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Why Quantum Machine Learning?

We need real-world high-impact applications of qguantum computers



Reasons for eptimism keep working on it

1. Powerful quantum tools for Linear Algebra

Machine Learning is a lot of Linear Algebra - Matrix Multiplications, SVD, Linear
Systems (neural nets, linear regression, Support Vector Machines,...)

Quantum algorithms for Linear Algebra can offer speedups in certain cases

2. Distance Estimations

Simple guantum circuits for estimating distances between quantum states

3. Noise resilient algorithms

There is a lot of noise in ML data but the algorithms can deal with it

4. Multiple goals: Efficiency, Accuracy, Explainability, Energy, Trust



Reasons for caution keep working on it

1. Subtle guantum tools for Linear Algebra

One needs to be very careful about when quantum algorithms can offer speedups

2. Loading classical data as quantum states
Taking full advantage of quantum ML algorithms needs efficient guantum loaders

3. Getting classical information out of quantum algorithms

The quantum output encodes a classical solution that needs to be extracted

4. Benchmarking QML algorithms is difficult in the absence of hardware
Machine Learning must work in practice! How do we test?



Supervised Learning:
a first example
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Classification: Quantum Neural Networks

1.  Many different proposals [arXivi1412.3635, arXiv:1810.03787, arXiv:1711.11240,
arXiv:1806.06871, arXiv:1806.06871, arXiv:1911.00111, arXiv:1909.12264]



Classification: Quantum Neural Networks
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cat / dog

Quantum Neural Network
Quantum circuit with a number of parametrized gates

Input: image. Output: label
Training: Learn the gate parameters so that labels are correct



Classification: Training classical Neural Networks

Accuracy/Convergence : similar to classical Neural Networks

Running time: gains from [P estimation for training and evaluation

[Allcock, Hsieh, Kerenidis, Zhang ACM ToQC 20], [Kerenidis,Landman,Prakash ICLR20]



Classification: Quantum Neural Networks

Quantum Orthogonal NNs

- New classical training in O(n?)
NISQ implementations
provable efficiency

A new optimization landscape



Dimensionality Reduction

Map data from RP to a smaller space RY where the classification is better

- Principal Component Analysis
- Linear Discriminant
-  Slow Feature Analysis

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)



Dimensionality Reduction

Map data from RP to a smaller space RY where the classification is better

- Principal Component Analysis
- Linear Discriminant
-  Slow Feature Analysis

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Classification
Map points from RP to Rd via Linear Algebra (can take O(ND2) )
Perform Classification in R9 (“easier” part)



Quantum Dimensionality Reduction

Map data from RP to a smaller space RY where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Quantum Classification
Map points from RP to R9 via Quantum Linear Algebra
Perform Quantum Classification in R4
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Given A =YL, A |vilvi| and eigenvector |v;), perform |v;)|0) - |v;)|A;)



Quantum Dimensionality Reduction

Map data from RP to a smaller space RY where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]
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Singular Value Estimation (Phase Estimation for non-unitaries) [Kerenidis,Prakash 17]
Given A =YL, A |vilvi| and eigenvector |v;), perform |v;)|0) - |v;)|A;)

Goal: Project |b) = YL, b; |v;) onto an eigenspace of A = YL, A; |[vi}(vi| with A;>t
L1bi [vi) = DIy by [vi)|Ai) = Ziasebi [Vi)|Ai)10) + i <o by [vi)|Ai)11)



Quantum Dimensionality Reduction

Map data from RP to a smaller space RY where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Singular Value Estimation (Phase Estimation for non-unitaries) [Kerenidis,Prakash 17]
Given A =YL, A |vilvi| and eigenvector |v;), perform |v;)|0) - |v;)|A;)

Running time parameters: O(K, W, 1/€)
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Recommendation Systems kerenidis, Prakash, ITCS 17]

Algorithms Theory Parameters
Users: 108
Products: 108
types: 100
Quantum types* log (users*products) ~ 103
CUR-based [2002] (types)? * products ~ 1012
FKV-based [Tang (types)® * log (users*products) ~ 10"

2018, CGLLTW19]



On the Input



Loading data for Quantum Machine Learning

In cases, quantum inputs can be very interesting for applications

In cases, it is easy to construct the input: Reinforcement Learning, NN for PDES

In cases, quantum input coming from Dim. Reduction / kernels / etc.

Classical: Heavy Linear Algebra to produce input states
Quantum: Loading cost of initial points is subsumed

In cases, one will need specific quantum data loaders
Quantum circuits of size O(d) and depth log(d)



1. Quantum data loaders

T |of1]2]3]
Goal: Load N-dim classical data onto quantum computer qo0 : -X-T-T-T-
ql : ———i—}—s—
Solution: g2 : ---|-S-B-
1. Map data point to gate parameters in linear time 03 ___}___é_
2. Build quantum circuit to run in logN steps |
g4 : ---S-B-B-
| |

q5 : -----|-8-

RBS()=[1 O 0] 0 |
O cos(8) sin(B) O g6 : -————S—]E|3—
O -sin(@) cos(@) O GqT § e S-

O O 0] 1] T : |0|1]2]|3]



1. Quantum data loaders

Data loaders

qubits (Q) depth (D) multiqubit Remarks
gates

multiplexer

QRAM
hardware
[Lloyd]

QRAM circuit
[Mosca et al]

Our parallel
data loader

Our optimized
data loader

logN
O(N)?

O(N)

N

27/N

O(N)
O(logN) ?

O(N)

logN

VNlogN

O(NlogN)

Light-matter
interaction
gates

O(NlogN)

(N-1)
2-g gates

1.5N
2-g gates

Impractical depth

New hardware is
needed

Impractical depth

Unary encoding

Any values s.t.
Q *D = 0(NlogN)



2. Quantum distance estimation

Goal: Given data points x and vy, find their distance

Solution:
1. Build circuit [loader(x)+loader(y)T ]
to estimate distance in 2logN steps

Properties
- Shallow and noise robust circuits
- N qubits, 2logN depth
- Can use any optimized data loader
- Can be combined with Amplitude Estimation

2 |0]1][2]3]4]5]6]

: o|1]2|3]4]5]6|



Unsupervised Learning



Clustering

k-means++

Input: N points in d-dimensions
Output: K clusters/centroids

1.  Start with some initial centroids (e.g. ++-method)
Repeat until convergence
2. For each point
estimate distances to centroids and
assign to closest cluster
3. Update the centroids



Clustering

g-means++ [Kerenidis,Landman,Luongo, Prakash NeurlPS 2019]

Input: N points in d-dimensions (quantum access)
Output: K clusters/centroids

1.  Start with some initial centroids (e.g. ++-method)
Repeat until convergence
2. For all points in superposition
estimate distances to centroids and
assign to closest cluster
3. Update the centroids
i.  Quantum linear algebra to find new centroid
ii. Tomography to recover classical description



Clustering

Extensions

Expectation Maximization for Gaussian Mixture Models
[Kerenidis,Luongo,Prakash ICML 2020]

Spectral Clustering [Kerenidis,Landman PRA 2021]

Map points to the low eigenspace of the
Laplacian, then apply k-means



Reinforcement Learning



Quantum Policy lteration [Cherrat, Kerenidis,Prakash 20211

Input:
states S, actions A, transition matrix P, Reward function R

Output: policy m, such that mi(s)=a

Policy lteration
start with 1o
solve (I-yP") Q=R
update T from Q

Remarks
“No input” / Well-conditioned / £® guarantees



Quantum Optimization



Optimization



Optimization




Optimization

Discrete Combinatorial opt
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Optimization

[Kerenidis,Prakash 2018]
[Kerenidis,Prakash,Szilagyi 2020]




Challenges - Prospects

Powerful yet subtle quantum tools

Power: Linear Algebra, Distance Estimations, Tomography, etc.
Subtleties: Input, Output, running time parameters

Promising directions

Heavy Linear Algebra algorithms (Dim. Reduction, Kernels, Spectral Clustering)

Reinforcement Learning (no classical data, well-conditioned systems, £ guarantees)
Quantum Neural Networks

Final Remarks

ML is about practical solutions to real-world problems.

It’s a long, arduous way till we see QML applications, but certainly worth pursuing
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