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Barred galaxies, general observational facts

● At low redshifts (z<~1) about:
– 1/3 of spirals are strongly barred 
– 1/3 of spirals are weakly barred

● But: so-classified non-barred (“normal”) galaxies include edge-
on or dusty galaxies for which a stellar bar is difficult to detect

● Bars are fast rotating stellar systems
● Bars are associated with features like:

– Nuclear, inner/outer rings, lenses 
– Boxy and peanut-shaped bulges
– Wide open pair of spiral arms

● By now the Milky Way has been 
well established as barred 
(~ 1990-2005) with a boxy-peanut bar/bulge



  

Barred galaxies, general observational facts

● In a disk-bulge profile 
decomposition the bar length is 
typically ~ 2 times the bulge size 

● Bars extend over the rising 
(linear) part of the rotation curve 
<=> scale 

Trujillo et al . 09
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Barred galaxies, general theoretical facts

● In N-body models bars extend over the 
rising (linear) part of the initial rotation 
curve 

● Bars are fast, long-lived rotating 
density waves, the corotation radius is 
slightly larger than the bar long axis

● Bars are robust to perturbations
● Spiral and bar patterns typically rotate 

at different speeds
=> no strict integral of motion
=> some time-dependence in  
     potential unavoidable

● Nested bar(s) within a main bar 
rotating faster than the main bar  
=> modulated time-dependence
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Phase space geometry 
in steadily rotating potentials

If the potential Φ is time-independent in the rotating frame, H is a 
global integral of motion (Jacobi integral).  

In axisymmetric and steady potentials, E and L are distinct global 
integrals.

Hamiltonian for coordinates rotating about the
rotation frequency vector Ω⃗ :

H =
p⃗2

2 + Φ( x⃗ , t ) − Ω⃗⋅( x⃗∧ p⃗ )

=
˙⃗x2

2 + Φ( x⃗ , t ) −
1
2 (Ω⃗∧ x⃗ )

2

= E − Ω⃗⋅L⃗

p⃗ = ˙⃗x − Ω⃗∧ x⃗



  

Phase space geometry 
in steadily rotating potentials

Effective potential 

at z=0 in a barred galaxy model

The rim of the crater 
(corotation) separates the bar 
region from the disk

Extrema = Lagrange points

The first order dynamics of 
barred galaxies is determined 
by the properties of the 
corotation region, 

a gate between the bar and 
outer disk 
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Time-dependence through bar-spiral 
interactions

➢ Time-dependence of the potential due to 
different bar and outer spiral pattern 
speeds 
(Sellwood 85, Sparke & Sellwood 87, ...) 

➢ The bar torques the spiral arms and 
vice-versa 

➢ The corotation region is reciprocally 
torqued by both patterns with similar 
strengths

➢ Do Lagrange's point actually exist? 

 

NASA

Sellwood 85



  

Motivations
➢ MW has a strong 8 kpc long bar 

and spiral arms, rotating 
presumably at distinct rotation 
frequencies  

➢ global uniformly rotating potential  
not realistic

➢ Modeling dynamics in the MW with 
actions and hoping to constraint 
the contribution of DM to the 
gravitational potential requires to 
determine 
1) the known baryonic distribution
2) in which rotating frame dyn-
    amics is at most time-invariant.

➢ The local pattern speed parameter 
Ω appears as essential for any 
action based dynamical modeling.

NASA



  

Motivations
➢ Gaia and other surveys will 

soon provide full 6D 
coordinates of millions of 
stars, an instantaneous 
snapshot of a subsample of 
the MW stars. 

➢ Dust extinction and non-
uniform sampling errors 
introduce severe spatial 
bias, however.

➢ Can we determine pattern 
frequencies from such 
spatially biased data sets?  

Gaia ESA

RAVE



  

Motivations
➢ N-body simulations provide 

all the information we need, 
so can be used to better 
understand the dynamics of 
self-gravitating disks 
including multiple patterns.

➢ The current popular 
methods using time Fourier 
analysis (spectrograms) are 
unable to probe 
instantaneous pattern 
speeds and their variations.

➢ New methods to find 
instantaneous local or 
regional estimates of 
pattern speeds and  
accelerations are therefore 
required.
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Pattern speeds in galaxies

Work in progress (P, Wu & Saha) 



  

Pattern and pattern speed
popular methods

➢ Angular and time Fourier transforms
in N-body models (2D)
(Sellwood 85, Athanassoula, ...)
=> time-average pattern frequencies
     of rings

➢ Continuity equation and integration in
observations and models (2D)
(Tremaine Weinberg 1984, ...)
=> instantaneous pattern speed 
      averaged over the full disk
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Pattern
➢ A pattern is a function f of the coordinates   

which after a time interval      is identical 
to the initial function translated by  
and rotated by        around 
the center of mass.

➢ By choosing a reference frame in the centre of mass the 
translation             can be removed. 

➢ The pattern speed  vector is
➢ Expanding to first order we get a linear equation for  

f (t+dt , x⃗ , v⃗ )= f (t , x⃗+d⃗x+d⃗ϕ∧x⃗ , v⃗+d⃗v+d⃗ϕ∧v⃗ )

Ω⃗=d ϕ⃗ /dt

∂ x⃗ f⋅(Ω⃗∧ x⃗ )+∂ v⃗ f⋅(Ω⃗∧v⃗ ) =

(x⃗∧∂ x⃗ f + v⃗∧∂ v⃗ f )⋅Ω⃗ = ∂t f

{x⃗ , v⃗}

{d⃗x , d⃗v}
d ϕ⃗

dt

Ω⃗

d ϕ⃗∧ x⃗

x⃗ (t )

x⃗ (t+dt )

{d⃗x , d⃗v}



  

Pattern speed
➢ If f follows a continuity equation (e.g. Boltzmann’s equ.) 

we get a linear equation  requiring to know only the phase space 
gradient of f

➢ This is the extension of the Tremaine-Weinberg (1984) equation 
to phase space and for a 3D vector 

➢ Using n>3 independent data points we get a linear system 
solvable by least-squares type minimization 
(or convex programming)

( x⃗∧∂ x⃗ f +v⃗∧∂ v⃗ f )⋅Ω⃗ = −v⃗⋅∂ x⃗ f −a⃗⋅∂ v⃗ f

Ω⃗

n x 3 matrix n x 1 vector 



  

Local and regional 3D TW method
➢ If f is actually the density ρ(x,t) of a conserved population one 

obtains

➢ It is preferable to solve directly this norm minimization problem. 
The lines with small lhs (along the bar symmetry axes for 
example) add only noise and can be discarded. 

➢ The density and mass flux gradients require complete samples in 
the regions where they are evaluated. 



  

Jacobi constant 3D method
➢ If f is actually the potential Φ(x,t) one gets a linear system

➢ The same equation is obtained by using the Jacobi 
constant                     in steady rotating potentials.

➢ The potential time-derivative is taken along the trajectory, 
so can be estimated knowing the particle velocity  



  

Jacobi constant 3D method
➢ The main advantage of Jacobi method in the MW context is 

to not require spatial gradients, but potential gradients 
(acceleration and potential time-derivative along the orbit).   

➢ This method is insensitive to extinction but requires some 
knowledge or further modeling about the total potential. 



  

Moment 3D methods
The moment of inertia tensor  I 

can be decomposed in singular values and orthogonal 
matrices (SVD decomposition)

giving the orthogonal unit directions of the inertia tensor main 
axes.



  

Moment 3D methods
Knowing the time derivative of I

one can obtain by SVD differentiation(*) the exact time differentiation 
of U from which the instantaneous rotation vector can be derived 

Any principal vector ni should give the same result, but the first one, 
corresponding to the longest principal axis, is numerically more 
accurate. 

(*) algorithm not easily found in the literature

n⃗1

˙⃗n1
Ω⃗



  

Moment 3D methods
By replacing positions by velocities, and velocities by accelerations, 
exactly the same ideas can be used for the kinetic tensor, 

where rotation occurs now in velocity space. 

This method is more sensitive to time perturbation.



  

Moment 2D methods
If the rotation axis direction is known, one can use the equivalent 
2D inertia tensor I and solve for the pattern speed analytically 
(without invoking the SVD algorithm): 



  

Fourier 2D method

➢ For disks of particles one can analyze the Fourier modes m in 
concentric rings where the particle azimuths are 

➢ The mode phase is a function of positions 

and can be time-differentiated, giving the instantaneous phase 
speed, related to the real space speed by 



  

Fourier 2D method

➢ All the terms are simple sums of trigonometric terms depending on 
the particle positions and velocities

 
 



  

Fourier 2D methods

➢ Differentiating once more one gets the mode instantaneous pattern 
acceleration, requiring knowing the particle accelerations,  
 



  

Some preliminary results 

➢ We have a couple of new methods to determine the instantaneous 
and local pattern speed, in 3D or 2D, according to the assumptions 
made about the pattern.  

➢ The 3D regional Tremaine-Weinberg method works well far from the 
bar principal axes, but is sensitive to extinction.

➢ The m=2 Fourier method is less sensitive to perturbations than the 
2D moment method. 

➢ The 3D Jacobi method is promising for use in the MW bar, because it 
requires only a set of individual stars positions and velocities 
together with a modeled potential.

➢ In N-body models the Jacobi method shows sensitivity to time-
dependence  near the centre, because there the long range smooth 
forces become negligible wrt nearby fluctuating forces. 

➢ The kinematic tensor method is very sensitive to perturbations 
(cf. the vertex deviation)    



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ 30% of barred galaxies possess a
secondary nested bar (Erwin 2011)

➢ Initial equilibrium axisymmetric 
conditions with 3 
Miyamoto-Nagai (75) models 
(with GalIC: Yurin & Springel 14)

➢ N = 2 · 107 particles, run over 8 Gyr
with parallelized gyfalcON 
(Dehnen 2000).  

➢ Cold inner disk as in Du et al. (15) 
=> Formation of long-lived nested 
     bars + spiral arms

➢ Inner and outer bars corotation regions study
➢ How do the equilibrium points behave in the respective rotating 

frames? 



  

Model 

➢ Miyamoto-Nagai (1975) density components
 



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ The bar pattern speeds are determined using the 2D moment 
method

➢ Instantaneous equilibrium points: extrema of the effective 
potential,

 
➢ or the location (x,y) of the zero acceleration in the respective 

rotating frames,

➢ or the location in the x-y plane with minimum  



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

25.67 cm

25.67 cm



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ Zero-radial acceleration (black) and 
zero-torque (white) curves at different times



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ Equilibrium points radii 
(red: inner bar, black: outer bar)



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ Equilibrium points reduced azimuths 
(red: inner bar, black: outer bar)



  

Corotation study in double bar N-body models
(Wu, P & Taam 2016)

➢ Equilibrium points effective potential 
(red: inner bar, black: outer bar)



  

Detailed analysis of the double bar N-body model 
(Wu, P & Taam submitted) 
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Pattern speed 
Time 



  

Pattern speed (outer bar) 
Time 



  

Pattern speed (inner bar) Time 



  

Strength 
Time 



  

Strength (outer bar) 
Time 



  

Strength (inner bar) Time 
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Conclusions

➢ The corotation regions are particularly time-dependent, the 
adjacent patterns rotating with different speeds torque each 
other in time with similar strengths (logical corollary of Sellwood 
85)

➢ no strict stationary equilibrium points (Lagrange points) exist 
as well as the Jacobi integral,   

➢ enhanced chaos, fast stellar diffusion/migration between the 
bar and the disk, secular evolution   

➢ At any time bars surrounded by spirals are in a particular state 
of flexion related to the bar/spiral phase difference

➢ assuming a rigid bar pattern leads to conflicts about the MW 
bar pattern speed and orientation in the literature

➢ The OLR induced by a bar in the spiral region (around the Sun 
in the MW) should be even more perturbed by local spiral arms 
than the corotation resonance and can have a meaning only in 
an time-averaged sense.
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