Effet Sunyaev-Zeldovich

Nabila Aghanim Institut d'Astrophysique Spatiale

ust.: Douspis, Hurier, Agnar

Grandes structures de l'univers

Springel et al. (2005)

Courtesy F. Vazza

Amas de galaxies = noeuds @intersection des filaments Filaments cosmiques & Ponts entre amas (en interaction)

Eléments de la toile cosmique

Contenu en masse & volume

→ Différentes techniques de détection = différentes propriétés des éléments cosmiques

Effet Sunyaev-Zeldovich (SZ)

Gaz chaud et ionisé

Observation & détection de l'effet Sunyaev-Zeldovich

Observation de l'effet SZ

Jones et al 1993 Observation de l'amas de galaxies A2218 au Ryle télescope

Observation de l'effet SZ

Couverture en fréquence de Planck

Détection de l'effet SZ des amas

Technique de détection adaptée (Matched Multi-Filter (Melin et al. 2006, 2012):

- Spectre connu → non-relativiste SZ
- Forme des amas connue → profil de pression (Arnaud et al. 2010)

- Amas typiques → détectés à ~1 sigma par fréquence mais à 5 – 30 sigma en combinant les fréquences → SZ enhanced over noise
- Trois catalogues: 2011, 2013, 2014 Base de données \rightarrow 2690 sources SZ incl. \sim 1800 amas

Validation statistique avec l'IA (Réseau de neurones, ANN)

Distinguer les "vraies" des "fausses" sources SZ induites par le bruit et la contamination Entrainement d'un réseau de neurones:

- positions des vrais amas \rightarrow "vraies" sources SZ: good
- positions des galaxies IR/radio → "fausses" sources SZ dues aux galaxies d'avant-plan
- Positions aléatoires → "fausses" sources SZ dues au bruit de mesure

Critère de qualité pour chaque source SZ: $Q_N < 0.4 \rightarrow$ peu fiables (probablement fausses)

Catalogue SZ: propriétés

Distribution dans le plan M–z des amas Planck, autre SZ & X-ray Planck permet de détecter les amas les plus massifs sur tout le ciel

Quelles sont les propriétés des amas détectés en SZ

- Pratiquement tous les amas connus accessibles par Planck ont été détectés.
- Planck a détecté des centaines de candidats la plus part sont de vrais amas
- Profils de densité sont moins pentus que dans X-ray → amas souslumieux par rapport a leurs masses
- Bon accord entre prédictions (X-ray) et mesures SZ de la pression du gaz
- Grande variété d'états dynamiques → 70% morphologies perturbées & 14% systèmes multiples
- Plus petite fraction (~30-40%) d'amas à coeurs froids que dans les catalogues X-ray
- 80% d'amas massifs hérgent un radio halo pour les catalogues SZ par rapport aux ~40% dans les catalogues X-ray

Nombreuses questions: Sélection? Effets physiques? Mesures SZ?

Détection de l'effet SZ tout-le-ciel Séparation de composantes

Planck collaboration 2013, 2015

Cosmologie avec l'effet SZ:

→ Distribution du gaz "chaud" dans tout l'univers

A la recherche des baryons cachés (manquants)

Une toile cosmique de galaxies

 The Illustris simulation at z=0

 Image: transformed by transfo

Matière noire

Galaxies

Toile cosmique: VIPERS,

Une toile cosmique de gaz

~40% des baryons prévus nonobservés dans l'univers local

Sous forme de gaz ionisé "chaud" ou d'objets faibles masses dans la toile cosmique Température/densité dans simulations hydrodynamiques indiquent de grandes fractions de baryons:

- dans la toile cosmique en dehors des objets liés
- avec des densités ~ qq-100 densité cosmique moyenne
- température 10⁵ −10⁷ K → "Warm-Hot Intergalactic Medium" (WHIM)

Une toile cosmique de gaz

Filaments & Ponts sont détectés notamment en X-rays et SZ

Que sont ces filaments et ponts? Quelle est la connection entre ponts et parties externes des amas? Sont-ils fait de gaz intra-amas ou de WHIM? Comment tracent-ils les processus nonthermiques, e.g. turbulence et/ou rayons cosmiques?

Superamas Planck collab. '13,'15 Shapley

Ponts: Une paire exceptionnelle A399-A401 Fujita et al. 1996 Sakelliou et al. 2004 Fujita et al. 2004

Caractérisation détaillée de la matière entre les amas

Akamatsu+ '18

Planck collab. '13

Bonjean et al. '18

Akamatsu et al. '17

Ponts: Une paire exceptionnelle A399-A401

Géométrie ~3Mpc long ~1.1Mpc profondeur Signal SZ de Planck $P_0 = (2.8\pm0.27)\times10^{-3} \text{ keV cm}^{-3}$ X-ray de SUZAKU: métallicité; écart température isotherme Te=6.5±0.5 keV $n_0 = (4.3\pm0.7)\times10^{-4} \text{ cm}^{-3}$ Surdensité de galaxies \rightarrow **S/N_{fil}~8** Formation stellaire & masse stellaire calculées avec de l'IA

Pas de ségrégation \rightarrow Galaxies du pont et de l'amas sont passives

Simulations \rightarrow 50% des particules de gaz du pont proviennent des régions externes d'amas Choc perpendiculaire à l'axe de fusion? Choc d'accrétion de matière sur le pont?

Ponts/filaments: Statistique des paires

Empilement 260,000 paires de galaxies (6 - 10 Mpc/h): centres des amas $(0.05 < z < 0.40, M > 10^{11.3} Msun)$

Filaments cylindriques (rayon r_c); temperature (T_e); profil densité des simulations \rightarrow surdensité au centre $\delta \sim 3.2\pm0.6$

Empilement des masses des effet de lentilles gravitationnelles $\rightarrow \delta \sim 4$

Superamas: Statistiques

Empilement 689 superamas de Liivamägi+ '12 avec z<0.2; rayon moyen Rsc~18 Mpc/h (2.5 deg) Amas M>10¹³ M_{sun} masques jusqu'à 3 \times R₅₀₀

Signal SZ des baryons interamas dans les superamas: 2.5 σ

Budget de baryons? Profil SZ moyen ajuste avec un modèle de gaz interamas isotherme et à densité constante

Gaz interamas dans les superamas pourrait rendre compte de ~16 – 40% des baryons cachés

→ La fourchette traduit les limites du modèle de gaz dans les superamas

Gaz chaud avec l'effet SZ cinétique

Effet Doppler des photons du CMB lié aux vitesses particulières des structures → Spectre de corps noir comme le CMB

Cosmologie avec l'effet SZ:

→ indépendant du redshift/distance

Tester l'expansion adiabatique de l'univers avec les amas SZ

Tester l'expansion adiabatique: évolution de T_{CMB}

• Expansion adiabatique Variation des constantes fondamentales ou nonconservation des photons (e.g. décroissance de l'énergie noire)

 $T_{\text{CMB}}(z) = T_{\text{CMB}}(z=0) (1+z)^{1-\beta}$

SZ (e.g. Rephaeli '95, Batistelli et al. '02) **avec** un petit nombre d'amas Planck: 813 amas (z<1); 20 tranches

 $T_{_{CMB}}$ tracée (non-ajustée) au cas expansion adiabatique $T_{_0}$ =2.726K Mesure de β

Tester l'expansion adiabatique: évolution de T_{CMB}

Cosmologie avec l'effet SZ:

→ détection d'amas représentatifs de la statistique de population

Mesure des paramètres cosmologiques avec les amas SZ

Paramètres cosmologiques avec l'abondance des amas

 SCDM
 rCDM

ACDM

OCDM

Virgo consortium

Abondance & évolution de la distribution en masse → fortes contraintes sur les paramètres cosmologiques : normalisation, dark matter, dark energy, neutrino, etc.

Paramètres cosmologiques avec l'abondance des amas

Comparer la distribution observée avec les prédictions des modèles cosmologiques

Vraisemblence: Probabilité de l'abondance observée étant donnée la prédiction de la théorie/modèle

$$\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz \, dM_{500} \, d\Omega}$$

Fonction de masse théorique: nombre de DM (matière noire) halos à partir des simulations

Fonction de sélection de l'échantillon: construite des catalogues & des caractéristiques du relevé (bruit, couverture, etc.)

Relations d'échelle: reliant observable (SZ, X-ray, optique) et halo DM

Paramètres cosmologiques avec l'abondance des amas: Sélection de l'échantillon

Sélection des amas en X-ray affectée par les effet de distance Sur-représentation d'amas à coeur froid

Bruit inhomogène/échelledépendant → Structure du relevé dépend de la détection des amas taille du filtre & position sur le ciel

$$\chi_{\rm erf}(Y_{500},\theta_{500},l,b) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{Y_{500} - X\sigma_{Y_{500}}(\theta_{500},l,b)}{\sqrt{2}\,\sigma_{Y_{500}}(\theta_{500},l,b)}\right) \right]$$

Cosmological parameters with counts: Selection of the cosmology sample

Sélection des amas en SZ non affectée par les effet de distance → Sélection sur la masse

Planck: Catalogue tout-ciel d'amas massifs → Moins sensibles aux modèles de gaz et plus sensibles au modèdele cosmologique Bruit inhomogène/échelledépendant → Structure du relevé dépend de la détection des amas taille du filtre & position sur le ciel

$$\chi_{\rm erf}(Y_{500},\theta_{500},l,b) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{Y_{500} - X\sigma_{Y_{500}}(\theta_{500},l,b)}{\sqrt{2}\,\sigma_{Y_{500}}(\theta_{500},l,b)}\right) \right]$$

Paramètres cosmologiques avec l'abondance des amas: Relations d'échelle

Physique complexe mais hypothèses simples pour calculer les masses :

- Equilibre hydrostatique
- Pas de pression relativiste, ni de champs magnétiques, etc

Pas de structures multiples en température

 X-rays: Plus forte dépendance des processus physiques

 → Dispersion de la relation L_x M & biais

SZ: Faible dépendance \rightarrow Faible dispersion de la relation Y_{sz}-M ~non biaisé

Paramètres cosmologiques avec l'abondance des amas: Relations d'échelle

71 amas de galaxies Planck avec des données XMM-Newton re-normalisées avec des simulations

Y_{sz} mesure par Planck & Y_x avec données Xrays

$$\begin{bmatrix} Y_{\times} \to M & \text{and } Y \to Y & 1 \to Y & -M \\ E^{-\beta}(z) \begin{bmatrix} \frac{D_{A}^{2}(z) \bar{Y}_{500}}{10^{-4} \,\text{Mpc}^{2}} \end{bmatrix} = Y_{*} \begin{bmatrix} \frac{h}{0.7} \end{bmatrix}^{-2+\alpha} \begin{bmatrix} \frac{(1-b)}{6 \times 10^{14} \,\text{M}_{sol}} \end{bmatrix}^{\alpha}$$

(1-b) = 0.8 in [0.7-1.0]

b: rapport hydro/masse vraie

Paramètres cosmologiques avec l'abondance des amas: Relations d'échelle

Lentilles faibles et masse issues de Y_x comparés

Y_x avec X-ray issues de Chandra (Vikhlinin et al. '09)

 $[Y_X \rightarrow M_X \text{ et } Y_X \rightarrow Y_{SZ}] \rightarrow Y_{SZ} - M_X$

$$Y_{SZ} \propto M^{YX} = (1-b)M_{WL}$$

b: rapport hydro/vraie masse

Relations d'échelle issues de l'effet de lentilles

- WtG \rightarrow (1-b)~0.68 (von der Linden et al. '14)
- PSZ2LenS → (1-b)~0.76 (Sereno et al. '17)
- CCCP \rightarrow (1-b)~0.78 (Hoekstra et al. '15)
- CMB-lensing \rightarrow (1-b)~1 (Planck collab. '16)

Paramètres cosmologiques avec l'abondance des amas: Amas SZ

0.6

0.8

1.2

1.4

1.6

1.0

1-b

CMB et abondance S7

Paramètres cosmologiques avec les amas X-rays et l'effet de lentille

- Contraintes sur $\sigma_8^2 \cdot \Omega_m$ de la fonction de luminosité en X-ray
- Accord avec les amas SZ (Planck Collab. '16)
- → Désaccord avec le CMB:
- avec une sélection différente des amas
- avec un domaine de redshift différent

- Contraintes sur $\sigma_8^{-}\Omega_m$ depuis l'effet de lentille des galaxies (Heymans et al. '13, Joudaki et al. '16)
- → Désaccord avec le CMB de ~ 2σ

Désaccord entre SZ et CMB?

- Masses fausses d'un facteur 2
- Amas non-observés à bas z
- Relations d'échelle différentes

- Variation du spectre initial

- Présence de neutrinos

Paramètres cosmologiques avec les amas SZ: dernières nouvelles

Echantillon d'amas SZ inchangé (Planck collab. '16) & A priori sur la masse depuis le projet CCCP lentille (1-b)=0.78 \rightarrow SZ contraintes inchangées Du prior WMAP au τ de Planck-HFI polarisation bas-l $\rightarrow \tau = 0.055$ (Planck collab. '16) **Désaccord entre CMB et amas SZ réduit de ~2.4 \sigma à ~1.5 \sigma sur \sigma_8**

Biais sur la mass demeure: le CMB préfère des amas légers!!!

Cosmologie avec l'effet SZ:

→ quantité de gaz chaud/tiède sur tout le ciel

Mesure des paramètres cosmologiques avec la carte SZ

Paramètres cosmologiques avec la carte SZ de Planck

 $\ell(\ell+1)C_\ell/2\pi$

 10^{12}

Paramètres cosmologiques avec la carte SZ de Planck

Contraintes similaires sur $\sigma_8^{}$ avec la corrélation des cartes SZ et X-ray (Hurier et al. '14)

Cosmological parameters with SZ map from Planck

Distribution des pixels

Analyse statistique de l'ensemble du signal SZ signal & ordres supérieures cohérente avec le spectre de puissance

 $\rightarrow \sigma_8 = 0.74 \pm 0.04$

Conclusions

- Plusieurs "observatoires" SZ depuis Planck: NIKA2; relevés CMB au sol des U.S.A (ACT(& avatars), SPT (& avatars), etc.)
- Catalogue tout le ciel unique de Planck avec les amas les plus massifs → les plus rares & les plus exceptionnels
- Des centaines de nouveaux amas détectés en SZ
- Carte du ciel quasi-complète du signal SZ → relations d'échelle, prrofils de pression, recherche des baryons cachés
- Etudes détaillées sur la formation et la physique des amas par une approche multi-longueur d'onde radio/X-ray/lentilles/SZ haute résoution → fusions/interactions, périphéries d'amas, pression thermique/non-thermique