La QCD à hautes énergies

Gavin Salam

LPTHE, Universités de Paris VI et VII, et CNRS

Collège de France
5 avril 2005

One of the major unsolved problems of QCD (and Yang-Mills theory in general) is the understanding of its high-energy limit.
I.e. the limit in which C.O.M. energy (\sqrt{s}) is much larger than all other scales in the problem.

Want to examine perturbative QCD predictions for

- asymptotic behaviour of cross section, $\sigma_{h h}(s) \sim ? ?$
- properties of final states for large s.

Experimental knowledge

- Some knowledge exists about behaviour of cross section experimentally
- Slow rise as energy increases
- Data insufficient to make reliable statements about functional form
- $\sigma \sim s^{0.08}$?
- $\sigma \sim \ln ^{2} s$?
- Understanding of final-states is ~ inexistent
- Would like theoretical predictions...

Experimental knowledge

Future experiments go to much higher energies.

Problem is must more general than just for hadrons. E.g. photon can fluctuate into a quark-antiquark (hadronic!) state:

Even a neutrino can behave like a hadron

Hadronic component dominates high-energy cross section

Look at density of gluons from dipole field (\sim energy density).

- Large energy \equiv large boost (along z axis), by factor

$$
\mathrm{QCD} \simeq \mathrm{QED}
$$

Look at density of gluons from

$E / m=1$

 dipole field (\sim energy density).
$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor

$E / m=2$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor

$\mathrm{E} / \mathrm{m}=3$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.

$E / m=5$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure

$E / m=10$

 Look at density of gluons from dipole field (\sim energy density).
$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure

$\mathrm{E} / \mathrm{m}=20$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure

$\mathrm{E} / \mathrm{m}=50$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure

$\mathrm{E} / \mathrm{m}=50$

Look at density of gluons from dipole field (\sim energy density).

$Q C D \simeq$ QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

$\mathrm{E} / \mathrm{m}=50$

Look at density of gluons from dipole field (\sim energy density).

$$
\mathrm{QCD} \simeq \text { QED }
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

$E / m=50$

Look at density of gluons from dipole field (\sim energy density).

$$
\mathrm{QCD} \simeq \text { QED }
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Look at density of gluons from dipole field (\sim energy density).

$$
\mathrm{QCD} \simeq \text { QED }
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Look at density of gluons from dipole field (\sim energy density).

$\mathrm{E} / \mathrm{m}=50$

$$
\mathrm{QCD} \simeq \mathrm{QED}
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Study field of $q \bar{q}$ dipole (\simeq hadron)

Look at density of gluons from dipole field (\sim energy density).

$E / m=50$

$$
\mathrm{QCD} \simeq \mathrm{QED}
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Look at density of gluons from dipole field (\sim energy density).

$E / m=50$

$$
\mathrm{QCD} \simeq \mathrm{QED}
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Look at density of gluons from dipole field (\sim energy density).

$E / m=50$

$$
\mathrm{QCD} \simeq \mathrm{QED}
$$

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.

Look at density of gluons from dipole field (\sim energy density).

$E / m=50$

QCD \simeq QED

- Large energy \equiv large boost (along z axis), by factor
- Fields flatten into pancake.
- simple longitudinal structure
- There remains non-trivial transverse structure.
- Fields are those of a dipole in $2+1$ dimensions

Total number of gluons

Lowest order - like QED
Longitudinal structure of energy density ($N_{c}=\#$ of colours):

$$
\frac{d \epsilon}{d z} \sim \frac{\alpha_{s} N_{c}}{\pi} \times E \delta(z) \times \text { transverse }
$$

Longitudinal structure of energy density $\left(N_{c}=\#\right.$ of colours):

$$
\frac{d \epsilon}{d z} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times E \delta(z) \times \text { transverse }
$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_{z})

$$
\frac{d \epsilon}{d p_{z}} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times \text { transverse }, \quad m \ll p_{z} \ll E
$$

Longitudinal structure of energy density $\left(N_{c}=\#\right.$ of colours):

$$
\frac{d \epsilon}{d z} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times E \delta(z) \times \text { transverse }
$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_{z})

$$
\frac{d \epsilon}{d p_{z}} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times \text { transverse }, \quad m \ll p_{z} \ll E
$$

\rightarrow number (n) of gluons (each gluon has energy p_{z}):

$$
\frac{d n}{d p_{z}} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \frac{1}{p_{z}} \times \text { transverse }, \quad m \ll p_{z} \ll E
$$

Total number of gluons:
 $n \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \ln \frac{E}{m} \times$ transverse

Longitudinal structure of energy density $\left(N_{c}=\#\right.$ of colours):

$$
\frac{d \epsilon}{d z} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times E \delta(z) \times \text { transverse }
$$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_{z})

$$
\frac{d \epsilon}{d p_{z}} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \times \text { transverse }, \quad m \ll p_{z} \ll E
$$

\rightarrow number (n) of gluons (each gluon has energy p_{z}):

$$
\frac{d n}{d p_{z}} \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \frac{1}{p_{z}} \times \text { transverse }, \quad m \ll p_{z} \ll E
$$

Total number of gluons:

$$
n \sim \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \ln \frac{E}{m} \times \text { transverse }
$$

High-energy limit $\sqrt{s}, E \rightarrow \infty$

- Calculation so far is first-order perturbation theory.
- Fixed order perturbation theory is reliable if series converges quickly.
- At high energies, $n \sim \alpha_{\mathrm{s}} \ln E \sim 1$.
- What happens with higher orders?

$$
\left(\alpha_{\mathrm{s}} \ln E\right)^{n} ?
$$

Leading Logarithms (LL). Any fixed order potentially non-convergent...

Colour flow

- Quarks come in 3 'colours' $\left(N_{c}=3\right)$. Gluons emission 'repaints' the colour of the quark.
- i.e. gluon carries away one colour and brings in a different one [this simple picture \equiv approx of many colours].
- gluon itself is charged with both colour and anti-colour [c.f. two lines with different directions].

Multiple gluon emission

Start with bare $q \bar{q}$ dipole:

Emission of 1 gluon is like QED case - modulo additional colour factor (number of different ways to repaint quark):
(approx)

Multiple gluon emission

Start with bare $q \bar{q}$ dipole:

Emit a gluon:

Emission of 1 gluon is like QED case - modulo additional colour factor (number of different ways to repaint quark):

$$
\alpha \rightarrow \alpha_{\mathrm{s}} N_{c} / 2 \quad \text { (approx) }
$$

- In QED subsequent photons are

emitted by original dipole
converted into two new dipoles,
which emit independently.

Start with bare $q \bar{q}$ dipole:

Emit a gluon:

Emission of 1 gluon is like QED case - modulo additional colour factor (number of different ways to repaint quark):

$$
\alpha \rightarrow \alpha_{\mathrm{s}} N_{c} / 2 \quad \text { (approx) }
$$

- In QED subsequent photons are emitted by original dipole
converted into two new dipoles,

Start with bare $q \bar{q}$ dipole:

Emit a gluon:

Emission of 1 gluon is like QED case - modulo additional colour factor (number of different ways to repaint quark):

$$
\alpha \rightarrow \alpha_{\mathrm{s}} N_{c} / 2 \quad \text { (approx) }
$$

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which emit independently.

Towards evolution equation

- Keeping track of full structure of dipoles in evolved $q \bar{q}$ pair is complicated.
- Instead examine total number of dipoles as a function of energy: 1

Start with dipole of size R_{01}.
Define number of dipoles of size r obtained after evo-
lution in energy to a rapidity $Y=\ln s$:

Towards evolution equation

- Keeping track of full structure of dipoles in evolved $q \bar{q}$ pair is complicated.
- Instead examine total number of dipoles as a function of energy:

Start with dipole of size R_{01}.
Define number of dipoles of size r obtained after evolution in energy to a rapidity $Y=\ln s$:

$$
n\left(Y ; R_{01}, r\right)
$$

Towards evolution equation

- Keeping track of full structure of dipoles in evolved $q \bar{q}$ pair is complicated.
- Instead examine total number of dipoles as a function of energy:

Start with dipole of size R_{01}.
Define number of dipoles of size r obtained after evolution in energy to a rapidity $Y=\ln s$:

$$
n\left(Y ; R_{01}, r\right)
$$

- Write an equation for the evolution of $n\left(Y ; R_{01}, r\right)$ with energy.

High-energy QCD (11/36)
-Fields of high-energy dipole
—BFKL equation (NB: $Y=\ln s$)

Dipole evolution equation

$\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}, r\right)+n\left(Y ; R_{02}, r\right)-n\left(Y ; R_{01}, r\right)\right]$
Transverse struct:
2-dim dipole-field
(squared)

High-energy QCD $(11 / 36)$
—Fields of high-energy dipole
$\left\llcorner_{B F K L}\right.$ equation (NB: $Y=\ln s$)

Dipole evolution equation

$\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\frac{\alpha_{\mathrm{s}} N_{c}}{2 \pi^{2}} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}, r\right)+n\left(Y ; R_{02}, r\right)-n\left(Y ; R_{01}, r\right)\right]$

Transverse struct:
2-dim dipole-field (squared)

Dipole evolution equation

$\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}, r\right)+n\left(Y ; R_{02}, r\right)-n\left(Y ; R_{01}, r\right)\right]$

Transverse struct: 2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev \& Zakharov '93

NB: \exists other formulations
original BFKL Weigert, Leonidov and Ko
Balitsky-Kovchegov (BK)

Dipole evolution equation

$\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\frac{\alpha_{\mathrm{s}} N_{c}}{2 \pi^{2}} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}, r\right)+n\left(Y ; R_{02}, r\right)-n\left(Y ; R_{01}, r\right)\right]$

Transverse struct:
2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev \& Zakharov '93

NB: \exists other formulations

- original BFKL Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- Balitsky-Kovchegov (BK)

No full analytical solution exists in closed form. But asymptotic properties are well understood.

Simplest case is double asymptotic limit: In $s \sim e^{Y} \ll 1 \& r \ll R$.

This is just Deep Inelastic Scattering at small longitudinal momentum fraction x :

$$
\begin{aligned}
\frac{1}{x} & \sim \frac{s}{Q^{2}} \gg 1 \\
\frac{Q^{2}}{\Lambda^{2}} & \sim\left(\frac{r_{\gamma}^{2}}{R_{p}^{2}}\right)^{-1} \gg 1
\end{aligned}
$$

Much data from HERA collider.

No full analytical solution exists in closed form. But asymptotic properties are well understood.

Simplest case is double asymptotic limit: In $s \sim e^{Y} \ll 1 \& r \ll R$.

This is just Deep Inelastic Scattering at small longitudinal momentum fraction x :

$$
\begin{aligned}
\frac{1}{x} & \sim \frac{s}{Q^{2}} \gg 1 \\
\frac{Q^{2}}{\Lambda^{2}} & \sim\left(\frac{r_{\gamma}^{2}}{R_{p}^{2}}\right)^{-1} \gg 1
\end{aligned}
$$

Much data from HERA collider.

High-energy QCD (13/36)
—BFKL solutions: double logs
$\left\llcorner_{\text {Recall: }} Y \simeq \ln 1 / x \simeq \ln s / s_{0} ; Q / \Lambda \sim R / r\right.$

Double Log (DL) Equation

High-energy QCD (13/36)
—BFKL solutions: double logs

Double Log (DL) Equation

$$
\Rightarrow n\left(Y ; R_{01}, r\right)=\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} d y \int_{r}^{R_{01}} \frac{d R_{12}^{2}}{R_{12}^{2}} n\left(y ; R_{12}, r\right)
$$

Double Log (DL) Equation

Double Log (DL) Equation

$$
\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\bar{\alpha}_{\mathrm{s}} \int_{r}^{R_{01}} \frac{d R_{12}^{2}}{R_{12}^{2}} n\left(Y ; R_{12}, r\right)
$$

$$
\bar{\alpha}_{\mathrm{s}}=\frac{\alpha_{\mathrm{s}} N_{c}}{\pi}
$$

$$
\Rightarrow \quad n\left(Y ; R_{01}, r\right)=\underbrace{\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} d y \int_{r}^{R_{01}} \frac{d R_{12}^{2}}{R_{12}^{2}}} n\left(y ; R_{12}, r\right)
$$

$$
\alpha_{\mathrm{s}} \ln s \ln \frac{R_{01}}{r}=\text { double log }
$$

Double Log (DL) Equation

$$
\begin{aligned}
\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}= & \bar{\alpha}_{\mathrm{s}}
\end{aligned} \int_{r}^{R_{01}} \frac{d R_{12}^{2}}{R_{12}^{2}} n\left(Y ; R_{12}, r\right) \quad \underbrace{}_{\alpha_{\mathrm{s}} \ln s \ln \frac{R_{01}}{r}} \begin{aligned}
& \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \int_{0}^{Y} d y \int_{r}^{R_{01}} \frac{\alpha_{\mathrm{s}} N_{c}}{\pi} \\
& \Rightarrow n\left(Y ; R_{01}^{2}, r\right) \\
& R_{12}^{2} \\
& n\left(y ; R_{12}, r\right)
\end{aligned}
$$

Same result can be deduced from DGLAP equations (evolution in Q^{2})

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y ; R, r)=\Theta(R-r)$
count number of dipoles larger than r
Solve iteratively to get $j^{\text {th }}$ order contribution:

$$
n^{(j)}(Y ; R, r)=\bar{\alpha}_{\mathrm{s}} \int_{0}^{Y} d y \int_{r}^{R} \frac{d R^{\prime 2}}{R^{\prime 2}} n^{(j-1)}\left(y ; R^{\prime}, r\right)
$$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y ; R, r)=\Theta(R-r)$
count number of dipoles larger than r Solve iteratively to get $j^{\text {th }}$ order contribution:

$$
n^{(j)}(Y ; R, r)=\bar{\alpha}_{\mathrm{s}} \int_{0}^{Y} d y \int_{r}^{R} \frac{d R^{\prime 2}}{R^{\prime 2}} n^{(j-1)}\left(y ; R^{\prime}, r\right)
$$

Result:

$$
n^{(j)}(Y ; R, r)=\bar{\alpha}_{s}^{j} \frac{Y^{j}}{j!} \frac{\left(\ln R^{2} / r^{2}\right)^{j}}{j!}
$$

(fixed coupling approximation)

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y ; R, r)=\Theta(R-r)$
count number of dipoles larger than r Solve iteratively to get $j^{\text {th }}$ order contribution:

$$
n^{(j)}(Y ; R, r)=\bar{\alpha}_{\mathrm{s}} \int_{0}^{Y} d y \int_{r}^{R} \frac{d R^{\prime 2}}{R^{\prime 2}} n^{(j-1)}\left(y ; R^{\prime}, r\right)
$$

Result:

$$
n^{(j)}(Y ; R, r)=\bar{\alpha}_{s}^{j} \frac{Y^{j}}{j!} \frac{\left(\ln R^{2} / r^{2}\right)^{j}}{j!}
$$

(fixed coupling approximation)
Do sum:

$$
n(Y ; R, r)=\sum_{j=0}^{\infty} \frac{\left(\bar{\alpha}_{\mathrm{s}} Y \ln R^{2} / r^{2}\right)^{j}}{(j!)^{2}} \sim \exp \left[2 \sqrt{\bar{\alpha}_{\mathrm{s}} Y \ln R^{2} / r^{2}}\right]
$$

NB: including running coupling $\sim \exp \left(2 / \beta_{0}^{2} \sqrt{Y \ln \ln R^{2} / r^{2}}\right)$

DIS X-sctn $\sim n$ dipoles:
$F_{2}\left(x, Q^{2}\right) \sim n\left(\ln \frac{1}{x} ; \frac{1}{\Lambda^{2}}, \frac{1}{Q^{2}}\right)$
$\sim \exp \left[\frac{2}{\beta_{0}^{2}} \sqrt{\ln \frac{1}{x} \ln \ln \frac{Q^{2}}{\Lambda^{2}}}\right]$

- Growth of cross section at small x
- Faster growth for high Q^{2}

ZEUS Preliminary 1996-97

DIS

- Gr
sm
Fa
—BFKL solutions: double logs

Test in Deep Inelastic Scattering

$\left\llcorner_{\text {Recall }: ~} Y \simeq \ln 1 / x \simeq \ln s / s_{0} ; Q / \Lambda \sim R / r\right.$

sm
 - Fa

DIS X-sctn $\sim n$ dipoles:

$$
\begin{aligned}
& F_{2}\left(x, Q^{2}\right) \sim n\left(\ln \frac{1}{x} ; \frac{1}{\Lambda^{2}}, \frac{1}{Q^{2}}\right) \\
& \sim \exp \left[\frac{2}{\beta_{0}^{2}} \sqrt{\ln \frac{1}{x} \ln \ln \frac{Q^{2}}{\Lambda^{2}}}\right]
\end{aligned}
$$

- Growth of cross section at small x
- Faster growth for high Q^{2}

NB: truly predict features of x-dependence, even for nonperturbative (NP) proton, since NP uncertainty \equiv rescaling of \wedge

+ can be made quantitative
(Ball \& Forte '94-96)
- Convert cross sections into estimate of number of gluons
- Various independent extractions
- Up to 20 gluons per unit $\ln x\left(\right.$ or unit $\left.\ln p_{z}\right)$!

- Convert cross sections into estimate of number of gluons
- Various independent extractions
- Up to 20 gluons per unit $\ln x\left(\right.$ or unit $\left.\ln p_{z}\right)$!

NB: at resolution Q^{2}, area occupied by gluon $\sim 1 / Q^{2}$ (area of proton $\left.\sim 1 / \Lambda^{2}\right) \Rightarrow$ the many gluons are spread out thinly,

$$
\text { density } \sim x g(x) \times \Lambda^{2} / Q^{2} \lesssim 1
$$

Double-Log limit had $\ln s$ and $\ln Q^{2}$ growing simultaneously.
True high-energy limit is when c.o.m. energy $\sqrt{s} \gg$ all other scales:

$$
\perp \text { scale }=\text { fixed } \quad \text { and } \quad \ln s \rightarrow \infty
$$

Since all \perp scales similar, problem is self-similar:

Double-Log limit had $\ln s$ and $\ln Q^{2}$ growing simultaneously.
True high-energy limit is when c.o.m. energy $\sqrt{s} \gg$ all other scales:

$$
\perp \text { scale }=\text { fixed } \quad \text { and } \quad \ln s \rightarrow \infty
$$

Since all \perp scales similar, problem is self-similar:

$$
\text { dipole } \rightarrow 2 \text { dipoles } \rightarrow 4 \text { dipoles } \rightarrow \ldots
$$

Expect exponential growth:

Double-Log limit had $\ln s$ and $\ln Q^{2}$ growing simultaneously.
True high-energy limit is when c.o.m. energy $\sqrt{s} \gg$ all other scales:

$$
\perp \text { scale }=\text { fixed } \quad \text { and } \quad \ln s \rightarrow \infty
$$

Since all \perp scales similar, problem is self-similar:

$$
\text { dipole } \rightarrow 2 \text { dipoles } \rightarrow 4 \text { dipoles } \rightarrow \ldots
$$

Expect exponential growth:

$$
n \sim \exp \left[\bar{\alpha}_{s} \ln s \times \text { transverse }\right] \sim s^{\bar{\alpha}_{s} \times \text { transverse }}
$$

BFKL equation is linear \& homogeneous, kernel is conformally invariant

$$
\frac{\partial n\left(Y ; R_{01}, r\right)}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}, r\right)+n\left(Y ; R_{02}, r\right)-n\left(Y ; R_{01}, r\right)\right]
$$

It has power-like eigenfunctions:

$$
n(Y ; R, r)=n_{\gamma}(Y)\left(\frac{R^{2}}{r^{2}}\right)^{\gamma}
$$

which evolve exponentially (as expected):

$$
\begin{array}{ll}
\frac{\partial n_{\gamma}(Y)}{\partial Y}=\bar{\alpha}_{\mathrm{s}} \chi(\gamma) n_{\gamma}(Y) \Rightarrow & n_{\gamma}(Y) \propto \exp \left[\bar{\alpha}_{\mathrm{s}} \chi(\gamma) Y\right] \\
{[\underbrace{\chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)}_{\text {characteristic function }},} & \left.\psi(\gamma)=\frac{1}{\Gamma(\gamma)} \frac{d \Gamma(\gamma)}{d \gamma}\right]
\end{array}
$$

Characteristic function

Eigenvalues for $\left(R^{2} / r^{2}\right)^{\gamma}$

$$
\chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
$$

\rightarrow high energy evolution, $n \sim e^{\bar{\alpha}_{s} \chi(\gamma) Y}$.

- pole $(1 / \gamma)$ corresponds to \perp logarithms $\rightarrow \mathrm{DL}$ terms $\alpha_{\mathrm{s}} Y \ln Q^{2}$
- dominant part at high energies is minimum (only stable solution)

$$
\begin{array}{r}
n(Y ; R, r) \sim \frac{R}{r} e^{4 \ln 2 \bar{\alpha}_{\mathrm{s}} Y} \sim \frac{R}{r} e^{0.5 Y} \\
\alpha_{\mathrm{s}} \simeq 0.2
\end{array}
$$

Rapid power growth with energy of number of dipoles (and cross sections).

BFKL eqn solved numerically

BFKL 'predicts' (for low Q^{2})

$$
F_{2}\left(x, Q^{2}\right) \sim e^{4 \ln 2 \alpha_{s} Y} \sim x^{-0.5}
$$

Fit λ in $F_{2}\left(x, Q^{2}\right) \sim x^{-\lambda\left(Q^{2}\right)}$.
Expect to find $\lambda \simeq 0.5$ may be larger at high $Q^{2}(\mathrm{DL})$

Look for BFKL in $F_{2}\left[\gamma^{*} p\right.$ X-sct]

BFKL 'predicts' (for low Q^{2})

$$
F_{2}\left(x, Q^{2}\right) \sim e^{4 \ln 2 \alpha_{s} Y} \sim x^{-0.5}
$$

Fit λ in $F_{2}\left(x, Q^{2}\right) \sim x^{-\lambda\left(Q^{2}\right)}$.
Expect to find $\lambda \simeq 0.5$ may be larger at high Q^{2} (DL)

Result incompatible with BFKL

Look for BFKL in $F_{2}\left[\gamma^{*} p\right.$ X-sct]

BFKL 'predicts' (for low Q^{2})

$$
F_{2}\left(x, Q^{2}\right) \sim e^{4 \ln 2 \alpha_{s} Y} \sim x^{-0.5}
$$

Fit λ in $F_{2}\left(x, Q^{2}\right) \sim x^{-\lambda\left(Q^{2}\right)}$.
Expect to find $\lambda \simeq 0.5$ may be larger at high Q^{2} (DL)

Result incompatible with BFKL

What's wrong?

- proton is non-perturbative (NP)
- BFKL dynamics naturally concentrated at (NP) scales

- NB: DLs spread over range of scales \Rightarrow less sensitive to NP region
- Eliminate ratios of transverse scales by colliding two virtual photons $Q_{1} \sim Q_{2}$

- Here too, data clearly incompatible with LL BFKL

Results from LEP

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\left(\gamma^{*} \gamma^{*} \rightarrow\right) \text { hadrons, } \mathrm{L} 3 \text { cuts }
$$

- Here too, data clearly incompatible with LL BFKL
- But perhaps some evidence for weak growth
- BFKL is rigorous prediction of field theory, yet not seen in data Should we be worried? Calculations shown so far are in Leading Logarithmic (LL) annroximation $\left(\alpha_{s} \ln s\right)^{n}$. accurate only for
- BFKL is rigorous prediction of field theory, yet not seen in data - Should we be worried?

Calculations shown so far are in Leading Logarithmic (LL) approximation, $\left(\alpha_{\mathrm{s}} \ln s\right)^{n}$: accurate only for

$$
\alpha_{\mathrm{s}} \rightarrow 0, \ln s \rightarrow \infty \text { and } \alpha_{\mathrm{s}} \ln s \sim 1
$$

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, $\left(\alpha_{s} \ln s\right)^{n}$: accurate only for

$$
\alpha_{\mathrm{s}} \rightarrow 0, \ln s \rightarrow \infty \text { and } \alpha_{\mathrm{s}} \ln s \sim 1
$$

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, $\left(\alpha_{s} \ln s\right)^{n}$: accurate only for

$$
\alpha_{\mathrm{s}} \rightarrow 0, \ln s \rightarrow \infty \text { and } \alpha_{\mathrm{s}} \ln s \sim 1
$$

- Need higher order corrections

> Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{\mathrm{s}}\left(\alpha_{\mathrm{s}} \ln s\right)^{n}$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89-'98

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power
$\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{s} \chi_{1}(\gamma)}_{N L L}+\ldots$

- NLL terms are
pathologically large oscillating X-sctns, ...
- \exists other constraints
- DGLAP for $\gamma \sim 0$

NB: DGLAP = 'rotated' plot of $\gamma(N)$

NB: DGLAP = 'rotated' plot of $\gamma(N)$

Examine $\bar{\alpha}_{s} \chi(\gamma)$

minimum $=B F K L$ power
$\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots$

- NLL terms are
pathologically large oscillating X-sctns, ...
- \exists other constraints
- DGLAP for $\gamma \sim 0$
- symetries for $\gamma \sim 1$

Assemble all constraints \rightarrow stable, sensible kernel

NB: DGLAP = 'rotated' plot of $\gamma(N)$

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power
$\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{s} \chi_{1}(\gamma)}_{N L L}+\ldots$

- NLL terms are
pathologically large oscillating X-sctns, ...
- \exists other constraints
- DGLAP for $\gamma \sim 0$
- symetries for $\gamma \sim 1$
- Assemble all constraints \rightarrow stable, sensible kernel

Ciafaloni, Colferai, GPS \& Staśto; Altarelli, Ball \& Forte; '98-'05

Examine solutions at LL, NLL, etc.

$$
\begin{array}{r}
G\left(Y ; k, k_{0}\right)=\text { Fourier } \\
\text { transform of } n(Y ; R, r) \\
\text { LL grows rapidly with } Y
\end{array}
$$

- NLL unstable wrt subleading changes
- DGIAP-symmetry constrained higher-orders

NLL solutions

Examine solutions at LL, NLL, etc.

$$
\begin{array}{r}
G\left(Y ; k, k_{0}\right)=\text { Fourier } \\
\text { transform of } n(Y ; R, r)
\end{array}
$$

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry
constrained higher-orders (schemes A, B) give stable predictions

NLL solutions

Examine solutions at LL, NLL, etc.

$$
\begin{array}{r}
G\left(Y ; k, k_{0}\right)=\text { Fourier } \\
\text { transform of } n(Y ; R, r)
\end{array}
$$

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions

NLL solutions

Examine solutions at LL, NLL, etc.

$$
\begin{array}{r}
G\left(Y ; k, k_{0}\right)=\text { Fourier } \\
\text { transform of } n(Y ; R, r)
\end{array}
$$

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Higher orders
- slow onset of growth ($Y \gtrsim 5$)
- reduce power of growth

$$
\left(\sim e^{0.25 Y}\right)
$$

Examine solutions at LL, NLL, etc.

$$
\begin{aligned}
& G\left(Y ; k, k_{0}\right)=\text { Fourier } \\
& \text { transform of } n(Y ; R, r)
\end{aligned}
$$

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Higher orders
- slow onset of growth ($Y \gtrsim 5$)
- reduce power of growth $\left(\sim e^{0.25 Y}\right)$
- Detailed comparison with data not yet done parts of NLL
('impact factors') missing
- General picture seems sensible

What about protons?

- Higher-order corrections are sufficient to explain lack of growth in $\gamma^{*} \gamma^{*}$ data $(Y \lesssim 6)$. NB: LHC and International Linear Collider can test perturbative BFKL up to $Y \simeq 10$
- But $p p$ and low- Q^{2} DIS go to higher energies, $Y \simeq 10-14$. NLL BFKL (+ DGLAP constraints) predicts $\sigma \gtrsim s^{0.3}$ by such energies.
- Why does one only see $\sigma \sim s^{0.08}(p p)$ or $F_{2} \sim x^{-0.15}$ (low- Q^{2} DIS)?

What about protons?

- Higher-order corrections are sufficient to explain lack of growth in $\gamma^{*} \gamma^{*}$ data $(Y \lesssim 6)$. NB: LHC and International Linear Collider can test perturbative BFKL up to $Y \simeq 10$
- But $p p$ and low- Q^{2} DIS go to higher energies, $Y \simeq 10-14$. NLL BFKL (+ DGLAP constraints) predicts $\sigma \gtrsim s^{0.3}$ by such energies.
- Why does one only see $\sigma \sim s^{0.08}(p p)$ or $F_{2} \sim x^{-0.15}$ (low- Q^{2} DIS)?

Unitarity/saturation \& confinement

High-energy QCD $(28 / 36)$
-Saturation etc.
LImpact on X -sctn growth

Cross sections grow:

Cross sections grow:

- Increase in number of dipoles $r \sim R$
\rightarrow Increase in size of biggest dipoles $r_{\text {max }}$.

Cross sections grow:

- Increase in number of dipoles $r \sim R$
- Increase in size of biggest dipoles $r_{\text {max }}$.

Saturation

LImpact on X-sctn growth
Density of gluons cannot increase indefinitely

- When dipole density is high ($\sim N_{c} / \alpha_{s}$) dipole branching compensated by dipole merging \rightarrow saturation of density

Saturation

Density of gluons cannot increase indefinitely

- When dipole density is high ($\sim N_{c} / \alpha_{s}$) dipole branching compensated by dipole merging \rightarrow saturation of density
- Reach maximxal 'occupation number'

Colour Glass Condensate

Saturation

Density of gluons cannot increase indefinitely

- When dipole density is high ($\sim N_{c} / \alpha_{s}$) dipole branching compensated by dipole merging \rightarrow saturation of density
- Reach maximxal 'occupation number'

Colour Glass Condensate

- Closely connected issue: unitarity (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

Saturation

Density of gluons cannot increase indefinitely

- When dipole density is high ($\sim N_{c} / \alpha_{s}$) dipole branching compensated by dipole merging \rightarrow saturation of density
- Reach maximxal 'occupation number'

Colour Glass Condensate

- Closely connected issue: unitarity (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$
\begin{aligned}
& \frac{\partial n\left(Y ; R_{01}\right)}{\partial Y}=\frac{\bar{\alpha}_{\mathrm{s}}}{2 \pi} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}}\left[n\left(Y ; R_{12}\right)+n\left(Y ; R_{02}\right)-n\left(Y ; R_{01}\right)\right. \\
&\left.-c \alpha_{\mathrm{s}}^{2} n\left(Y ; R_{12}\right) n\left(Y ; R_{02}\right)\right]
\end{aligned}
$$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97-98.

Kernel $\frac{R_{01}^{2} d^{2} \vec{R}_{2}}{R_{12}^{2} R_{02}^{2}}$ is conformally invariant (even with non-linear term)
 just increase in number of gluons/dipoles.

Gluons can be produced far from original dipole - because of conformal (scale) invariance each step in Y translates to a constant factor of increase in area.

No other scales in problem.

Cross-section with saturation

Kernel $\frac{R_{01}^{2} d^{2} \vec{R}_{2}}{R_{12}^{2} R_{02}^{2}}$ is conformally invariant (even with non-linear term)
 a constant factor of increase in area.

No other scales in problem.
Perturbative (fixed-coupling) geometric cross section for two dipoles in Balitsky-Kovchegov (= BFKL with saturation) grows as

$$
\sigma \sim \exp \left[2.44 \times \bar{\alpha}_{\mathrm{s}} Y\right] \quad 2.44 \simeq \chi^{\prime}(\bar{\gamma}) \quad \text { where } \quad \bar{\gamma} \chi^{\prime}(\bar{\gamma})=\chi(\bar{\gamma})
$$

Only marginally weaker than $e^{4 \ln 2 \bar{\alpha}_{s} Y}=e^{2.77 \bar{\alpha}_{\mathrm{s}} Y}$ of unsaturated BFKL.

- Conformal invariance not an exact symmetry of high-energy QCD.

Broken by running of coupling.
For distances $\gtrsim 1 / \Lambda_{Q C D}$ perturbative treatment makes no sense
confinement sets in

- cannot produce dipoles larger than 1/^QCD - exponential BFKL growth in size stops
- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.

```
For distances }\gtrsim1/\mp@subsup{\bigwedge}{QCD}{}\mathrm{ perturbative treatment makes no sense
* confinement sets in
- cannot produce dipoles larger than 1/\\QCD
* exponential BFKL growth in size stops
```

Froissart bound: $\sigma \sim Y^{2} / m_{\pi}^{2}$

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- For distances $\gtrsim 1 / \Lambda_{Q C D}$ perturbative treatment makes no sense
- confinement sets in
- cannot produce dipoles larger than $1 / \Lambda_{Q C D}$
- exponential BFKL growth in size stops
- (other than by additive amount $\sim 1 / \Lambda_{Q C D}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^{2} / m_{\pi}^{2}$

Froissart.
But no direct connection with $p \bar{p} \times$-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- For distances $\gtrsim 1 / \Lambda_{Q C D}$ perturbative treatment makes no sense
- confinement sets in
- cannot produce dipoles larger than $1 / \Lambda_{Q C D}$
- exponential BFKL growth in size stops
- (other than by additive amount $\sim 1 / \Lambda_{Q C D}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^{2} / m_{\pi}^{2}$
But no direct connection with $p \bar{p} X$-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- For distances $\gtrsim 1 / \Lambda_{Q C D}$ perturbative treatment makes no sense
- confinement sets in
- cannot produce dipoles larger than $1 / \Lambda_{Q C D}$
- exponential BFKL growth in size stops
- (other than by additive amount $\sim 1 / \Lambda_{Q C D}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

$$
\text { Froissart bound: } \sigma \sim Y^{2} / m_{\pi}^{2}
$$

But no direct connection with $p \bar{p} \times$-section possible so far

- NB: combination of saturation \& confinement are needed to get Froissart.

Plot Y - $\ln Q^{2}$ plane
(as Prof. Veneziano)

Recall:

- Density \Uparrow with Y
- Density \Downarrow with $\ln Q^{2}$

Classify:

- Dilute: $\frac{r^{2}}{R^{2}} n \lesssim \alpha_{\mathrm{s}}^{-1}$
- Dense: $\frac{r^{2}}{R^{2}} n \gtrsim \alpha_{s}^{-1}$

Introduce

Plot Y - $\ln Q^{2}$ plane
(as Prof. Veneziano)
Recall:

- Density \Uparrow with Y
- Density \Downarrow with $\ln Q^{2}$

Classify:

- Dilute: $\frac{r^{2}}{R^{2}} n \lesssim \alpha_{\mathrm{s}}^{-1}$
- Dense: $\frac{r^{2}}{R^{2}} n \gtrsim \alpha_{s}^{-1}$

Introduce boundary be-
tween them (in Q^{2}):

Plot Y - $\ln Q^{2}$ plane
(as Prof. Veneziano)

Recall:

- Density \Uparrow with Y
- Density \Downarrow with $\ln Q^{2}$

Classify:

- Dilute: $\frac{r^{2}}{R^{2}} n \lesssim \alpha_{\mathrm{s}}^{-1}$
- Dense: $\frac{r^{2}}{R^{2}} n \gtrsim \alpha_{s}^{-1}$

Introduce boundary between them (in Q^{2}):

Saturation Scale $Q_{s}^{2}(Y)$

Saturation scale for proton

Plot Y - $\ln Q^{2}$ plane
(as Prof. Veneziano)

Recall:

- Density \Uparrow with Y
- Density \Downarrow with $\ln Q^{2}$

Classify:

- Dilute: $\frac{r^{2}}{R^{2}} n \lesssim \alpha_{\mathrm{s}}^{-1}$
- Dense: $\frac{r^{2}}{R^{2}} n \gtrsim \alpha_{s}^{-1}$

Introduce boundary between them (in Q^{2}):

Saturation Scale $Q_{s}^{2}(Y)$

Saturation scale from data?

Big business at HERA collider

- Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{\mathrm{s}} \ll 1$) if $Q_{s}^{2} \gtrsim 1 \mathrm{GeV}$
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for nuclei (thickness increases density) (RHIC)

Saturation scale from data?

Big business at HERA collider

- Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{\mathrm{s}} \ll 1$) if $Q_{s}^{2} \gtrsim 1 \mathrm{GeV}$
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for nuclei (thickness increases density) (RHIC)

Dynamics at $Q_{s}^{2}(Y)$

- All gluon modes occupied up to $Q_{s}^{2}(Y)$.
- pp collisions always radiate gluons up to $Q_{s}^{2}(Y)$.

CRItical line

Saturation scale from data?

Big business at HERA collider

- Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{\mathrm{s}} \ll 1$) if $Q_{s}^{2} \gtrsim 1 \mathrm{GeV}$
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for nuclei (thickness increases density) (RHIC)

Dynamics at $Q_{s}^{2}(Y)$

- All gluon modes occupied up to $Q_{s}^{2}(Y)$.
- pp collisions always radiate gluons up to $Q_{s}^{2}(Y)$.

CRITICAL LINE

- $Q_{s} \gtrsim 1 \mathrm{GeV} \Rightarrow p p$ collisions partially perturbative.

Towards NLL comparisons with data

- NLL couplings to external particles (photons, jets) - 'impact factors' Bartels, Gieseke, Qiao, Colferai, Vacca, Kyrieleis '01-... Fadin, Ivanov, Kotsky '01-...
- Understanding solutions of NLL evolution equations

> Altarelli, Ball Forte '02-...; Andersen \& Sabio Vera '03-... Ciafaloni, Colferai, GPS \& Staśto '02-...

Evolution equations with saturation:

- Solutions of multipole evolution
(BKP) Derkachov, Korchemsky,
Kotanski \& Manashov '02 de Vega \& Lipatov '02
- Connections between Balitsky-Kovchegov and statistical physics (FKPP)

Munier \& Peschanski '03

- Evolution eqns beyond 'mean-field' lancu \& Triantafyllopoulos '04-05 Mueller, Shoshi \& Wong '05 Levin \& Lublinsky '05
- Understanding of solutions beyond mean-field Mueller \& Shoshi '04 Iancu, Mueller \& Munier '04 Brunet, Derrida, Mueller \& Munier (in progress)
- Basic field-theoretical framework for high-energy limit of perturbative QCD: BFKL
- Has many sources of corrections
- Higher-orders in linear equation
- Non-linearities
- These effects all combine together to provide a picture that looks sensible wrt data
- Progress still needed in order to be quantitative
- CPhT (X): Stéphane Munier, Bernard Pire
- LPT (Orsay): Gregory Korchemsky, Dominique Schiff, Samuel Wallon
- LPTHE (Paris 6 \& 7): Hector de Vega, GPS
- SPhT (CEA): Jean-Paul Blaizot, François Gelis, Edmond Iancu, Robi Peschanski, Kazunori Itakura, Grégory Soyez, Dionysis Triantafyllopoulos, Cyrille Marquet.
- Senior visitors over the past few years: Ian Balitsky, Marcello Ciafaloni, Stefano Forte, Lev Lipatov, Larry McLerran, Alfred H. Mueller, Raju Venugopalan, ...

