré-injection continue d'énergie, simulée par Dall'Osso et al 2011 Ré-injection d'énergie par le spin-down de la magnétar, Ou bien r-process et radioactivité des éléments?

Beaucoup moins d'énergie disponible si trou noir central

Evolution de l'afterglow

Rapide sursaut, descente brusque, plateau, et décroissance finale de l'émission X \rightarrow signature BH ou magnétar? Conséquences en rayon: rotation? (BH: J/M plus grand) Plateau: énergie venant du vent du magnétar Décroissance, lorsque le magnétar s'effondre en trou noir

Paramètre de spin $f_{\Omega} = \Omega / \Omega_k$

 $\Omega_k = k \acute{e} p l \acute{e} r i e n$

XRF→ Magnétar

Kumar & Zhang 2015

Energie provenant de l'accrétion, ou spin-down du magnétar

Mécanismes d'émission: synchrotron

Problème: les pentes des lois de puissance à basse énergie trop fortes?

Burgess et al 2019

Plusieurs GRB

Prenant en compte la perte d'énergie → Champ B, et énergie des jets et mini-jets

Loi dans le temps mesurée par Fermi durant qques secondes du sursaut + z connu → 19 GRB, divers temps

```
Spectre injecte Q(\gamma) \sim \gamma^{-p}

\gamma_{inj} < \gamma < \gamma_{max}

Refroidissement jusqu'à \gamma_{cool}
```

95% des spectres fittés p=3.5 $10^{-2} \text{ G} < \text{B} < 10^{2} \text{G}$

Burgess et al 2019

Ligne de la mort

Lorsque $\alpha > -2/3$ Synchrotron impossible? →Ligne de la mort

En fait, ce n'est pas une impossibilité

Auparavant l'émission
était réputée thermique
pour α ~1
(boule de feu)
→ Pas obligatoire
Plusieurs spectres au-delà

Burgess et al 2019

Accrétion dans les GRB longs

Nécessaire pour avoir des émissions γ

MAD « Magnetically Arrested Disk » La région arrêtée lance des jets verticalement Instabilités magnéto-rotationnelles MRI Echanges de tubes de champ toroidal Autres accrétions: SANE « Not Arrested »

Janiuk 2021

Le trou noir résultat de l'effondrement doit tourner a>0.5 pour rendre compte des jets

Instabilité Magnéto-rotationnelle (MRI)

Balbus & Hawley 1991

La présence de champ magnétique dans un milieu ionisé: équivaut à lier les particules entre elles → ressorts

La rotation différentielle fait que m_i tourne plus vite (Ω supérieur, Période plus courte)

mi tend à accélérer m_o, et à lui donner du moment angulaire. Pourtant c'est m_o qui en a le plus! m_i tombe vers le centre et tourne de plus en plus vite!!

→Instabilité très rapide, même (et surtout) pour B très faible

Simulations de la MRI

Visualisation 3D du disque d'accrétion simulé avec MRI

Coupe du disque d'accrétion Rouge, L supérieur à Keplérien Bleu, L inférieur

John Hawley

Disques magnétiques saturés

GR-MHD, disque initialement épais H/R~1Champ B dominant \rightarrow MADMagnetically Arrested Diskdisque étouffé H/R << 1</td>jet 100% efficace si a > 0.9

McKinney et al 2012

Jets produits

Instabilités RT \rightarrow QPO, avec période 70 t_g Energie pompée de l'énergie cinétique de rotation du trou noir

McKinney et al 2012

Production de jets et GRB170817

Champ B amené vers le centre accrétion → MAD MRI partiel +RTI, accrétion trou noir central, + jets

Compétition t_{collapse} **Interaction jet-vent**

Accrétion critique, et vitesse minimum, pour que le GRB soit visible

→ 1.7 s entre la fusion et le jet
Vue off-axis de 15°

Murguia-Berthier et al 2021

Géométrie jet-cocon

Le jet interagit avec le milieu ambiant, la matière redescend pour former le cocon, à partir des éjecta (+choc arrière, inner), bulle haute pression \rightarrow collimation

Outer: ejecta, milieu plus froid et dense

Nakar 2020

Simulations jet de GRB long

Dans la supernova, la majorité de l'énergie est éjectée de façon sphérique dans l'explosion (sub-relativiste). Jet =0.01-0.1 % Semblable rapport d'énergie pour GRB170817 (court)

Eisenberg et al 2022

Deux possibilités: NS-NS, BH-NS

Bartos et al 2013

GRB longs Etoile massive en fin de vie→ Géante rouge Effondrement explosion SN → NS ou BH Champ B et rotation forts

GRB courts

Objets compacts binaires
→ fusion,
→ Ondes gravitationnelles
→ NS ou BH

Champ B et rotation forts

Résumé

Les GRB courts à distinguer des flares de magnétars → SGR Longs: effondrement, collapsar Courts: fusions NS-NS, BH-NS

→ Afterglow, presque universel Réinjection d'énergie, cassure du jet

→ Mécanismes; boule de feu thermique (photosphère), chocs Synchrotron

→ Simulations: GR-MHD

