Quantum Machine Learning:

Prospects and challenges

Iordanis Kerenidis

Why Quantum Machine Learning?

We need real-world high-impact applications of quantum computers

Reasons for optimism keep working on it

- Powerful quantum tools for Linear Algebra
 Machine Learning is a lot of Linear Algebra Matrix Multiplications, SVD, Linear Systems (neural nets, linear regression, Support Vector Machines,...)
 Quantum algorithms for Linear Algebra can offer speedups in certain cases
- Distance Estimations
 Simple quantum circuits for estimating distances between quantum states
- Noise resilient algorithms
 There is a lot of noise in ML data but the algorithms can deal with it
- 4. Multiple goals: Efficiency, Accuracy, Explainability, Energy, Trust

Reasons for caution keep working on it

- Subtle quantum tools for Linear Algebra
 One needs to be very careful about when quantum algorithms can offer speedups
- Loading classical data as quantum states
 Taking full advantage of quantum ML algorithms needs efficient quantum loaders
- 3. Getting classical information out of quantum algorithms

 The quantum output encodes a classical solution that needs to be extracted
- 4. Benchmarking QML algorithms is difficult in the absence of hardware Machine Learning must work in practice! How do we test?

Supervised Learning: a first example

Data

Data

Quantum algorithms

Quantum software

Data

Quantum circuits

Quantum algorithms

Quantum software

```
# let's create some synthetic data
X, y = generate_data_clusters()
# let's run the quantum classifier
qlabels = fit_and_predict(X,y=y,model='QNearestCentroid')
#import NearestCentroid from scikit-learn for benchmarking
clabels = sklearn.neighbors.NearestCentroid().fit(X,y).predict(X)
print('Quantum labels\n',qlabels)
print('Classical labels'n', clabels)
# let's plot the data (only for dimension=2)
plot(X, glabels, 'QNearestCentroid')
plot(X, clabels, 'KNearestCentroid')
 [2 0 0 1 0 0 0 0 1 1 2 0 1 1 0 1 2 3 2 1 2 2 2 3 3 3 3 3 0 3 3 2]
```

Data

Quantum computer

Quantum circuits

Quantum algorithms

Quantum software

```
# let's create some synthetic data
X, y = generate_data_clusters()
# let's run the quantum classifier
qlabels = fit_and_predict(X,y=y,model='QNearestCentroid')
#import NearestCentroid from scikit-learn for benchmarking
clabels = sklearn.neighbors.NearestCentroid().fit(X,y).predict(X)
print('Quantum labels\n',qlabels)
print('Classical labels\n', clabels)
# let's plot the data (only for dimension=2)
plot(X, glabels, 'QNearestCentroid')
plot(X, clabels, 'KNearestCentroid')
 [2 0 0 1 0 0 0 0 1 1 2 0 1 1 0 1 2 3 2 1 2 2 2 3 3 3 3 3 0 3 3 2]
```

Data

Nearest Centroid Classification on a Trapped Ion Quantum Computer

Sonika Johri, Shantanu Debnath, Avinash Mocherla, Alexandros Singh, Anupam Prakash, Jungsang Kim, and Iordanis Kerenidis^{2,5}

¹IonQ Inc, 4505 Campus Dr, College Park, MD 20740 ²QC Ware, Palo Alto, USA and Paris, France ³UCL, Centre for Nanotechnology, London, UK ⁴Université Sorbonne Paris Nord, France ⁵CNRS, University of Paris, France

Results

An 11-qubit QC can recognise 8 out of 10 handwritten digits

Classification: Quantum Neural Networks

1. Many different proposals [arXiv:1412.3635, arXiv:1810.03787, arXiv:1711.11240, arXiv:1806.06871, arXiv:1806.06871, arXiv:1911.00111, arXiv:1909.12264]

Classification: Quantum Neural Networks

1. Many different proposals [arXiv:1412.3635, arXiv:1810.03787, arXiv:1711.11240, arXiv:1806.06871, arXiv:1806.06871, arXiv:1911.00111, arXiv:1909.12264]

Quantum Neural Network

Quantum circuit with a number of parametrized gates

Input: image. Output: label

Training: Learn the gate parameters so that labels are correct

Classification: Training classical Neural Networks

Accuracy/Convergence: similar to classical Neural Networks

Running time: gains from IP estimation for training and evaluation

[Allcock, Hsieh, Kerenidis, Zhang ACM ToQC 20], [Kerenidis, Landman, Prakash ICLR20]

Classification: Quantum Neural Networks

Quantum Orthogonal NNs

- New classical training in O(n²)
- NISQ implementations
- provable efficiency
- A new optimization landscape

Dimensionality Reduction

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis
- Linear Discriminant
- Slow Feature Analysis

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Dimensionality Reduction

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis
- Linear Discriminant
- Slow Feature Analysis

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Classification

Map points from R^D to R^d via Linear Algebra (can take O(ND²))

Perform Classification in Rd ("easier" part)

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Quantum Classification

Map points from RD to Rd via Quantum Linear Algebra

Perform Quantum Classification in Rd

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Singular Value Estimation (Phase Estimation for non-unitaries) [Kerenidis, Prakash 17] Given $A = \sum_{i=1}^{n} \lambda_i |v_i\rangle\langle v_i|$ and eigenvector $|v_i\rangle$, perform $|v_i\rangle|0\rangle \rightarrow |v_i\rangle|\lambda_i\rangle$

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Singular Value Estimation (Phase Estimation for non-unitaries) [Kerenidis, Prakash 17] Given $A = \sum_{i=1}^{n} \lambda_i |v_i\rangle\langle v_i|$ and eigenvector $|v_i\rangle$, perform $|v_i\rangle|0\rangle \rightarrow |v_i\rangle|\lambda_i\rangle$

Goal: Project $|b\rangle = \sum_{i=1}^{n} b_i |v_i\rangle$ onto an eigenspace of $A = \sum_{i=1}^{n} \lambda_i |v_i\rangle\langle v_i|$ with $\lambda_i > t$ $\sum_{i=1}^{n} b_i |v_i\rangle \rightarrow \sum_{i=1}^{n} b_i |v_i\rangle|\lambda_i\rangle \rightarrow \sum_{i:\lambda_i>t} b_i |v_i\rangle|\lambda_i\rangle|0\rangle + \sum_{i:\lambda_i<t} b_i |v_i\rangle|\lambda_i\rangle|1\rangle$

Map data from R^D to a smaller space R^d where the classification is better

- Principal Component Analysis [Loyd, Mohseni, Rebentrost 13]
- Linear Discriminant [Cong, Duan 15]
- Slow Feature Analysis [Kerenidis, Luongo 18]

Heavier Linear Algebra (SVDs, projections on sub-eigenspaces, etc.)

Singular Value Estimation (Phase Estimation for non-unitaries) [Kerenidis, Prakash 17] Given $A = \sum_{i=1}^{n} \lambda_i |v_i\rangle\langle v_i|$ and eigenvector $|v_i\rangle$, perform $|v_i\rangle|0\rangle \rightarrow |v_i\rangle|\lambda_i\rangle$

Running time parameters: $O(\kappa, \mu, 1/\epsilon)$

Recommendation Systems [Kerenidis, Prakash, ITCS 17]

Recommendation Systems [Kerenidis, Prakash, ITCS 17]

Algorithms	Theory	Parameters Users: 10 ⁸ Products: 10 ⁸ types: 100
Quantum	types* log (users*products)	~ 10 ³
CUR-based [2002]	(types) ² * products	~ 1012
FKV-based [Tang 2018, CGLLTW19]	(types) ⁸ * log (users*products)	~ 10 ¹⁷

On the Input

Loading data for Quantum Machine Learning

In cases, quantum inputs can be very interesting for applications

In cases, it is easy to construct the input: Reinforcement Learning, NN for PDES

In cases, quantum input coming from Dim. Reduction / kernels / etc.

Classical: Heavy Linear Algebra to produce input states Quantum: Loading cost of initial points is subsumed

In cases, one will need specific quantum data loaders

Quantum circuits of size O(d) and depth log(d)

1. Quantum data loaders

Goal: Load N-dim classical data onto quantum computer

Solution:

- 1. Map data point to gate parameters in linear time
- 2. Build quantum circuit to run in *logN* steps

1. Quantum data loaders

Data loaders

	qubits (Q)	depth (D)	multiqubit gates	Remarks
multiplexer	logN	O(N)	O(NlogN)	Impractical depth
QRAM hardware [Lloyd]	O(N)?	O(logN) ?	Light-matter interaction gates	New hardware is needed
QRAM circuit [Mosca et al]	O(N)	O(N)	O(NlogN)	Impractical depth
Our parallel data loader	N	logN	(N − 1) 2-q gates	Unary encoding
Our optimized data loader	$2\sqrt{N}$	$\sqrt{N}logN$	1.5N 2-q gates	Any values s.t. $Q * D = O(NlogN)$

2. Quantum distance estimation

Goal: Given data points x and y, find their distance

Solution:

1. Build circuit [loader(x)+loader(y)[†]] to estimate distance in 2logN steps

Properties

- Shallow and noise robust circuits
- N qubits, 2logN depth
- Can use any optimized data loader
- Can be combined with Amplitude Estimation

```
: |0|1|2|3|4|5|6|
q0 : -X-B-B-B-B-B-B-
q1 : ---|-|-S-S-|-|-
q2 : --- | -S-B-B-S- | -
q4 : ---S-B-B-B-S-
q5 : ----|-S-S-|---
q6 : ----S-B-B-S---
  : |0|1|2|3|4|5|6|
```

Unsupervised Learning

Clustering

k-means++

Input: N points in d-dimensions
Output: K clusters/centroids

- 1. Start with some initial centroids (e.g. ++-method) Repeat until convergence
 - 2. For each point estimate distances to centroids and assign to closest cluster
 - 3. Update the centroids

Clustering

q-means++ [Kerenidis,Landman,Luongo, Prakash NeurlPS 2019]

Input: N points in d-dimensions (quantum access)

Output: K clusters/centroids

1. Start with some initial centroids (e.g. ++-method) Repeat until convergence

- 2. For all points in superposition estimate distances to centroids and assign to closest cluster
- 3. Update the centroids
 - i. Quantum linear algebra to find new centroid
 - ii. Tomography to recover classical description

Clustering

Extensions

Expectation Maximization for Gaussian Mixture Models [Kerenidis, Luongo, Prakash ICML 2020]

Spectral Clustering [Kerenidis,Landman PRA 2021]

Map points to the low eigenspace of the Laplacian, then apply k-means

Reinforcement Learning

Quantum Policy Iteration [Cherrat, Kerenidis, Prakash 2021]

Input:

states S, actions A, transition matrix P, Reward function R

Output: policy π , such that $\pi(s)=a$

Policy Iteration

start with π_0 solve (I - γ P $^{\pi}$) Q = R update π from Q

Remarks

"No input" / Well-conditioned / ℓ^{∞} guarantees

Quantum Optimization

Challenges - Prospects

Powerful yet subtle quantum tools

Power: Linear Algebra, Distance Estimations, Tomography, etc.

Subtleties: Input, Output, running time parameters

Promising directions

Heavy Linear Algebra algorithms (Dim. Reduction, Kernels, Spectral Clustering) Reinforcement Learning (no classical data, well-conditioned systems, ℓ^{∞} guarantees) Quantum Neural Networks

Final Remarks

ML is about practical solutions to real-world problems.

It's a long, arduous way till we see QML applications, but certainly worth pursuing

