Introduction	Observations	Simulations	Halos de matière noire	Conclusion

Galaxies et amas de galaxies comme lentilles gravitationnelles

Raphaël Gavazzi

28 janvier 2019

INSTITUT D'ASTROPHYSIQUE DE PARIS

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Sommaire				

- Observations
- **3** Simulations
- 4 Halos de matière noire
- **5** Conclusion

Observations

Simulations

Halos de matière noire

Conclusion

Optique gravitationnelle Ses différentes manifestations

Weak lensing	Flexion	Strong lensing		· • - 1	4	A	~	
		1	2.4.	1.1			4	1
٠			1			1:		7. P
-		Seren.	C.M.Co	1.4.			1	. (
.arge-scale structure	Substructure, outskirts of halos	Cluster and galaxy cores	12.37	1.1.	94.	1 1	1.01	-

Observations

Simulations

Halos de matière noire

Conclusion

Optique gravitationnelle Quelques bases

Equation des lentilles : plan image \rightarrow plan source

$$\vec{\beta} = \vec{\theta} - \vec{\alpha} \equiv \vec{\theta} - \vec{\nabla}\psi(\vec{\theta})$$

Angle de déflexion lié au potentiel gravitationnel Φ ,

Déflexions \rightarrow masse requiert distances ! Localement, déformations : $d\beta_i = A_{ij} d\theta_j$

$$\mathcal{A}_{ij} = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = (\delta_{ij} - \psi_{,ij}) \equiv \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

imaa

 $\gamma = \gamma_1 + i\gamma_2$

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
	00000		00000000	

Applications Sonde privilégiée pour sonder la matière noire

Abordé ici

- Profil de densité des halos (galaxies et amas) et nature de matière noire
- Relation M_{*} ("proxy") et $M_{\rm halo}$
- Cartographie de la masse projetée (convergence)

Mais aussi...

- Distribution masse à grande échelle (cisaillement cosmique)... la prochaine fois !
- Les sous-structures (sombres) (aka satellites manquants)
- Décalages temporels et mesures de H_0
- μ -lensing : exo-planètes et structure des quasars.

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Sommaire				

- **2** Observations
 - Données
 - Morphométrie

3 Simulations

4 Halos de matière noire

5 Conclusion

Introduction								
IIIIIOuucuoii		÷			C	÷.		
		L			c	u		

Observations

•**0**000

Simulations

Halos de matière noire

Conclusion

Observations

Introduction	Observations OOOO	Simulations	Halos de matière noire	Conclusion
<u> </u>				

Grands releves toujours plus large, toujours plus profond...

Pour vaincre le bruit sur signaux faibles, sonder des échelles toujours plus grandes et des structures plus lointaines et détecter des événements rares.

Survey	Date	Area [deg ²]	$n_{ m gal} \; [m arcmin^{-2}]$
CFHTLenS	2003-2007	170	14
DLS	2001-2006	25	20
COSMOS	2005	1.6	80
SDSS	2000-2012	11,000	2
KiDS	2011-	1,500	7-8
HSC	2015-	1,500	~ 20
DES	2012-2018	5,000	5-6
LSST	2021-	15,000	~ 20
Euclid	2021-2026	15,000	~ 25
WFIRST-AFTA	2024-	2,500	?

Introduction	Observations ○○●○○	Simulations	Halos de matière noire	Conclusion
Morpho	mótrio			

IVIORPHOMETRIE Pas de cisaillement sans ellipticités *propres*

Introduction	Observations ○○○●○	Simulations	Halos de matière noire	Conclusion
Morpho Résultats qua	métrie alitatifs			

- Méthode KSB basée sur les moments de la brillance de surface des sources : très rapide mais peu stable
- Améliorations : Monthia approche forward-model supposant une forme analytique simple du profil (SExtractor & PSFEx, Bertin 2010). Rapide et robuste.

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
	00000		00000000	

Morphométrie Résultats quantitatifs : Challenge GREAT3

Overall Leaderboard

Name	Notes =	Score	Number of a
sFIT	Modified DLS stackft algorithm	80001	162
Amalgam@IAP	Some fellows developing software based around SExtractor and PSFex for real-life shape measurements.	80000	215
CEA-EPFL	The team wants to investigate if we could improve shear estimation by combining gfit with sparse representation methods.	72000	340
MegaLUT	Evolutions of the MegaLUT technique : how far can we go with SExtractor + Machine Learning ?	52000	234
Fourier Quad	Our team uses the quadrupole moments of the spectral density of galaxy images in Fourier space to measure shear.	32000	36
EPFL gft	Using the gft shear measurement method, testing how far one can go by using forward model fitting + new approaches for bias autovation	24000	124

- $\gamma \gamma_{\text{true}} = m \gamma_{\text{true}} + c$. Simulations simples !
- $m \sim 3 \times 10^{-3}$ et $c \sim 3 \times 10^{-4}$ (c aligné avec γ_{PSF}).
- Satisfaisant pour ~ 100 amas dès lors que SNR $\nu \gtrsim 15$.
- Proche des $|m| < 10^{-3}$ et $|c| < 10^{-4}$ pour *Euclid*, *LSST*.

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Sommaire				

2 Observations

4 Halos de matière noire

5 Conclusion

Observations

Simulations

Halos de matière noire

Conclusion

Simulations cosmologiques Matière noire pure : évolution non linéaire des structures

Observations

Simulations

Halos de matière noire

Conclusion

Simulations hydrodynamiques cosmologiques Gastrophysique !

DM, gaz et étoiles

Simulation Horizon-AGN (Dubois)

Tracé de rayons dans la simulation Horizon-AGN Effets des baryons sur les observables lensing

D'intérêt cosmologique : $L=100~{\rm Mpc},~\delta_x=1~{\rm kpc}$ Bon compromis taille/résolution

Gouin, Laigle, Dubois, Codis, Pichon, Devriendt...

Lumière émise par les étoiles des galaxies est défléchie de manière

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Sommaire				

2 Observations

3 Simulations

4 Halos de matière noire

- Enjeux
- Modélisation
- Galaxies
- Amas

Observations

Simulations

Halos de matière noire

Conclusion

Les halos de matière noire Relation halo hôte et galaxies M_*-M_{halo}

Théorie vs Observations

- Simulations : $\Lambda \text{CDM} \xrightarrow{\text{N-body}} M_{\text{halo}} \xrightarrow{\text{hydro}} M_* \to L$
- Observations : $F \xrightarrow{z} L \to M_* \xrightarrow{\text{lensing}, (\text{HOD})} M_{\text{halo}}$
- Lentilles donnent $p(M_{
 m h},\cdots|M_{*},\cdots)$

Observations

Simulations

Halos de matière noire

Conclusion

Modélisation Weak lensing : des ellipticités à la distribution de masse

$$\kappa(\vec{\theta}) \quad = \quad \int_{\mathbb{R}^2} K(\vec{\theta} - \vec{\vartheta})^* \gamma(\vec{\vartheta}) \mathrm{d}^2 \vec{\vartheta} \quad \text{ avec } \quad K(\vec{\theta}) = \frac{-1}{\pi(\theta_1 - i\theta_2)^2}$$

Observations

Simulations

Halos de matière noire

Conclusion

Modélisation Images multiples au cœur des amas

Observations

Simulations

Halos de matière noire

Conclusion

Modélisation Images multiples au cœur des amas

Observations

Simulations

Halos de matière noire

Conclusion

Modélisation Images multiples au cœur des amas

Introduction	Observations	Simulations	Halos de matière noire
	00000		000000000

Modélisation Ajustement bayesien de potentiels paramétriques

Gavazzi++08

Conclusion

Addition WL (et équ. de Jeans) possible

Observations

Simulations

Halos de matière noire

Conclusion

Pente du profil de densité totale Combinaison SL et cinématique stellaire dans R_{eff}

Données SLACS+SL2S

 $\begin{array}{l} \gamma' = \frac{\mathrm{d}\log\rho_{\mathrm{tot}}}{\mathrm{d}\log r} \sim 2.08 \pm 0.02 \\ \text{Dispersion } \sigma_{\gamma'} = 0.12 \pm 0.02 \end{array}$

Modeste évolution en redshift $d\gamma'/dz = 0.10 \pm 0.12$ (au moins depuis $z \sim 0.8$)

Simulations hydro RAMSES@IAP

Excellent accord si feedback AGN

Observations

Simulations

Halos de matière noire

Conclusion

Relation Masse stellaire – Masse du Halo Galaxy-Galaxy lensing

Observations

Simulations

Halos de matière noire

Conclusion

Projet AMALGAM 120 amas à $0.1 \le z \le 0.7$

- Masse typique $M_{200\mathrm{c}} \sim 8 imes 10^{14} \mathrm{M}_{\odot}$
- haut rapport SNR (3%) sur le profil moyen (1-12 par amas)
- Relation masse concentration OK

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Sommaire				

- **2** Observations
- **3** Simulations
- 4 Halos de matière noire

Introduction	Observations	Simulations	Halos de matière noire	Conclusion
Conclusio	1			

- Bilan détaillé de la masse autour des galaxies et amas
- Perspective d'avoir la masse des amas à quelques %
- Centre halos compatible NFW, \exists possibilité cœur ($\lesssim 20 \, {\rm kpc}$)
- Intrication DM, baryons, requiert combinaison : SL, WL (+dynamique, SZ, X)
- Simulations Hydro prédisent la bonne relation M_{*} $M_{\rm halo}$

Cisaillement cosmique

- contraintes fortes sur quantité matière noire Ω_m (et σ_8).
- Sonde unique énergie noire (expansion).

INTROAUCTIO	-
IIIIIIOuucuo	

Observations

Simulations

Halos de matière noire

Conclusion

Conclusion La mission Euclid

Go present to the Excite instance or completion of part in under commune - Counter Early Convolution (EA Source Sorver Monter) Decar

15		SURV	NEVS.			
	Area (deg2)		Description			
Wide Survey	15,000 deg		Step and stars with 4 differ pointings per step.			
Deep Servey	40 deg ²	40 deg ² In at least 2 parches of 2 meanitades deper than		> 10 deg ¹ wide aaves		
Wandength mege	558-900 mm	Y (920- 1140em)	J (1146-1372 mini	H (1372- 2000um)	1100-2000 mm	
Semilivity	24.5 mg 10r extended source	34 mag Se point searce	24 mag So point source	24 mag 50 point source	3.10 ¹⁰ erg cm-2.s-1 3.50 unresolved line flax er-fell?? advance	