

Structures dans le Sloan

N. Palanque-Delabrouille CEA-Saclay (IRFU)

500 deg² BOSS galaxies (0.50<z<0.55)

500 deg² random (0.50<z<0.55)

Sloan: grande saga de la structuration

- → Objectifs cosmologiques principaux BAO (énergie noire) RSD (gravité)
- → Objectifs additionnels Libres propagations

BOSS & Lyman-α

Contraindre Σm_{ν}

Nature de la matière noire

Oscillations Acoustiques des Baryons (BAO)

Oscillations Acoustiques des Baryons (BAO)

Oscillations Acoustiques des Baryons (BAO)

Observations

2005: Première detection du pic BAO

2012: Confirmation à 5σ par BOSS

2014: Première mesure 3D du BAO

Direction transverse

 $\Delta\theta = r_s / [(1+z) D_A(z)]$

 \Rightarrow Distance angulaire $D_A(z)$

comme SNIa: $D_L(z) = (1+z)^2 D_A(z)$

Direction radiale (ligne de visée)

 $\Delta z = r_s H(z) / c$

 \Rightarrow Parameter de Hubble H(z)

Redshift Space Distortion (RSD)

Mesure de la croissance gravitationnelle

$$P_F(k) = b_F^2 \times \left[1 + \beta \cos(\theta)^2\right]^2 \times P_L(k)$$
$$\beta \to f\sigma_8$$

Redshift Space Distortion (RSD)

Structuration petite échelle et libre propagation

Libre propagation des particules relativistes (simulations hydrodynamiques)

Suppression des petites échelles

Suppression dépend de masse des particules

Contrainte sur Σmv Contrainte sur masse de matière noire tiède

Structures dans le Sloan

Sloan: grande saga de la structuration

- Objectifs cosmologiques principaux

BAO (énergie noire)

RSD (gravité)

Objectifs additionnels
 Libres propagations

BOSS & Lyman- α

Contraindre masse des neutrinos

Nature matière noire

Sloan BOSS et eBOSS

Forêt Ly α

- Quasars visibles à grand redshift (z ~ 5)
- Absorption par H neutre (milieu intergalactique) sur trajet de la lumière
- Milieu intergactique = sonde de la densité de matière
- Distribution de la matière aux petites échelles (v, v_s)
- Spectre de puissance 1D (le long de ligne de visée)

Forêt Lylpha

Faible densité de H neutre dans Univers local (~100% ionisé)

Grande densité de H neutre dans Univers lointain

Fraction de flux transmis:

$$\delta = \frac{f - \langle f \rangle}{\langle f \rangle}$$

Spectre de puissance 1D de forêt Lylpha

Selection de ~14 000 sur60 000 QSOs BOSS (z>2.1)

Étude détaillée des contributions

- du détecteur (resolution spectrale, bruit)
- astrophysiques (émission ciel, corrélation avec autres absorbeurs)

$$P_{Brut}(k) = [P_{Ly\alpha}(k) + P_{Lya-SiIII}(k) + P_{metaux}(k)] \times W^{2}(k) + P_{Bruit}(k)$$

Spectre de puissance 1D de forêt Lylpha

BOSS

NPD, Yeche+ (2013)

12 bins z=2.2 to 4.4

XQ100

Yeche, NPD+ (2017)

Irsic, Viel+ (2017)

z=3.2, 3.6, 3.9

HiRES/MIKE

Viel, Becker+ (2013)

z=4.2, 4.6, (5.4)

Structures dans le Sloan

Sloan: grande saga de la structuration

- Objectifs cosmologiques principaux

BAO (énergie noire)

RSD (gravité)

- Objectifs additionnels
Libres parcours

BOSS & Lyman-α

Contraindre masse des neutrinos

Nature matière noire

Pourquoi les v ont une masse

Oscillations des neutrinos \Rightarrow les \vee sont massifs

Solaires $\delta m^2 \sim 7.5 \ 10^{-5} \ eV^2$

Atmosphériques $\Delta m^2 \sim 2.4 \ 10^{-3} \ eV^2$

 $0.06 \text{ eV} < \Sigma m_{v} < 6 \text{ eV}$

Détection directe de m_v (Désintégration β du Tritium)

 $m_e < 2 eV$

Pourquoi les v ont une masse

Dans l'Univers, $n_v \sim n_y \sim 3.10^9 n_p$

 \Rightarrow même pour m_v ~ 0.1 eV = 10^{-10} m_p Masse totale des v (n_vm_v) ~ masse stellaire totale (n_pm_p) !

⇒ La cosmologie peut-elle apporter quelque chose?

m_v & grandes structures

Dans l'univers primordial, les neutrinos sont relativistes Ils se propagent à v=c (jusqu'à ce qu'ils deviennent non-relativists au temps t_{nr})

- \Rightarrow Lissage des perturbations de longueur d'onde $λ < ct_{nr}$ Mais structuration normale pour $λ > ct_{nr}$
- Neutrinos lourds (t_{nr} tôt)
 Forte suppression sur courte distance

 $m_v \sim \text{keV} \implies \text{lissage des } \text{perturbations de la taille de galaxies naines}$

Neutrinos légers (t_{nr} tard)
 Faible suppression sur grande distance

 m_{ν}^{\sim} eV \Longrightarrow lissage des perturbations de la taille d'amas de galaxies

Impacte de m_v sur grandes structures

Spectre de puissance de la matière

Espace réel (Mpc) \leftrightarrow Mode k (Mpc⁻¹)

Horizon causal ↗ avec le temps

- Evénements tôt ← petites échelles
- Evénements tardifs ← grandes échelles

La libre propagation des v relativistes réduit la puissance aux petites échelles

Impact of m_v on large-scale structures

Domination k_{eq} Domination rayonnement

Spectre de puissance de la matière

Espace réel (Mpc) \leftrightarrow Mode k (Mpc⁻¹)

Horizon causal ↗ avec le temps

- Evénements tôt ← petites échelles
- Evénements tardifs ← grandes échelles

La libre propagation des v relativistes réduit la puissance aux petites échelles

Grandes échelles Petites échelles

Neutrinos and large-scale structures

Sondes différentes ⇔ différentes échelles

- Facteur de suppression $\Leftrightarrow \Sigma mv$
- Suppression dépend de z
- $Ly-\alpha$
 - Petites échelles, effet max

- Large gamme en z [2.1; 4.5]

Neutrinos et grandes structures

Sondes différentes ⇔ différentes échelles

- Facteur de suppression $\Leftrightarrow \Sigma mv$
- Suppression dépend de z
- $Ly-\alpha$
 - Petites échelles, effet max

- Large gamme en z [2.1; 4.5]

- Régime non-linéaire,P(k) du flux (et non masse)
- ⇒ Simulations hydro

Simulations hydrodynamiques

Simulations hydrodynamiques

Grille de simulations

→ Expansion de Taylor du 2ème ordre pour paramètres cosmo & astro centrée sur Planck (2013)

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \sum_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{x}) \Delta x_{i}$$
$$+ \frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}) \Delta x_{i} \Delta x_{j}$$

TGCC Bruyères-le-châtel

Intergalactic Medium

Optical Depth

Commence of the Commence of th		
parameter	central	range
keV/m_{x}	0.0	+0.2+0.4
$\sum m_v / eV$	0.0	+0.4+0.8
h	0.675	±0.05
Ω_{M}	0.31	±0.05
σ_{8}	0.83	±0.05
n_s	0.96	±0.05
$dn_s/d\ln k$	0.00	±0.04
Z_{reio}	12	±4
$N_{\it eff}$	3.046	±1
$T_0^{z=3} / K$	14,000	±7,000
$\gamma^{z=3}$	1.3	±0.3
$A^{ au}$	0.0025	±0.0020
$\eta^{ au}$	3.7	±0.4

Simulations hydrodynamiques

 $z = 15 \rightarrow 0$

3 espèces

- Baryons
- Matière noire
- Neutrinos

Etoiles formées à partir des baryons

@ A. Borde (CEA-Saclay)

Masse (Σ m) ou masses (m_i) des neutrinos?

TO LESS TRANSPORTED TO THE STATE OF THE STAT					
Hierarchie	m_1	m_2	m ₃		
Dégénérée	0.033	0.033	0.033		
Normale	0.022	0.024	0.055		
Inversée	0.0007	0.049	0.050		

 Σ m = 0.10 eV

'Exclusivement' effet de Σ m

Contrainte sur M_v

P(k) massifs / P(k) sans masse

Contrainte sur M_v

Structures dans le Sloan

Sloan: grande saga de la structuration

- Objectifs cosmologiques principaux

BAO (énergie noire)

RSD (gravité)

Objectifs additionnels
 Libres propagations

BOSS & Lyman-α

Contraindre masse des neutrinos

Nature matière noire

Secteur des neutrinos stériles

Matière noire tiède

Matière noire **Froide**

Si toute la matière noire était

Matière noire **Chaude**

Forêt Lyman- α et cosmologie

Neutrinos actifs

- Comparaison CMB vs. P(k) Ly α
- Impact plus grand quand m_v croît
- \Rightarrow Limite sup sur m_v

Matière noire tiède

- Suppression de puissance aux petites échelles
- Impact plus grand quand m_{WDM} décroît

 \Rightarrow Limite inf sur m_{WDM}

Forêt Lyman- α & matière noire tiède

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Matière noire tiède: v_s

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Données	BOSS z<4.1	BOSS z<4.5	BOSS + XQ100 + HIRES/MIKE
Limite inf sur m _s (keV)	16.1	24.4	28.8 (z≤4.6) ¹ / 34.1 (z≤5.4) ²

¹ Yèche, NPD+ (2017) ² Irsic, Viel+ (2017)

Matière noire tiède: v_s

Meilleure contrainte provient de grand z et grand k (meilleure sensibilité à coupure du régime linéraire)

Données	BOSS z<4.1	BOSS z<4.5	BOSS + XQ100 + HIRES/MIKE
Limite inf sur m _s (keV)	16.1	24.4	28.8 (z≤4.6) ¹ / 34.1 (z≤5.4) ²

Plus sensible aux systematiques (histoire thermique du milieu intergalactique)

Parmi les limites les plus fortes à ce jour

En combinaison avec données X (m_s < 4 keV), exclusion des modèles de neutrinos stériles (production non-résonante)

Matière noire mixte

Préférence pour mélanges matière noire tiède de grande masse ou faible fraction de tiède (proches de CDM)

Baur, NPD++ (2017)

Neutrinos stériles: scenario plus générique

Neutrinos stériles en production résonante (Shi & Fuller, 1999)

Asymétrie leptonique

$$\mathcal{L} = \frac{|n_{\nu} - n_{\bar{\nu}}|}{s}$$

Oscillations amplifiées

$$\nu_{e,\mu,\tau} \longleftrightarrow \nu_s$$

Distribution non-thermique

Matière noire plus froide que
en production non-résonante

Distribution espace des phases pour m_s=4keV

Neutrinos stériles: scenario plus générique

Avec modèles mixtes \rightarrow transformation des contours d'exclusion des v_s non-résonants + 8 simulations hydro pour validation

Neutrinos stériles: scenario plus générique

Données Lyman- α en tension avec ν stérile de 7 keV (données X)

Et au delà?

Bientôt ...

Tout BOSS (5 ans) + 1ere année eBOSS: avec selection des 44 000 meilleurs quasars sur 200 000

DESI: l'instrument

Télescope de 4m en Arizona

5000 positionneurs de fibre robotisés

10 spectrographes x 3 bandes (B, V, IR)

DESI: le relevé

Relevé spectroscopique de 14,000 deg²

sur 0 < z < 4.5 pour BAO & RSD

Collaboration internationale (74 instituts, 46 hors US)

> 600 membres, 40 ingénieurs & physiciens français

- Cinq catégories de cibles couvrant redshifts 0 → 4.5
- 35 millions de redshifts sur 14,000 deg² en cinq ans
- Volume 30x plus grand que pour cartographie du Sloan

2.4 millions de quasars

Ly α z > 2.1

Tracers 1.0 < z < 2.1

17 millions d'ELGs

0.6 < z < 1.6

6 millions de LRGs

0.4 < z < 1.0

10 millions des galaxies les plus brillantes

0.05 < z < 0.4

Améliorations par rapport au Sloan

- **BAO:** 1 ordre de grandeur de mieux, σ (a) \sim 0.1%
- **RSD:** à mieux que 1% sur toute la gamme en redshift
- Masse des neutrinos: precision de ~20-25 meV sur Σm_v
- Inflation (non-gaussianités): $\sigma(f_{NL}) \sim 5$ (pour DESI seul)

Conclusion

Physique des particules borne masse des neutrinos à $0.06 < \Sigma m < 6$ eV

Apport de la cosmologie

- Contrainte sur masse des neutrinos actifs
 - Somme des masses $\Sigma m_v < 0.12 \text{ eV}$ (95% CL) par Ly α +CMB
- Contrainte sur matière noire tiède & neutrinos stériles
 - m_s (production non résonante) en conflit avec interpretation de raie à 3.5 keV comme v stérile
 - m_s (production résonante) exclu par cosmologie

Prospectives

Court terme: Mise à jour avec tout SDSS BOSS + eBOSS

- Moyen terme: Planck + DESI Ly α $\sigma(\Sigma m_v) = 0.039 \text{ eV}$

- Moyen terme: Planck + DESI Galaxy $\sigma(\Sigma m_v) = 0.024 \text{ eV}$

