La QCD à hautes énergies

Gavin Salam

LPTHE, Universités de Paris VI et VII, et CNRS

Collège de France 5 avril 2005 One of the major unsolved problems of QCD (and Yang-Mills theory in general) is the understanding of its *high-energy limit*.

I.e. the limit in which C.O.M. energy (\sqrt{s}) is much larger than *all other scales* in the problem.

Want to examine perturbative QCD predictions for

- ▶ asymptotic behaviour of cross section, $\sigma_{hh}(s) \sim ??$
 - properties of final states for large s.

Experimental knowledge

- Some knowledge exists about behaviour of cross section experimentally
- Slow rise as energy increases
- Data insufficient to make reliable statements about functional form
 - $\sigma \sim s^{0.08}$?
 - $\sigma \sim \ln^2 s$?
- ▶ Understanding of final-states is ~ inexistent
- Would like theoretical predictions. . .

Future experiments go to much higher energies.

Problem is must more general than just for hadrons. E.g. photon can *fluctuate* into a quark-antiquark (hadronic!) state:

Even a neutrino can behave like a hadron

Hadronic component dominates high-energy cross section

$$\mathsf{QCD} \simeq \mathsf{QED}$$

- ► Large energy \equiv large boost (along z axis), by factor
- ► Fields flatten into pancake

$$\mathsf{QCD} \simeq \mathsf{QED}$$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.simple longitudinal structur

$$\mathsf{QCD} \simeq \mathsf{QED}$$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - ► simple longitudinal structure

$$QCD \simeq QED$$

- ► Large energy \equiv large boost (along z axis), by factor
- ► Fields flatten into *pancake*.
 - simple longitudinal structure

$$\mathsf{QCD} \simeq \mathsf{QED}$$

- ► Large energy ≡ large boost (along z axis), by factor
- ► Fields flatten into *pancake*.
 - simple longitudinal structure

$$QCD \simeq QED$$

- ► Large energy \equiv large boost (along z axis), by factor
- ► Fields flatten into *pancake*.
 - simple longitudinal structure

$$QCD \simeq QED$$

- ► Large energy \equiv large boost (along z axis), by factor
- ► Fields flatten into *pancake*.
 - simple longitudinal structure

Look at density of *gluons* from dipole field (\sim energy density).

$$QCD \simeq QED$$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

There remains non-trivial transverse structure.

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial transverse structure*.

► Fields are those of a dipole in 2±1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

$$\mathsf{QCD} \simeq \mathsf{QED}$$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial*

➤ Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

$$QCD \simeq QED$$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial* transverse structure.

 Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial*

► Fields are those of a dipole in 2±1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $\mathsf{QCD} \simeq \mathsf{QED}$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial*

Fields are those of a dipole in

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains *non-trivial* transverse structure.
 - ► Fields are those of a dipole in 2±1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $\mathsf{QCD} \simeq \mathsf{QED}$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial* transverse structure.
 - ► Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial transverse structure*.
 - ► Fields are those of a dipole in 2±1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $\mathsf{QCD} \simeq \mathsf{QED}$

- ► Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- ► There remains *non-trivial* transverse structure.
 - ► Fields are those of a dipole in 2+1 dimensions

$$\frac{d\epsilon}{dz} \sim \frac{\alpha_s N_c}{\pi} \times E\delta(z) \times {
m transverse}$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

$$rac{d\epsilon}{d
ho_z}\simrac{lpha_s N_c}{\pi} imes {
m transverse}\,, \qquad m\ll
ho_z\ll E$$

$$rac{dn}{dp_z} \sim rac{lpha_s N_c}{\pi} rac{1}{p_z} imes ext{transverse} \,, \qquad m \ll p_z \ll E$$

Total number of gluons:

Longitudinal structure of energy density ($N_c = \#$ of colours):

$$\frac{d\epsilon}{dz} \sim \frac{\alpha_s N_c}{\pi} \times \frac{E\delta(z)}{\pi} \times \text{transverse}$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

$$\frac{\text{d}\epsilon}{\text{d}\frac{\text{p}_z}{\text{p}_z}} \sim \frac{\alpha_s N_c}{\pi} \times \mathrm{transverse}\,, \qquad \text{m} \ll \text{p}_z \ll \text{E}$$

$$\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll E$$

Total number of gluons:

$$n \sim \frac{\alpha_{\rm s} N_c}{\pi} \ln \frac{E}{m} \times {\rm transverse}$$

Longitudinal structure of energy density ($N_c = \#$ of colours):

$$\frac{d\epsilon}{dz} \sim \frac{\alpha_s N_c}{\pi} \times E\delta(z) \times \text{transverse}$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

$$\frac{\text{d}\epsilon}{\text{d}\frac{\text{p}_z}{\text{p}_z}} \sim \frac{\alpha_s N_c}{\pi} \times \mathrm{transverse}\,, \qquad \text{m} \ll \text{p}_z \ll \text{E}$$

$$\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll E$$

Total number of gluons

$$n \sim \frac{\alpha_s N_c}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

Longitudinal structure of energy density ($N_c = \#$ of colours):

$$\frac{d\epsilon}{dz} \sim \frac{\alpha_s N_c}{\pi} \times E\delta(z) \times \text{transverse}$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

$$\frac{d\epsilon}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \times \text{transverse}, \qquad m \ll p_z \ll E$$

$$\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll E$$

Total number of gluons:

$$n \sim \frac{\alpha_{\rm s} N_{\rm c}}{\pi} \ln \frac{E}{m} \times {
m transverse}$$

- Calculation so far is first-order perturbation theory.
- Fixed order perturbation theory is reliable if series converges quickly.
- ▶ At high energies, $n \sim \alpha_s \ln E \sim 1$.
- ▶ What happens with higher orders?

$$(\alpha_{s} \ln E)^{n}$$
?

Leading Logarithms (LL). Any fixed order potentially non-convergent. . .

- ▶ Quarks come in 3 'colours' ($N_c = 3$). Gluons emission 'repaints' the colour of the quark.
- ▶ i.e. gluon carries away one colour and brings in a different one [this simple picture ≡ approx of many colours].
- ▶ gluon itself is charged with both colour and anti-colour [c.f. two lines with different directions].

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- ► In QED subsequent photons are emitted by *original dipole*
- ► In QCD original dipole is converted into two new dipoles, which emit independently.

Emit a gluon:

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- ► In QED subsequent photons are emitted by *original dipole*
- In QCD original dipole is converted into two new dipoles, which emit independently.

Emit a gluon:

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- ► In QED subsequent photons are emitted by *original dipole*
- ► In QCD original dipole is converted into two new dipoles, which emit independently.

Emit a gluon:

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- ► In QED subsequent photons are emitted by *original dipole*
- ► In QCD original dipole is converted into two new dipoles, which *emit independently*.

- ▶ Keeping track of full structure of dipoles in evolved $q\bar{q}$ pair is complicated.
- ▶ Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

$$n(Y; R_{01}, r)$$

▶ Write an equation for the *evolution* of $n(Y; R_{01}, r)$ with energy.

- ▶ Keeping track of full structure of dipoles in evolved $q\bar{q}$ pair is complicated.
- ▶ Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

$$n(Y; R_{01}, r)$$

▶ Write an equation for the *evolution* of $n(Y; R_{01}, r)$ with energy.

- ▶ Keeping track of full structure of dipoles in evolved $q\bar{q}$ pair is complicated.
- ▶ Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

$$n(Y; R_{01}, r)$$

▶ Write an equation for the *evolution* of $n(Y; R_{01}, r)$ with energy.

Dipole evolution equation

$$\frac{\partial \textit{n}(\textit{Y};\textit{R}_{01},\textit{r})}{\partial \textit{Y}} = \frac{\alpha_{\textrm{s}}\textit{N}_{\textrm{c}}}{2\pi^{2}} \int \frac{d^{2}\textit{R}_{2}\,\textit{R}_{01}^{2}}{\textit{R}_{02}^{2}\textit{R}_{12}^{2}} \left[\textit{n}(\textit{Y};\textit{R}_{12},\textit{r}) + \textit{n}(\textit{Y};\textit{R}_{02},\textit{r}) - \textit{n}(\textit{Y};\textit{R}_{01},\textit{r})\right]$$

2-dim dipole-field

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

NB: ∃ other formulations

original BFKL

- Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- Balitsky-Kovchegov (BK)

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$$

Transverse struct:

2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

NB: ∃ other formulations

original BFKL

- Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- ► Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- Balitsky-Kovchegov (BK)

Dipole evolution equation

$$\frac{d}{dY} \times \frac{1}{1} = \frac{1}{r} + \frac{1}{r} = r$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int \frac{d^{2}R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$$

Transverse struct:
2-dim dipole-field
(squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

NB: ∃ other formulations

- original BFKL
- ► Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- ► Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- ► Balitsky-Kovchegov (BK)

Dipole evolution equation

$$\frac{d}{dY} \times \frac{1}{r} = \frac{1}{r} \times \frac{1$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$$

Transverse struct:

2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

NB: ∃ other formulations

original BFKL

- Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- ► Balitsky-Kovchegov (BK)

No full analytical solution exists in closed form. But *asymptotic properties* are well understood.

Simplest case is double asymptotic limit: $\ln s \sim e^Y \ll 1 \& r \ll R$.

This is just *Deep Inelastic Scattering* at small longitudinal momentum fraction *x*:

$$rac{1}{x} \sim rac{s}{Q^2} \gg 1$$
 $rac{Q^2}{\Lambda^2} \sim \left(rac{r_{\gamma}^2}{R_p^2}
ight)^{-1} \gg 1$

Much data from HERA collider.

No full analytical solution exists in closed form. But *asymptotic properties* are well understood.

Simplest case is double asymptotic limit: $\ln s \sim e^Y \ll 1 \& r \ll R$.

This is just *Deep Inelastic Scattering* at small longitudinal momentum fraction *x*:

$$rac{1}{x}\simrac{s}{Q^2}\gg 1$$
 $rac{Q^2}{\Lambda^2}\sim\left(rac{r_\gamma^2}{R_p^2}
ight)^{-1}\gg 1$

Much data from HERA collider.

BFKL solutions: double logs

$$\square$$
 Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r) \qquad \qquad \underline{ \begin{vmatrix} \bar{\alpha}_{s} = \frac{\alpha_{s} N_{c}}{\pi} \\ \end{pmatrix}_{0}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r)}$$

$$\Rightarrow n(Y; R_{01}, r) = \frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(y; R_{12}, r)$$

$$\frac{d}{dY} \times \begin{array}{c} \frac{1}{r} \\ \frac{1}{r} \\ 0 \end{array} = \begin{array}{c} 2 \\ 0 \\ 0 \end{array} + \begin{array}{c} \frac{1}{r} \\ \frac{1}{r} \\ 0 \end{array} - \begin{array}{c} \frac{1}{r} \\ \frac{1}{r} \\ 0 \end{array}$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r) \qquad \qquad \underline{\left| \bar{\alpha}_{s} = \frac{\alpha_{s} N_{c}}{\pi} \right|} \\
\Rightarrow \quad n(Y; R_{01}, r) = \frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(y; R_{12}, r)$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r) \qquad \qquad \underline{\left| \bar{\alpha}_{s} = \frac{\alpha_{s} N_{c}}{\pi} \right|} \\
\Rightarrow \quad n(Y; R_{01}, r) = \frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(y; R_{12}, r)$$

Double Log (DL) Equation

$$\frac{d}{dY} \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. = 2 \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. + \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. - \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. \right\}$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_s \int_r^{R_{01}} \frac{dR_{12}^2}{R_{12}^2} n(Y; R_{12}, r)$$

$$\Rightarrow n(Y; R_{01}, r) = \underbrace{\frac{\alpha_s N_c}{\pi} \int_0^Y dy \int_r^{R_{01}} \frac{dR_{12}^2}{R_{12}^2}}_{\alpha_s \ln s \ln \frac{R_{01}}{r} = \text{double log}} n(y; R_{12}, r)$$

Double Log (DL) Equation

$$\frac{d}{dY} \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. = 2 \left\{ \begin{array}{c} 1 \\ 2 \\ \vdots \\ 0 \end{array} \right. + \left\{ \begin{array}{c} 1 \\ 2 \\ \vdots \\ 0 \end{array} \right. - \left\{ \begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right. \right\}$$

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r)$$

$$\Rightarrow n(Y; R_{01}, r) = \underbrace{\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}}}_{n(y; R_{12}, r)} n(y; R_{12}, r)$$

$$\alpha_{s} \ln s \ln \frac{R_{01}}{r} = \text{double log}$$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y;R,r) = \Theta(R-r)$

count number of dipoles larger than r Solve *iteratively* to get j^{th} order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s} \int_{0}^{Y} dy \int_{r}^{R} \frac{dR'^{2}}{R'^{2}} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_s^j \frac{Y^J}{j!} \frac{(\ln R^2/r^2)^J}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y; R, r) = \sum_{i=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2} / r^{2})^{j}}{(j!)^{2}} \sim \exp \left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2} / r^{2}} \right]$$

NB: including running coupling $\sim \exp(2/\beta_0^2 \sqrt{Y \ln \ln R^2/r^2})$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y; R, r) = \Theta(R - r)$

count number of dipoles larger than r

Solve *iteratively* to get j^{th} order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s} \int_{0}^{Y} dy \int_{r}^{R} \frac{dR'^{2}}{R'^{2}} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_s^j \frac{Y^j}{j!} \frac{(\ln R^2/r^2)^j}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y; R, r) = \sum_{i=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2} / r^{2})^{j}}{(j!)^{2}} \sim \exp\left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2} / r^{2}}\right]$$

Make zeroth order approx: $n^{(0)}(Y; R, r) = \Theta(R - r)$

count number of dipoles larger than r

Solve *iteratively* to get j^{th} order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_s \int_0^Y dy \int_r^R \frac{dR'^2}{R'^2} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s}^{j} \frac{Y^{j}}{j!} \frac{(\ln R^{2}/r^{2})^{j}}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y;R,r) = \sum_{i=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2}/r^{2})^{j}}{(j!)^{2}} \sim \exp \left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2}/r^{2}}\right]$$

NB: including running coupling $\sim \exp(2/\beta_0^2 \sqrt{Y \ln \ln R^2/r^2})$

DIS X-sctn \sim n dipoles:

$$F_2(x,Q^2) \sim n(\ln \frac{1}{x}; \frac{1}{\Lambda^2}, \frac{1}{Q^2})$$

 $\sim \exp \left[\frac{2}{\beta_0^2} \sqrt{\ln \frac{1}{x} \ln \ln \frac{Q^2}{\Lambda^2}} \right]$

- Growth of cross section at small x
- ▶ Faster growth for high Q^2

NB: truly predict **features** of x-dependence, even for non-perturbative (NP) proton, since NP uncertainty \equiv rescaling of Λ

(Ball & Forte '94–96)

 $Q^2 = 12$

 $Q^2 = 10$

sm

 $Q^2 = 15$

Test in Deep Inelastic Scattering

sm

► Fas

NB:

x-dep

NP II

+ car

Test in Deep Inelastic Scattering

DIS X-sctn \sim n dipoles:

$$F_2(x,Q^2) \sim n(\ln \frac{1}{x}; \frac{1}{\Lambda^2}, \frac{1}{Q^2})$$

 $\sim \exp \left[\frac{2}{\beta_0^2} \sqrt{\ln \frac{1}{x} \ln \ln \frac{Q^2}{\Lambda^2}} \right]$

- Growth of cross section at small x
- ► Faster growth for high Q²

NB: truly predict **features** of x-dependence, even for non-perturbative (NP) proton, since NP uncertainty \equiv rescaling of Λ

+ can be made quantitative (Ball & Forte '94–96)

- Convert cross sections into estimate of number of gluons
- Various independent extractions
- ► Up to 20 gluons per unit ln x (or unit ln p_z)!

NB: at resolution Q^2 , area occupied by gluon $\sim 1/Q^2$ (area of proton $\sim 1/\Lambda^2$) \Rightarrow the many gluons are *spread out thinly*,

density $\sim xg(x) \times \Lambda^2/Q^2 \lesssim 1$

- Convert cross sections into estimate of number of gluons
- Various independent extractions
- ► Up to 20 gluons per unit ln x (or unit ln p_z)!

NB: at resolution Q^2 , area occupied by gluon $\sim 1/Q^2$ (area of proton $\sim 1/\Lambda^2$) \Rightarrow the many gluons are *spread out thinly*,

density $\sim xg(x) \times \Lambda^2/Q^2 \lesssim 1$

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all \ other \ scales$:

$$ot$$
 scale $=$ fixed and $\ln s
ightarrow \infty$

Since all \perp scales similar, problem is *self-similar*:

$$dipole \rightarrow 2 \ dipoles \rightarrow 4 \ dipoles \rightarrow \dots$$

Expect exponential growth:

$$n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \text{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \text{transverse}}$$

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all$ other scales:

$$ot$$
 scale = fixed and $\ln s o \infty$

Since all \perp scales similar, problem is *self-similar*:

dipole
$$\rightarrow$$
 2 dipoles \rightarrow 4 dipoles $\rightarrow \dots$

Expect exponential growth:

$$n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \text{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \text{transverse}}$$

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all$ other scales:

$$\perp$$
 scale = fixed and $\ln s \to \infty$

Since all \perp scales similar, problem is *self-similar*:

dipole
$$\rightarrow$$
 2 dipoles \rightarrow 4 dipoles $\rightarrow \dots$

Expect exponential growth:

$$n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \text{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \text{transverse}}$$

BFKL equation is linear & homogeneous, kernel is *conformally invariant*

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$$

It has power-like eigenfunctions:

$$n(Y; R, r) = n_{\gamma}(Y) \left(\frac{R^2}{r^2}\right)^{\gamma}$$

which evolve exponentially (as expected):

$$\frac{\partial n_{\gamma}(Y)}{\partial Y} = \bar{\alpha}_{s}\chi(\gamma)n_{\gamma}(Y) \qquad \Rightarrow \qquad n_{\gamma}(Y) \propto \exp\left[\bar{\alpha}_{s}\chi(\gamma)Y\right]$$

$$\left[\underbrace{\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)}_{\text{restriction}}, \quad \psi(\gamma) = \frac{1}{\Gamma(\gamma)} \frac{d\Gamma(\gamma)}{d\gamma}\right]$$

Eigenvalues for $(R^2/r^2)^{\gamma}$

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

- ightarrow high energy evolution, $n \sim e^{\bar{\alpha}_{\rm s} \chi(\gamma) Y}$.
- ▶ pole $(1/\gamma)$ corresponds to \bot logarithms \to DL terms $\alpha_{\mathsf{s}} Y \ln Q^2$
- dominant part at high energies is minimum (only stable solution)

$$n(Y; R, r) \sim \frac{R}{r} e^{4 \ln 2\bar{\alpha}_s Y} \sim \frac{R}{r} e^{0.5Y}$$
 $\alpha_s \simeq 0.2$

Rapid power growth with energy of number of dipoles (and cross sections).

Look for BFKL in F_2 [$\gamma^* p$ X-sct]

BFKL 'predicts' (for low Q^2)

$$F_2(x, Q^2) \sim e^{4 \ln 2\alpha_s Y} \sim x^{-0.5}$$

Fit
$$\lambda$$
 in $F_2(x, Q^2) \sim x^{-\lambda(Q^2)}$.

Expect to find
$$\lambda \simeq 0.5$$

may be larger at high Q^2 (DL)

Look for BFKL in F_2 [$\gamma^* p$ X-sct]

BFKL 'predicts' (for low Q^2)

$$F_2(x, Q^2) \sim e^{4 \ln 2\alpha_s Y} \sim x^{-0.5}$$

Fit
$$\lambda$$
 in $F_2(x, Q^2) \sim x^{-\lambda(Q^2)}$.

Expect to find $\lambda \simeq 0.5$

may be larger at high Q^2 (DL)

Result incompatible with BFKL

Look for BFKL in F_2 [$\gamma^* p$ X-sct]

BFKL 'predicts' (for low Q^2)

$$F_2(x, Q^2) \sim e^{4 \ln 2\alpha_s Y} \sim x^{-0.5}$$

Fit
$$\lambda$$
 in $F_2(x, Q^2) \sim x^{-\lambda(Q^2)}$.

Expect to find $\lambda \simeq 0.5$

may be larger at high Q^2 (DL)

Result incompatible with BFKL

What's wrong?

- proton is non-perturbative (NP)
- BFKL dynamics naturally concentrated at (NP) scales

 NB: DLs spread over range of scales ⇒ less sensitive to NP region

- ▶ Here too, data clearly incompatible with LL BFKL
- ▶ But perhaps some evidence for weak growth

- ▶ Here too, data clearly incompatible with LL BFKL
- ▶ But perhaps some evidence for weak growth

- ▶ BFKL is rigorous prediction of field theory, yet not seen in data
- ► Should we be worried?
- ► Calculations shown so far are in Leading Logarithmic (LL) approximation, $(\alpha_s \ln s)^n$: accurate only for

$$\alpha_{\rm S} \to 0$$
, $\ln s \to \infty$ and $\alpha_{\rm S} \ln s \sim 1$.

Next-to-Leading-Logarithmic (NLL) terms:
$$\alpha_s(\alpha_s \ln s)^n$$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '80–'98

- ▶ BFKL is rigorous prediction of field theory, yet not seen in data
- ▶ Should we be worried?
- ► Calculations shown so far are in Leading Logarithmic (LL) approximation, $(\alpha_s \ln s)^n$: accurate only for

$$\alpha_{\rm S} \rightarrow 0$$
, $\ln s \rightarrow \infty$ and $\alpha_{\rm S} \ln s \sim 1$.

Next-to-Leading-Logarithmic (NLL) terms:
$$\alpha_s(\alpha_s \ln s)^n$$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

- ▶ BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- ▶ Calculations shown so far are in Leading Logarithmic (LL) approximation, $(\alpha_s \ln s)^n$: accurate only for

$$lpha_{\mathsf{s}} o \mathsf{0}$$
, $\ln s o \infty$ and $lpha_{\mathsf{s}} \ln s \sim 1$.

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_s(\alpha_s \ln s)^n$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '80–'08

- ▶ BFKL is rigorous prediction of field theory, yet not seen in data
- ▶ Should we be worried? No!
- ▶ Calculations shown so far are in Leading Logarithmic (LL) approximation, $(\alpha_s \ln s)^n$: accurate only for

$$lpha_{\mathsf{s}} o \mathsf{0}$$
, $\ln s o \infty$ and $lpha_{\mathsf{s}} \ln s \sim 1$.

Next-to-Leading-Logarithmic (NLL) terms:
$$\alpha_s(\alpha_s \ln s)^n$$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

NB: DGLAP = 'rotated' plot of $\gamma(N)$

$$\chi(\gamma) = \underbrace{\chi_0(\gamma)}_{LL} + \underbrace{\bar{\alpha}_s \chi_1(\gamma)}_{NLL} + \dots$$

- ► NLL terms are pathologically large oscillating X-sctns, . . .
- ▶ ∃ other constraints
 - ▶ DGLAP for $\gamma \sim 0$
 - ightharpoonup symetries for $\gamma \sim 1$
- → Assemble all constraints
 → stable, sensible kernel
 Ciafaloni, Colferai, GPS & Stasto
 Altarelli, Ball & Forte: '98-'09

NB: DGLAP = 'rotated' plot of $\gamma(N)$

$$\chi(\gamma) = \underbrace{\chi_0(\gamma)}_{II} + \underbrace{\bar{\alpha}_s \chi_1(\gamma)}_{NII} + \dots$$

- NLL terms are pathologically large oscillating X-sctns, ...
- ▶ ∃ other constraints
 - ▶ DGLAP for $\gamma \sim 0$
 - symetries for $\gamma \sim 1$
- ► Assemble all constraints → stable, sensible kernel Ciafaloni, Colferai, GPS & Staśto; Altarelli, Ball & Forte; '98-'05

NB: DGLAP = 'rotated' plot of
$$\gamma(N)$$

$$\chi(\gamma) = \underbrace{\chi_0(\gamma)}_{II} + \underbrace{\bar{\alpha}_s \chi_1(\gamma)}_{NII} + \dots$$

- ► NLL terms are pathologically large oscillating X-sctns, . . .
- ▶ ∃ other constraints
 - ▶ DGLAP for $\gamma \sim$ 0
 - lacksquare symetries for $\gamma\sim 1$
- ➤ Assemble all constraints
 → stable, sensible kernel
 Ciafaloni, Colferai, GPS & Staśto;
 Altarelli, Ball & Forte; '98–'05

NB: DGLAP = 'rotated' plot of
$$\gamma(N)$$

$$\chi(\gamma) = \underbrace{\chi_0(\gamma)}_{II} + \underbrace{\bar{\alpha}_s \chi_1(\gamma)}_{MII} + \dots$$

- ► NLL terms are pathologically large oscillating X-sctns, . . .
- ▶ ∃ other constraints
 - ▶ DGLAP for $\gamma \sim 0$
 - symetries for $\gamma \sim 1$
- Assemble all constraints
 → stable, sensible kernel
 Ciafaloni, Colferai, GPS & Staśto;
 Altarelli, Ball & Forte; '98-'05

NB: DGLAP = 'rotated' plot of $\gamma(N)$

$$\chi(\gamma) = \underbrace{\chi_0(\gamma)}_{II} + \underbrace{\bar{\alpha}_s \chi_1(\gamma)}_{NII} + \dots$$

- ► NLL terms are pathologically large oscillating X-sctns, . . .
- ▶ ∃ other constraints
 - ▶ DGLAP for $\gamma \sim 0$
 - symetries for $\gamma \sim 1$
- ➤ Assemble all constraints

 → stable, sensible kernel

 Ciafaloni, Colferai, GPS & Staśto;

 Altarelli, Ball & Forte; '98–'05

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- ▶ LL grows rapidly with Y
- NLL unstable wrt

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- ► LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry

General picture seems sensible to the second picture second picture seems sensible to the second picture second pictu

- Higher orders
 - ▶ slow onset of growth $(Y \gtrsim 5)$
 - reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- ► LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Detailed comparison with data not yet done parts of NLI ('impact factors') missing
- ► General picture seems sensible

Higher orders

- slow onset of growth $(Y \gtrsim 5)$
- reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- ► LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Detailed comparison with data not yet done parts of NLL ('impact factors') missing
- ► General picture seems sensible

- Higher orders
 - ▶ slow onset of growth $(Y \gtrsim 5)$
 - reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc.

$$G(Y; k, k_0) =$$
Fourier transform of $n(Y; R, r)$

- ▶ LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Detailed comparison with data not yet done parts of NLL ('impact factors') missing
- ► General picture seems sensible

- ▶ Higher-order corrections are sufficient to explain lack of growth in $\gamma^*\gamma^*$ data ($Y \lesssim 6$). NB: LHC and International Linear Collider can test perturbative BFKL up to $Y \simeq 10$
- ▶ But pp and low- Q^2 DIS go to higher energies, $Y \simeq 10-14$. NLL BFKL (+ DGLAP constraints) predicts $\sigma \gtrsim s^{0.3}$ by such energies.
- ▶ Why does one only see $\sigma \sim s^{0.08}$ (pp) or $F_2 \sim x^{-0.15}$ (low- Q^2 DIS)?

Unitarity/saturation & confinement

- ▶ Higher-order corrections are sufficient to explain lack of growth in $\gamma^*\gamma^*$ data ($Y \lesssim 6$). NB: LHC and International Linear Collider can test perturbative BFKL up to $Y \simeq 10$
- ▶ But pp and low- Q^2 DIS go to higher energies, $Y \simeq 10-14$. NLL BFKL (+ DGLAP constraints) predicts $\sigma \gtrsim s^{0.3}$ by such energies.
- ▶ Why does one only see $\sigma \sim s^{0.08}$ (pp) or $F_2 \sim x^{-0.15}$ (low- Q^2 DIS)?

Unitarity/saturation & confinement

Cross sections grow:

- ► Increase in number of dipoles $r \sim R$
- ▶ Increase in size of biggest dipoles r_{max}.

Cross sections grow:

- ► Increase in number of dipoles r ~ R
- ▶ Increase in size of biggest dipoles r_{max} .

Cross sections grow:

- Increase in number of dipoles $r \sim R$
- Increase in size of biggest dipoles r_{max} .

Density of gluons cannot increase indefinitely

- ▶ When dipole density is high ($\sim N_c/\alpha_s$) dipole branching compensated by dipole merging \rightarrow saturation of density
- Reach maximxal 'occupation number'

Colour Glass Condensate

▶ Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$\frac{\partial n(Y;R_{01})}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y;R_{12}) + n(Y;R_{02}) - n(Y;R_{01}) \right]$$

 $-c\alpha_{\rm s}^2 n(Y; R_{12}) n(Y; R_{02})$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97–98

Density of gluons cannot increase indefinitely

- ▶ When dipole density is high ($\sim N_c/\alpha_s$) dipole branching compensated by dipole merging → saturation of density
- ► Reach maximxal 'occupation number'

$$\frac{\partial n(Y; R_{01})}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2 R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y; R_{12}) + n(Y; R_{02}) - n(Y; R_{01}) \right]$$

Density of gluons cannot increase indefinitely

- ▶ When dipole density is high ($\sim N_c/\alpha_s$) dipole branching compensated by dipole merging → saturation of density
- Reach maximxal 'occupation number'

Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

$$\frac{\partial n(Y;R_{01})}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y;R_{12}) + n(Y;R_{02}) - n(Y;R_{01}) \right]$$

Density of gluons cannot increase indefinitely

- ▶ When dipole density is high ($\sim N_c/\alpha_s$) dipole branching compensated by dipole merging → saturation of density
- Reach maximxal 'occupation number'

 \triangleright Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$\frac{\partial n(Y;R_{01})}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y;R_{12}) + n(Y;R_{02}) - n(Y;R_{01}) \right]$$

 $-c\alpha_{\rm s}^2 n(Y; R_{12}) n(Y; R_{02})$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97–98.

Kernel
$$\frac{R_{01}^2 d^2 \vec{R}_2}{R_{12}^2 R_{02}^2}$$
 is *conformally invariant* (even with non-linear term)

just increase in number of gluons/dipoles.

Gluons can be produced *far* from original dipole — because of conformal (scale) invariance *each step* in *Y* translates to a constant *factor of increase in area*.

No other scales in problem.

Perturbative (fixed-coupling) *geometric* cross section for two dipoles in Balitsky-Kovchegov (= BFKL with saturation) grows as

$$\sigma \sim \exp\left[2.44 \times \bar{\alpha}_{\rm s} \, Y\,\right]$$
 2.44 $\simeq \chi'(\bar{\gamma})$ where $\bar{\gamma}\chi'(\bar{\gamma}) = \chi(\bar{\gamma})$

Only $\it marginally$ $\it weaker$ than $\it e^{4 \ln 2ar{lpha}_s Y} = \it e^{2.77ar{lpha}_s Y}$ of unsaturated BFKL

Kernel
$$\frac{R_{01}^2 d^2 \vec{R}_2}{R_{12}^2 R_{02}^2}$$
 is *conformally invariant* (even with non-linear term)

Gluons can be produced *far* from original dipole — because of conformal (scale) invariance *each step* in *Y* translates to a constant *factor of increase in area*.

No other scales in problem.

Perturbative (fixed-coupling) *geometric* cross section for two dipoles in Balitsky-Kovchegov (= BFKL with saturation) grows as

$$\sigma \sim \exp\left[2.44 \times \bar{\alpha}_{\rm s} \, Y\,\right]$$
 2.44 $\simeq \chi'(\bar{\gamma})$ where $\bar{\gamma}\chi'(\bar{\gamma}) = \chi(\bar{\gamma})$

Only marginally weaker than $e^{4 \ln 2\bar{\alpha}_s Y} = e^{2.77\bar{\alpha}_s Y}$ of unsaturated BFKL.

- Conformal invariance not an exact symmetry of high-energy QCD.

Froissart bound:
$$\sigma \sim Y^2/m_\pi^2$$

- ► Conformal invariance not an exact symmetry of high-energy QCD.
- ▶ Broken by *running of coupling*.
- For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- ▶ This is the semi-perturbative picture consistent with

Froissart bound:
$$\sigma \sim Y^2/m_\pi^2$$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- ▶ Broken by *running of coupling*.
- ightharpoonup For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- ▶ This is the semi-perturbative picture consistent with

Froissart bound:
$$\sigma \sim Y^2/m_\pi^2$$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- ightharpoonup For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- ▶ This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_\pi^2$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- ightharpoonup For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- ▶ This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_\pi^2$

But no direct connection with $p\bar{p}$ X-section possible so far

Saturation scale for proton

Plot Y-In Q^2 plane (as Prof. Veneziano)

Recall:

- Density ↑ with Y
- ▶ Density \Downarrow with In Q^2

Classify:

▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_{\rm s}^{-1}$

▶ Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_{\rm s}^{-1}$

Introduce boundary between them (in Q^2):

Saturation Scale $Q_s^2(Y)$

Saturation scale for proton

Plot Y-In Q^2 plane (as Prof. Veneziano)

Recall:

- Density ↑ with Y
- ▶ Density \Downarrow with In Q^2

Classify:

▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$

▶ Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_{\rm s}^{-1}$

Introduce boundary between them (in Q^2):

Saturation Scale $Q_s^2(Y)$

Saturation scale for proton

Plot Y-In Q^2 plane (as Prof. Veneziano)

Recall:

- Density ↑ with Y
- ▶ Density \Downarrow with In Q^2

Classify:

▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$

▶ Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_{\rm s}^{-1}$

Introduce boundary between them (in Q^2):

Saturation Scale $Q_s^2(Y)$

Plot Y-ln Q^2 plane (as Prof. Veneziano)

Recall:

- Density ↑ with Y
- ▶ Density \Downarrow with In Q^2

Classify:

▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$

▶ Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_s^{-1}$

Introduce boundary between them (in Q^2):

Saturation Scale

Big business at HERA collider

- ▶ Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{\rm s} \ll 1$) if $Q_{\rm s}^2 \gtrsim 1$ GeV
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- ► NB: much interest also for nuclei (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- All gluon modes occupied up to $Q_s^2(Y)$.
- ▶ pp collisions always radiate gluons up to $Q_s^2(Y)$.

▶ $Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp$ collisions partially perturbative.

Big business at HERA collider

- ► Saturation ⇒ strong non-Abelian fields (but $\alpha_s \ll 1$) if $Q_s^2 \gtrsim 1$ GeV
- ▶ Use *diffraction* to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- ▶ NB: much interest also for nuclei (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- ▶ All gluon modes occupied up to $Q_s^2(Y)$.
- pp collisions always radiate gluons up to $Q_s^2(Y)$.

 \triangleright $Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp \text{ collisions}$

Big business at HERA collider

- ▶ Saturation ⇒ strong non-Abelian *fields (but* $\alpha_s \ll 1$) if $Q_s^2 \gtrsim 1$ GeV
- ▶ Use *diffraction* to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- ▶ NB: much interest also for nuclei (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- ▶ All gluon modes occupied up to $Q_s^2(Y)$.
- pp collisions always radiate gluons up to $Q_s^2(Y)$.

 $ightharpoonup Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp \text{ collisions}$ partially perturbative.

A (biased) selection of recent work

Towards NLL comparisons with data

- ► NLL *couplings* to external particles (photons, jets) 'impact factors'

 Bartels, Gieseke, Qiao, Colferai, Vacca, Kyrieleis '01–...

 Fadin, Ivanov, Kotsky '01–...
- ► Understanding *solutions* of NLL evolution equations

 Altarelli, Ball Forte '02-...; Andersen & Sabio Vera '03-...

 Ciafaloni, Colferai, GPS & Staśto '02-...

Evolution equations with saturation:

- Solutions of *multipole* evolution (BKP) Derkachov, Korchemsky, Kotanski & Manashov '02 de Vega & Lipatov '02
- Connections between
 Balitsky-Kovchegov and statistical physics (FKPP)
 Munier & Peschanski '03
- Evolution eqns beyond 'mean-field' lancu & Triantafyllopoulos '04-05 Mueller, Shoshi & Wong '05 Levin & Lublinsky '05
- ► Understanding of *solutions* beyond mean-field Mueller & Shoshi '04 lancu, Mueller & Munier '04 Brunet, Derrida, Mueller & Munier (in progress)

- ▶ Basic field-theoretical framework for high-energy limit of perturbative QCD: BFKL
- ▶ Has many sources of corrections
 - ▶ Higher-orders in linear equation
 - Non-linearities
- ► These effects all combine together to provide a *picture* that looks *sensible* wrt data
- Progress still needed in order to be quantitative

- ► CPhT (X): Stéphane Munier, Bernard Pire
- ▶ LPT (Orsay): Gregory Korchemsky, Dominique Schiff, Samuel Wallon
- ▶ LPTHE (Paris 6 & 7): Hector de Vega, GPS
- ► SPhT (CEA): Jean-Paul Blaizot, François Gelis, Edmond Iancu, Robi Peschanski, Kazunori Itakura, Grégory Soyez, Dionysis Triantafyllopoulos, Cyrille Marquet.

Permanent Postdoc Ph.D.

▶ Senior visitors over the past few years: Ian Balitsky, Marcello Ciafaloni, Stefano Forte, Lev Lipatov, Larry McLerran, Alfred H. Mueller, Raju Venugopalan, . . .