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Particle Physics in one page

The gauge sector   (1)

The flavour sector   (2)

The EWSB sector   (3)

The ν-mass sector   (4)
(if Majorana)

Can one replace line 3 with something else, without, 
in particular, no (relatively light) Higgs boson?

+|Dµh|2−V (h)

+NiMi jNj

L∼SM =−1
4

Fa
µνFaµν + iψ̄ #Dψ

+ψiλi jψ jh+h.c.
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Examples Examples of «of «!!ways ways outout!»!» I:  I: TechnicolourTechnicolour

 This (pseudo?) solution is suggested by a simple
observation. Consider a fake (toy) SM in which there is a
single family of massless quarks and leptons and no Higgs.

Q: What is the low-energy physics of such a model?
A: Somewhat surprising. We know (2006 course) that the

SU(3)c interactions break spontaneously the global
symmetry SU(2)LxSU(2)RxU(1)V of m=0 QCD down to
SU(2)VxU(1)V producing 3 massless NG bosons, the pions

The naïve answer is that the 3 pions, as well as the 3 gauge
bosons of SU(2)L, remain massless. This is wrong! The SU(2)L

of the EW interactions is that same SU(2)L and is sp. broken
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 According to the general discussion of SSB of a local
symmetry, the 3 pions would be “eaten up” by the 3 gauge
bosons and the latter would acquire a mass.

The problem (besides the disappearence of the pions) is
that the W, Z masses would be on the order of !QCD. More
precisely,  GF would be of order 1/F"

2~ (100 MeV)-2  instead
of the experimental value ~ (300 GeV)-2

This toy model, however, suggests a better one: let’s
introduce, instead of the Higgs doublet, a new AF, QCD-like
interaction (“technicolour”) with a !tc parameter a few
thousands times larger than !QCD and (at least) a doublet of
“techniquarks”… can this work? See next week’s seminar…



The virtual Higgs boson effects “seen” in the 
ElectroWeak Precision Tests 
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Figure 2: a) One loop contribution to Ŝ from Goldstone boson exchanges; b) One loop correction
from B exchange to the propagator of the charged Goldstone boson.

One way to compute the coefficients of the log mh terms for Ŝ and T̂ is to view mh as the
cut-off of the divergent vacuum polarization diagrams where there is no Higgs boson as an internal
line. In this way one gets

Ŝ ≈
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W
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√

2π2
tan2 θ log mh. (4.16)

[Problem 4.3.2: Show that the result for Ŝ can be reproduced by calculating the divergence of the
diagram of Fig. 2a, where the internal lines are the charged Goldstone bosons, propagating in any
ξ-gauge.]

As anticipated, these effects serve to bound experimentally the Higgs boson mass in the Stan-
dard Model, since Ŝ and T̂ affect all the precision observable in a definite way. [Problem 4.3.3:
Show that T̂ affects the ρ parameter as ρ − 1 = T̂ . Problem 4.3.4: In the Landau gauge, where
the propagating Goldstone bosons are massless, use eq. (4.8) to show the result for T̂ in (4.16) by
calculating the divergence of the diagram of Fig. 2b.] Fig. 3, from the analysis of the data at the
time of writing these lectures, shows this constraint by comparing the experimental determination
of Ŝ and T̂ with the prediction in the Standard Model as function of mh. The reference point
Ŝ = T̂ = 0 is conventionally taken to correspond to the Standard Model value of Ŝ and T̂ at
mh = 115 GeV and mt = 175 GeV . Therefore what the figure shows is the possibly required
deviation from such reference value. In fact one can forget about this reference value and view
the figure as the required deviation of Ŝ and T̂ from the prediction of the Standard Model, shown
for mt = 171.4 GeV , the current central value of the latest direct determination of the top quark
mass, and mh varying between 100 and 500 GeV . Since the relevant mh-region turns out to be
relatively low, close to the Z mass, an accurate fit requires including also terms that vanish in the
large mh limit, which explains the slight bending of the theoretical curve for increasing mh. From
the full fit of the ElectroWeak Precision Tests in the Standard Model one obtains at present the
indirect determination

mh = 85+39
−28 GeV, mh < 165 GeV at 95% CL. (4.17)

This upper bound on mh apparently stronger than the one readable from Fig.3 is due to the
correlation between Ŝ and T̂ in term of a single parameter mh, valid in the Standard Model,
which increases the number of degrees of freedom of the Standard Model fit.
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The Higgs boson mass in the SM

MHiggs|direct ≥ 114.4GeV
LEPHWG



The SM as      gets largemh

272 Chapter 10. Standard Model Higgs Bosons

The direct search in the LEP2 experiments via the process e+e− → ZH yields a lower bound
of 114.4 GeV/c2 on the Higgs mass [61]. After LEP2 the search for the SM Higgs particle is
continued at the Tevatron for Higgs masses up to ∼ 130 GeV/c2 [381] and the LHC for Higgs
masses up to the theoretical upper limit [382, 383].

The Higgs decay modes can be divided into two different mass ranges. For MH ! 135 GeV/c2

the Higgs boson mainly decays into bb̄ and τ+τ− pairs with branching ratios of about 85%
and 8% respectively (see Fig. 10.1, right plot). The decay modes into cc̄ and gluon pairs,
with the latter mediated by top and bottom quark loops, accumulate a branching ratio of
up to about 10%, but do not play a relevant role at the LHC. The QCD corrections to the
Higgs decays into quarks are known up to three-loop order [384–390] and the electroweak
corrections up to NLO [391–394]. The latter are also valid for leptonic decay modes. One
of the most important Higgs decays in this mass range at the LHC is the decay into photon
pairs, which is mediated by W , top and bottom quark loops. It reaches a branching fraction
of up to 2×10−3. The NLO QCD [395–401] and electroweak [402–404] corrections are known.
They are small in the Higgs mass range relevant for the LHC.

For Higgs masses above 135 GeV/c2 the main decay modes are those into WW and ZZ pairs,
where one of the vector bosons is off-shell below the corresponding kinematical threshold.
These decay modes dominate over the decay into tt̄ pairs, the branching ratio of which does
not exceed ∼ 20% as can be inferred from Fig. 10.1 (right plot). The electroweak corrections
to the WW,ZZ decays are of moderate size [391, 392, 405, 406]. The total decay width of
the Higgs boson, shown in Fig. 10.1 (left plot), does not exceed about 1 GeV/c2 below the
WW threshold. For very large Higgs masses the total decay width grows up to the order of
the Higgs mass itself so that the interpretation of the Higgs boson as a resonance becomes
questionable. This Higgs mass range coincides with the upper bound of the Higgs mass from
triviality.
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Figure 10.1: Left plot: total decay width (in GeV/c2) of the SM Higgs boson as a function of
its mass. Right plot: Branching ratios of the dominant decay modes of the SM Higgs particle.
All relevant higher-order corrections are taken into account

The dominant Higgs production mechanism at the LHC will be the gluon-fusion process
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linear rise of the longitudinal WL wave function, εL = (p, 0, 0, E)/MW , with the energy of the particle.

Even though the term of the scattering amplitude rising as the fourth power in the energy is cancelled by

virtue of the non-Abelian gauge symmetry, the amplitude remains quadratically divergent in the energy.

On the other hand, unitarity requires elastic-scattering amplitudes of partial waves J to be bounded by
!eAJ ≤ 1/2. Applied to the asymptotic S-wave amplitude A0 = GF s/8π

√
2 of the isospin-zero

channel 2W+
L W−

L + ZLZL, the bound [33]

s ≤ 4π
√

2/GF ∼ (1.2 TeV)2 (2.1)

on the c.m. energy
√

s can be derived for the validity of a theory of weakly coupled massive gauge
bosons.
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Figure 2.1: Generic diagrams of elastic WW scattering: (a) pure gauge-boson dynamics, and (b) Higgs-boson

exchange.

However, the quadratic rise in the energy can be damped by exchanging a new scalar particle,

Fig. 2.1b. To achieve the cancellation, the size of the coupling must be given by the product of the gauge

coupling with the gauge boson mass. For high energies, the amplitude A′
0 = −GF s/8π

√
2 cancels

exactly the quadratic divergence of the pure gauge-boson amplitude A0. Thus, unitarity can be restored

by introducing a fundamental, weakly coupled Higgs particle.

In the same way the linear divergence of the amplitude A(f f̄ → WLWL) ∼ gmf
√

s for the
annihilation of a fermion–antifermion pair to a pair of longitudinally polarized gauge bosons can be

damped by adding the Higgs exchange to the gauge-boson exchange. In this case the Higgs particle must

couple proportionally to the massmf of the fermion f .

These observations can be summarized in a rule: A theory of massive gauge bosons and fermions

which are weakly coupled up to asymptotic energies, requires, by unitarity, the existence of a Higgs

particle; the Higgs particle is a scalar 0+ particle that couples to other particles proportionally to the

masses of the particles.

The assumption that the couplings of the fundamental particles are weak up to asymptotic energies

is qualitatively supported by the perturbative renormalization of the electroweak mixing angle sin2 θW

from the symmetry value 3/8 at the GUT scale down to ∼ 0.2 at the electroweak scale, which is close to
the experimentally observed value.

2. These ideas can be cast into an elegant mathematical form by interpreting the electroweak interactions

as a gauge theory with spontaneous symmetry breaking in the scalar sector1. Such a theory consists of

1The mechanisms of spontaneous symmetry breaking, including the Goldstone theorem as well as the Higgs mechanism,

are exemplified for the illustrative O(3) σ model in Appendix A.

What about VV 
scattering?

V=W,Z

m2
h = 4λv2

The Higgs boson ceases to be 
a meaningful particle as      

mh ≈ 1 TeV



NX = L σ(p→ X)

One month at 
design luminosity 
enough to explore 
the entire range

If the Higgs boson is as expected, 
 with a mass below a TeV, it will be found

at the LHC

An (important) parenthetic remark
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scattering amplitudes can be expressed at high energies by a master amplitude A(s, t, u), which depends
on the three Mandelstam variables of the scattering processes:

A(W+W− → ZZ) = A(s, t, u) (4.22)

A(W+W− → W+W−) = A(s, t, u) + A(t, s, u)

A(ZZ → ZZ) = A(s, t, u) + A(t, s, u) + A(u, s, t)

A(W−W− → W−W−) = A(t, s, u) + A(u, s, t) .

To lowest order in the chiral expansion, L → LY M + L0, the master amplitude is given, in a

parameter-free form, by the energy squared s:

A(s, t, u) → s

v2
. (4.23)

This representation is valid for energies s " M2
W but below the new resonance region, i.e. in practice at

energies
√

s = O(1 TeV). Denoting the scattering length for the channel carrying isospin I and angular
momentum J by aIJ , the only non-zero scattering channels predicted by the leading term of the chiral

expansion correspond to

a00 = +
s

16πv2
(4.24)

a11 = +
s

96πv2

a20 = − s

32πv2
. (4.25)

While the exotic I = 2 channel is repulsive, the I = J = 0 and I = J = 1 channels are attractive,
indicating the formation of non-fundamental Higgs-type and ρ-type resonances.

Taking into account the next-to-leading terms in the chiral expansion, the master amplitude turns

out to be [26]

A(s, t, u) =
s

v2
+ α4

4(t2 + u2)

v4
+ α5

8s2

v4
+ · · · , (4.26)

including the two parameters α4 and α5

Increasing the energy, the amplitudes will approach the resonance area. There, the chiral character

of the theory does not provide any more guiding principle for constructing the scattering amplitudes.

Instead, ad-hoc hypotheses must be introduced to define the nature of the resonances; see e.g. Ref. [27].
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Figure 4.3: WW scattering and rescattering at high energies at the LHC and TeV e+e− linear colliders.

2. WW scattering can be studied at the LHC and at TeV e+e− linear colliders. At high energies,

equivalent W beams accompany the quark and electron/positron beams (Fig. 4.3) in the fragmentation

processes pp → qq → qqWW etc and ee → ννWW etc; the spectra of the longitudinally polarized W
bosons have been given in Eq. (2.26). In the hadronic LHC environment the final-state WW etc bosons
can only be observed in leptonic and mixed hadronic/leptonic decays. The clean environment of e+e−

√
s≈ 1.2 TeVPerturbation theory lost at

Study WW scattering (with longitudinal pol.s)

Experimentally, the central process then becomes

for the partial wavefor the partial wave

if we only knew something about it

s = E2

t = −E2/2(1− z)
u = −E2/2(1 + z)

A ≈ s + t

v2

A(W+W− →W+W−) ≈ 1
v2

[s + t− s2

s−m2
h

− t2

t−m2
h

]

so that, for mh >> E

unlike what happens if E >> mh where A ≈ 2m2
h

v2



HSM = Σ

(
0

v+h

)
Σ= exp i

π · τ
v

invariant under

In the SM:

HSM⇒ULHSM UL = exp iωL · τ/2 HSM⇒ exp(iωY/2)HSM

Changing notation:
Φ≡ (v+h)Σ

H+
SMHSM =

1
2
Tr(Φ+Φ)

Φ⇒ULΦ Φ⇒Φexp(−iωYτ3/2)

Ŵµ≡−i/2Wµ · τ B̂µ≡−i/2Bµ · τ3

|DµHSM|2 =
1
2
Tr(DµΦ)+(DµΦ)

⇒ Throw away        and even forget the doublet origin of      h Σ

DµΦ≡ dµΦ−gŴµΦ+g′ΦB̂µ

A gauge invariant Higgs-less SM

⇒ The “ElectroWeak Chiral Lagrangian”



The EW chiral Lagrangian 

(By expanding the exponent in

LNL =
v2

4
Tr[(DµΣ)+DµΣ]

LEWCh = LG + LY + LNL + Σ10
i=0Li

Σ= exp i
π · τ
v

LY = λij
1 Q̄i

LΣQj
R + λij

2 Q̄i
LΣτ3Q

j
R + h.c.

LG =
1
4
Tr[ŴµνŴµν + B̂µνB̂µν ] + iψ̄Dψ

Σ⇒ULΣU+
RSU(2)LxSU(2)R

The gauge sector   (1)

The flavour sector   (2)

The EWSB sector   (3)

Σ10
i=0Li Higher derivative terms

(the price of non-renormalizability)

one finds the W and Z masses)

In the                     limitg′, λ2 → 0



Gauge

A(WLWL)≈ (E/v)2 − (E/v)2 ≈ E0

➚ ➚
Higgs

Without a Higgs, perturbation theory saturated at E ≈ 4πv

≈ g2v2A2µ+(∂µπ)2+
1
v2
π2(∂µπ)2+ . . .

⇒ Λ4 ∼ 4πv∼ 4π
MW

g

A nearby strong interaction, once again

 Obvious from the point of view of LEWCh

ΔLNL = v2/4|(∂µ+ igAµ)eiπ
aτa/v|2

Unless something happens below Λ4



≈ g2v2A2µ+(∂µπ)2+
1
v2
π2(∂µπ)2+ . . .

(E/v)2 (E/v)2 (E/v)2
1
16π2

+

⇒ Λ4 ∼ 4πv∼ 4π
MW

g
A better estimate gives Λ4 ∼

4πv
√ng

∼ 1.2 TeV

ππ-scattering (equivalent to             )WLWL

We are back to the original question:
What happens in WW-scattering?

“Technicolour”? Something else?



A potentially interesting recent proposal

Consider a real scalar φ(x,x5)

To make contact with reality

Figure 6: Cylindrical structure of 5-dimensional space-time compactified on M4 × S1.

1.5 Kaluza-Klein decomposition

So far we have been general: our discussion applies equally well to compact and to infinite
extra dimensions. However, since it is empirically very clear that we live in three macroscopic
spatial dimensions, for phenomenological applications we must focus on the case in which
the extra-dimensions are compactified at some small enough radius R. The dynamics at
distances much bigger than R will not be able to notice the presence of the extra compact
directions. To illustrate this fact let us consider the simplest situation of a 5D scalar field φ
with the 5th dimension compactified on a circle (see Fig. (6)) of radius R. Compactification
is formally expressed by the periodicity requirement

φ(x, x5) = φ(x, x5 + 2πR) (30)

Processes taking place on time scales T " R, by causality and by locality, cannot notice
that the 5th dimension is compact. On the other hand to study processes happening on a
time scale T >∼ R, and in particular at energies E <∼ 1/R, the 5D local description is not the
most adequate. In this case it is convenient to expand the field φ in its Fourier components
with respect to the periodic coordinate x5.

φ(x, x5) =
n=∞
∑

n=−∞

φn(x)ei
nx5
R . (31)

where the reality of φ implies φ−n(x) = φn(x)∗. Notice that each different coefficient φn in
this expansion corresponds to a different 4D field. The φn are called Kaluza-Klein (KK)
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so that

The original 5D field decomposed into a “tower” 
of “Kaluza Klein” 4D fields of mass

mn =
n
R

and

fields. According to this expansion the 5D kinetic action integrated over x5 becomes
∫

Lφdx5 = −1
2

∫

[

(∂µφ)2 − (∂5φ)2
]

=

1
2

∞
∑

−∞

[

−|∂µφn|2 +
n2

R2
|φn|2

]

. (32)

The original 5D massless field has been decomposed in a tower of Kaluza-Klein scalars φn

with mass
mn = n/R. (33)

If we work at energy E, only a limited number n ∼ ER of KK can be produced. In particular,
for E < 1/R only the zero mode φ0 is available. At such low energies the model looks 4-
dimensional. The KK particles appear only virtually, and their effect is reproduced by a
suitable set of local operators involving only the massless 4D fields. In the specific example
we are considering, the full space-time symmetry is just the 4-dimensional Poincaré group
times translations along the fifth direction: P4 × U(1). The KK particle states represent
just the irreducible representations of this group. In particular the index n represents the
charge under the U(1) group of 5D translations: 5D translational invariance shows up in 4D
as the conservation of the KK indices ni summed over the incoming and outgoing particles
in a collision.

Along similar lines one can study the KK decomposition of a gauge vector field AM . But
rather than discussing it in detail we go directly to the case of the graviton: the technical
issues, associated to gauge invariance, are analogous for both vector and tensor field. So let
us consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity compactified
on M4 × S1 with the action

2M3
5

∫

M4×S1

√
gR(g) (34)

We can write the full metric tensor in block form

gMN(x, x5) =
(

gµν gµ5

g5µ g55

)

=
(

ηµν + hµν hµ5

hµ5 1 + h55

)

. (35)

To work out the spectrum we must compute the quadratic action in the linearized field
hMN and then use the gauge freedom provided by the linearized 5D diffeomorphisms, xM →
xM + εM(x, x5)

hMN → hMN + δhMN = hMN + ∂N εM + ∂MεN . (36)

to eliminate the redundant degrees of freedom. Here and in what follows, working at linear
order, indices are raised and lowered using the Lorentz metric ηMN . We stress that the
compactification of the fifth dimension implies that all our fields, including εM are periodic
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as the conservation of the KK indices ni summed over the incoming and outgoing particles
in a collision.

Along similar lines one can study the KK decomposition of a gauge vector field AM . But
rather than discussing it in detail we go directly to the case of the graviton: the technical
issues, associated to gauge invariance, are analogous for both vector and tensor field. So let
us consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity compactified
on M4 × S1 with the action

2M3
5

∫

M4×S1

√
gR(g) (34)

We can write the full metric tensor in block form

gMN(x, x5) =
(

gµν gµ5

g5µ g55

)

=
(

ηµν + hµν hµ5

hµ5 1 + h55

)

. (35)

To work out the spectrum we must compute the quadratic action in the linearized field
hMN and then use the gauge freedom provided by the linearized 5D diffeomorphisms, xM →
xM + εM(x, x5)

hMN → hMN + δhMN = hMN + ∂N εM + ∂MεN . (36)

to eliminate the redundant degrees of freedom. Here and in what follows, working at linear
order, indices are raised and lowered using the Lorentz metric ηMN . We stress that the
compactification of the fifth dimension implies that all our fields, including εM are periodic
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A pictorial view of space-time

Space-time

4D 4D
πR

(UV) (IR)

GUV GIRG5

1
R
! mass of the KK

 states5D =

If  πR is sufficiently small, we may 
have not seen the 5th dimension yet!

πR < 10−17 cm ≈ 1
TeV



Suppose now that we consider a full gauge theory in 5D

0 πR
SU(2)L×U(1)Y

SU(2)L×SU(2)R×U(1)B−L

SU(2)V ×U(1)B−L
SU(2)L×SU(2)R×U(1)B−L

SU(2)V ×U(1)B−L

SU(2)L×U(1)Y
U(1)em

It can be shown that the exchanges of KK vector bosons in 
WW-scattering, can delay the onset of the strong interaction
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4D KK Mode Scattering
Z' resonance unitarizes WW 

   scattering, similar to what 
   Higgs boson does in SM
             (Chivukula,He,Dicus)

Z' mass is bounded from above: 
But it yields too much a value of S-parameter:

     (Chivukula, Simmons, He, Kurachi,Tanabashi) 

Solution – delocalization of the fermions: mixing of “brane” and “bulk” modes! 
(Cacciapaglia, Csaki, Grojean, Reece,Terning; Foadi Gopalakrishna, Schmidt)

Fermion delocalization profile can be chosen to match 
  W-wave function along the 5th dimension:                           
  leading to vanishing coupling of fermions to KK modes! 
  (Chivukula,Simmons,He, Kurachi, Tanabashi)
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The KK vector bosons taking 
the place of the Higgs boson

⇒ the particles to be looked for 
 in place of the Higgs boson
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as seemingly happening in standard Technicolour

S, T |SM(mh ∼ Λ4)
a loop effect

a tree level effect

(unless something missing: 

An apparently persistent problem

a new indirect effect? 
our inability to compute in strong interactions?)


