SDSS (e)BOSS

Structures dans le Sloan

N. Palanque-Delabrouille CEA-Saclay (IRFU)

500 deg² BOSS galaxies (0.50<z<0.55)

500 deg² random (0.50<z<0.55)

Sloan: grande saga de la structuration

- → Objectifs cosmologiques principaux BAO (énergie noire) RSD (gravité)
- → Objectifs additionnels Libres propagations

BOSS & Lyman-α

Contraindre Σm_{ν}

Nature de la matière noire

Oscillations Acoustiques des Baryons (BAO)

Propagation des ondes de surdensité ds le plasma primordial

Gel de l'onde à la recombinaison, à distance comobile $r_s \sim 150 \text{ Mpc}$

> Règle standard des grandes structures Une echelle 3D privilégiée

Oscillations Acoustiques des Baryons (BAO)

Oscillations Acoustiques des Baryons (BAO)

Observations

2005: Première detection du pic BAO
2012: Confirmation à 5σ par BOSS
2014: Première mesure 3D du BAO

Redshift Space Distortion (RSD)

Redshift Space Distortion (RSD)

Alam+ (2016)

Structuration petite échelle et libre propagation

Palanque-Delabrouille+ (2015)

 σ_8

Structures dans le Sloan

Sloan: grande saga de la structuration - Objectifs cosmologiques principaux BAO (énergie noire) RSD (gravité) - Objectifs additionnels Libres propagations

BOSS & Lyman-α

Contraindre masse des neutrinos

Nature matière noire

Sloan Digital Sky Survey

BOSS 2009-2014 eBOSS 2014-2020

 Télescope de 2.5m (Nouveau Mexique)

Cartes 3D des structures

 (α,δ) à partir de
 BOSS: 10 000 deg²
 eBOSS: 7 500 deg²
 z à partir de 1000 fibres

Sloan BOSS et eBOSS

Forêt Ly α

- Quasars visibles à grand redshift (z ~ 5)
- Absorption par H neutre (milieu intergalactique) sur trajet de la lumière
- Milieu intergactique = sonde de la densité de matière
- Distribution de la matière aux petites échelles (v, v_s)
- Spectre de puissance 1D (le long de ligne de visée)

Forêt Ly α

N. Palangue-Delabrouille — Novembre 2018 — Cours du collège de France

Spectre de puissance 1D de forêt Lylpha

Selection de ~14 000 sur60 000 QSOs BOSS (z>2.1)

Étude détaillée des contributions

- du détecteur (resolution spectrale, bruit)
- astrophysiques (émission ciel, corrélation avec autres absorbeurs)

$$\mathsf{P}_{\mathsf{Brut}}(\mathsf{k}) = [\mathsf{P}_{\mathsf{Ly}\alpha}(\mathsf{k}) + \mathsf{P}_{\mathsf{Lya-SiIII}}(\mathsf{k}) + \mathsf{P}_{\mathsf{metaux}}(\mathsf{k})] \times \mathsf{W}^2(\mathsf{k}) + \mathsf{P}_{\mathsf{Bruit}}(\mathsf{k})$$

Spectre de puissance 1D de forêt Ly α

Structures dans le Sloan

Sloan: grande saga de la structuration - Objectifs cosmologiques principaux BAO (énergie noire) RSD (gravité) - Objectifs additionnels Libres parcours

BOSS & Lyman- α

Contraindre masse des neutrinos

Nature matière noire

Pourquoi les v ont une masse

Dans l'Univers, $n_v \sim n_\gamma \sim 3.10^9 n_p$

 $\Rightarrow m \hat{e}me pour m_v \sim 0.1 \text{ eV} = 10^{-10} m_p$ Masse totale des v (n_vm_v) ~ masse stellaire totale (n_pm_p) !

\Rightarrow La cosmologie peut-elle apporter quelque chose?

m_v & grandes structures

Dans l'univers primordial, les neutrinos sont relativistes Ils se propagent à v=c (jusqu'à ce qu'ils deviennent non-relativists au temps t_{nr})

 $\implies \mbox{Lissage des perturbations de longueur d'onde $\lambda < ct_{nr}$} Mais structuration normale pour $\lambda > ct_{nr}$}$

Neutrinos lourds (t_{nr} tôt) Forte suppression sur courte distance

 $m_v \sim keV \implies$ lissage des perturbations de la taille de galaxies naines

Neutrinos légers (t_{nr} tard)
 Faible suppression sur grande distance

 $m_{\nu} \sim eV \implies$ **lissage des** perturbations de la taille d'amas de galaxies

Impacte de m_v sur grandes structures

Spectre de puissance de la matière

Espace réel (Mpc) \leftrightarrow Mode k (Mpc⁻¹)

Horizon causal *∧* avec le temps

- Evénements tôt ↔ petites échelles
- Evénements tardifs↔ grandes échelles

La libre propagation des v relativistes réduit la puissance aux petites échelles

Impact of m_v on large-scale structures

Neutrinos and large-scale structures

- Facteur de suppression $\Leftrightarrow \Sigma mv$
- Suppression dépend de z

• Ly- α

- Petites échelles, effet max
- Large gamme en z [2.1 ; 4.5]

Neutrinos et grandes structures

- Facteur de suppression $\Leftrightarrow \Sigma mv$
- Suppression dépend de z

• Ly- α

- Petites échelles, effet max
- Large gamme en z [2.1 ; 4.5]

Régime non-linéaire,
 P(k) du flux (et non masse)
 ⇒ Simulations hydro

Simulations hydrodynamiques

Simulations hydrodynamiques

Grille de simulations		parameter	central	range
→ Expansion de Taylor du 2ème ordre		keV/m	0.0	+0 2 ±0 4
pour paramètres cosmo & astro	Cosmology	$\sum m / eV$	0.0	+0.4+0.8
centree sur Planck (2013)	Cosmology	2111, 101	0.0	10.110.0
		h	0.675	± 0.05
$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \sum \frac{\partial f}{\partial x_i}(\mathbf{x}) \Delta x_i$		Ω_M	0.31	±0.05
$+\frac{1}{2}\sum_{i}\sum_{i}\frac{\partial^{2}f}{\partial x_{i}}(\mathbf{x})\Delta x_{i}\Delta$		σ_8	0.83	±0.05
	Δx_j	n _s	0.96	±0.05
$2 - \frac{1}{i} - \frac{1}{j} O x_i O x_j$		$dn_s/d\ln k$	0.00	±0.04
		Z _{reio}	12	±4
	Intergalactic Medium	$N_{e\!f\!f}$	3.046	±1
		$T_0^{z=3} / K$	14,000	±7,000
		$\gamma^{z=3}$	1.3	±0.3
	Optical Depth	A ^τ	0.0025	±0.0020
		η^{τ}	3.7	±0.4
TGCC Bruvères-le-châtel				

Simulations hydrodynamiques

 $z = 15 \rightarrow 0$

3 espèces

- Baryons
- Matière noire
- Neutrinos

Etoiles formées à partir des baryons

> @ A. Borde (CEA-Saclay)

@ Arnaud Borde CEA/IRFU 2013

Masse (Σm) ou masses (m_i) des neutrinos?

Contrainte sur M_{ν}

27

Contrainte sur M_{ν}

Structures dans le Sloan

Sloan: grande saga de la structuration - Objectifs cosmologiques principaux BAO (énergie noire) RSD (gravité) - Objectifs additionnels Libres propagations

BOSS & Lyman- α

Contraindre masse des neutrinos

Nature matière noire

Secteur des neutrinos stériles

Matière noire tiède

Forêt Lyman- α et cosmologie

Forêt Lyman- α & matière noire tiède

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Matière noire tiède: v_s

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Données	BOSS z<4.1	BOSS z<4.5	BOSS + XQ100 + HIRES/MIKE
Limite inf sur m _s (keV)	16.1	24.4	28.8 (z≤4.6) ¹ / 34.1 (z≤5.4) ²

¹ Yèche, NPD+ (2017) ² Irsic, Viel+ (2017)

Matière noire tiède: v_s

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Parmi les limites les plus fortes à ce jour

En combinaison avec données X (m_s < 4 keV), exclusion des modèles de neutrinos stériles (production non-résonante)

Matière noire mixte

Préférence pour mélanges matière noire tiède de grande masse ou faible fraction de tiède (proches de CDM) Baur, NPD++ (2017)

Neutrinos stériles: scenario plus générique

Neutrinos stériles en production résonante (Shi & Fuller, 1999) Distribution espace des phases pour m_s=4keV Asymétrie leptonique q² f(q) **Production** $\mathcal{L} = \frac{|n_{\nu} - n_{\bar{\nu}}|}{\hat{}}$ résonante 10^{-3} $(\mathcal{L} = 12 \times 10^{-6})$ $\sim CDM +$ Oscillations amplifiées *30% reliques thermiques* $\nu_{e,\mu,\tau} \longleftrightarrow \nu_s$ 10-4 Composante non-résonante Distribution non-thermique 10⁻⁵ Matière noire plus froide que en production non-résonante 2 3 5 6 q = p/TCold Warm

Neutrinos stériles: scenario plus générique

Avec modèles mixtes \rightarrow transformation des contours d'exclusion des v_s non-résonants + 8 simulations hydro pour validation

Neutrinos stériles: scenario plus générique

Données Lyman- α en tension avec v stérile de 7 keV (données X)

Et au delà?

Bientôt ...

Tout BOSS (5 ans) + 1ere année eBOSS: avec selection des 44 000 meilleurs quasars sur 200 000

DESI: l'instrument

- Télescope de 4m en Arizona
- **5000** positionneurs de fibre robotisés
- 10 spectrographes x 3 bandes (B, V, IR)

DESI: le relevé

10 spectrographes

Relevé spectroscopique de 14,000 deg² sur 0 < z < 4.5 pour BAO & RSD Collaboration internationale (74 instituts, 46 hors US) > 600 membres, 40 ingénieurs & physiciens français

- Cinq catégories de cibles couvrant redshifts $0 \rightarrow 4.5$
- **35 millions de redshifts** sur 14,000 deg² en cinq ans
- Volume 30x plus grand que pour cartographie du Sloan

2.4 millions de quasars z > 2.1 Lyα **Tracers** 1.0 < z < 2.1

17 millions d'ELGs 0.6 < z < 1.6

6 millions de LRGs 0.4 < z < 1.0

10 millions des galaxies les plus brillantes 0.05 < z < 0.4

Améliorations par rapport au Sloan

- **BAO:** 1 ordre de grandeur de mieux, $\sigma(a) \approx 0.1\%$
- **RSD:** à mieux que 1% sur toute la gamme en redshift
- Masse des neutrinos: precision de ~20-25 meV sur Σm_v
- Inflation (non-gaussianités): $\sigma(f_{NL}) \sim 5$ (pour DESI seul)

Conclusion

Physique des particules borne masse des neutrinos à $0.06 < \Sigma m < 6 eV$

Apport de la cosmologie

- Contrainte sur masse des neutrinos actifs
 - Somme des masses Σm_{v} < 0.12 eV (95% CL) par Ly α +CMB
- Contrainte sur matière noire tiède & neutrinos stériles
 - m_s (production non résonante) en conflit avec interpretation de raie à 3.5 keV comme v stérile
 - m_s (production résonante) exclu par cosmologie

• Prospectives

- Court terme: Mise à jour avec tout SDSS BOSS + eBOSS
- Moyen terme: Planck + DESI Ly α $\sigma(\Sigma m_v) = 0.039 \text{ eV}$
- Moyen terme: Planck + DESI Galaxy $\sigma(\Sigma m_v) = 0.024 \text{ eV}$

