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Abstract

In this seminar we discuss how the physical mesonic and baryonic amplitudes
depend on the θ angle and we compute the couplings that violate strong CP invariance.
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1 Introduction

The Lagrangian of Yang-Mills theory contains, in addition to the usual term, also a topo-
logical term:

L = −1
4
F a

µνF
aµν − θq(x) (1)

where q(x) is the topological charge density given by:

q(x) =
g2

32π2
F a

µνF̃
aµν ; F̃µν =

1
2
εµνρσFρσ (2)

The additional term violates the invariance under CP . This is called strong CP violation
to distinguish it from the CP violation present in the weak and electromagnetic sector of
the Standard Model.. Experiments, however, do not show any violation of strong CP and
require a very small value for θ < 10−9.

In this seminar we will determine the dependence of physical quantities on θ and study
the processes that violate strong CP . The most efficient way of doing this is to use the low
energy effective Lagrangian of QCD that contains the fields of the pseudoscalar mesons
and baryons instead of the original quarks and gluons. This is due to the fact that in
the effective Lagrangian the effect of the axial U(1) anomaly is explicitly displayed and
because of this the amplitudes for the hadronic processes can be easily computed. This
Lagrangian cannot be explicitly derived from the fundamental QCD Lagrangian as in the
CPN−1 model 1, but can only be constructed requiring that it has the same anomalous
and non-anomalous symmetries of the fundamental QCD Lagrangian,

The logic for constructing such an effective Lagrangian is the following. If we neglect
the quark mass matrix the QCD Lagrangian with Nf quark flavours has a U(Nf )×U(Nf )
chiral symmetry that is spontaneously broken to the diagonal vectorial U(Nf )V . The
pseudoscalar bosons are the Goldstone bosons corresponding to the spontaneous breaking
of the chiral symmetry and are exactly massless in the chiral limit when the quark masses
are put to zero. In the realistic world, however, the light quarks are not massless, but
have a mass that is small with respect to the scale ΛQCD. At low energy the pseudosclar
bosons are described by the following chiral Lagrangian:

L =
1
2
Tr(∂µU∂µU †) +

Fπ

2
√

2
Tr
(
M(U + U †)

)
(3)

where U contains the fields of the pseudoscalar mesons, that are composite states of a
quark and an antiquark:

Uij = −2
√

2mi

µ2
i Fπ

Ψ̄R;i ·ΨL;j ; ΨR,L = (1± γ5)Ψ (4)

Fπ = 95MeV is the pion decay constant The central dot in the first equation means that
there is a sum over colour indices. We take the mass matrices of both the quarks and
mesons to be diagonal and real:

mij = miδij ; Mij = µ2
i δij (5)

1See for instance Ref. [1] and References therein
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They are related by the Gell-Mann, Oakes and Renner relation:

µ2
i F

2
π = −2mi < Ψ̄i ·Ψi > (6)

implying that the ratio mi

µ2
i

is independent of i. Notice that Eq. (4) is a consequence of
Eq. (5) and of the following equation:

Uij

< Uij >
= 2

Ψ̄R;i ·ΨL;j

< Ψ̄i ·Ψj >
(7)

It can be easily checked that the first term in the Lagrangian in Eq. (3) is invariant, as the
QCD Lagrangian without the term involving the masses of the quarks, under the chiral
U(Nf )× U(Nf ) group that acts on U as follows:

U → AUB† ; U † → BU †A† ; A−1 = A† ; B−1 = B† (8)

while the mass term breaks explicitly this symmetry precisely as the quark mass matrix
does in QCD. The chiral symmetry is spontaneously broken by imposing that the meson
field satisfies the constraint:

UU † =
F 2

π

2
(9)

that implies:

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ Φ(x) = Πaτa +
S√
Nf

(10)

where τa are the generators of SU(Nf ) in the fundamental representation normalized as

Tr[τaτ b] = δab (11)

In the case of a U(3) flavour symmetry Πa(x) corresponds the the fields of the octet of
the pseudoscalar mesons, while S is a SU(3) singlet. In this case we get:

Πaτa =
1√
2

 π0 + η8/
√

3
√

2π+
√

2k+

√
2π− −π0 + η8/

√
3

√
2k0

√
2k−

√
2k̄0 −2η8/

√
3

 (12)

Lagrangian in Eq. (3) does not contain, however, the effect of the U(1) axial anomaly
because, apart from the mass term, it is invariant under the axial U(1), while this is not
the case for QCD. This effect can be included by adding a term containing the topological
charge density :

L =
1
2
Tr(∂µU∂µU †) +

Fπ

2
√

2
Tr
(
M(U + U †)

)
+

i

2
q(x)Tr

(
log U − log U †

)
(13)

Once we have introduced the extra field q(x) we could also include an arbitrary power of
it. However it turns out that in the large number Nc of colours we need to introduce only
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a quadratic term because higher powers of q are negligible when Nc →∞. In this way we
arrive at the following Lagrangian:

L =
1
2
Tr(∂µU∂µU †) +

Fπ

2
√

2
Tr
(
M(U + U †)

)
+

i

2
q(x)Tr

(
log U − log U †

)
+

q2

aF 2
π

(14)

In the next sections we add to this Lagrangian also a term with the θ angle and the
baryons, we study the dependence of the physical quantities on θ and we compute processes
which violate strong CP . The results that we review here have been originally found in
Ref. [2, 3, 4, 5, 6, 7, 8] and appeared in the review in Ref. [1].

Finally in the last section of this seminar we include in the effective action the field
of the axion and we use it to determine in a clean way its mass. These results have been
obtained together with Gabriele Veneziano [9].

2 Adding the θ angle

In this section we start from the effective Lagrangian in Eq. (14) with the addition of the
term with the θ angle:

L =
1
2
Tr(∂µU∂µU †)+

Fπ

2
√

2
Tr
(
M(U + U †)

)
+

i

2
q(x)Tr

(
log U − log U †

)
+

q2

aF 2
π

−θq (15)

We can eliminate q through its equation of motion:

q(x) =
aF 2

π

2

[
θ − i

2
q(x)Tr

(
log U − log U †

)]
(16)

and we get:

L =
1
2
Tr(∂µU∂µU †) +

Fπ

2
√

2
Tr
(
M(U + U †)

)
− aF 2

π

4

[
θ − i

2
Tr
(
log U − log U †

)]2

(17)

Since UU † is proportional to the unit matrix and the mass matrix is diagonal the vacuum
expectation value of U must be of the type:

< Uij >= e−iφiδij
Fπ√

2
(18)

where φi are quantities that are determined by minimizing the energy as we will see
soon. It is convenient to introduce the matrix V that has a vacuum expectation value
proportional to the unit matrix:

Uij = Vije
−iφi ; < Vij >=

Fπ√
2
δij (19)

and rewrite Eq. (17) in terms of the field V . We get (Mij(θ) = µ2
i cos φiδij):

L =
1
2
Tr(∂µV ∂µV †) +

aF 2
π

16

[
Tr
(
log V − log V †

)]2
+

Fπ

2
√

2
Tr

(
M(θ)(V + V †)− 2Fπ√

2

)
+
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+
F 2

π

2

Nf∑
i=1

µ2
i cos φi −

aF 2
π

4

θ −
Nf∑
i=1

φi

2

+

+i

θ −
Nf∑
i=1

φi

 Fπ√
2

[
aFπ

2
√

2
Tr(log V − log V †)− (V − V †)

]
(20)

The angles φi are determined by minimizing the energy that follows from the previous
Lagrangian, namely:

E =
F 2

π

2

a

2
(θ −

Nf∑
i=1

φi)2 −
Nf∑
i=1

µ2
i cos φi

 (21)

that implies the following set of equations:

µ2
i sinφi = a

θ −
Nf∑
i=1

φi

 ; i = 1 . . . Nf (22)

Inserting for V the expressions given in Eq. (10) for U we get:

L =
1
2
Tr(∂µV ∂µV †)−

aNf

2
S2 +

F 2
π

2
Tr

[
M(θ)

(
cos

√
2Φ

Fπ
− 1

)]
+

+
aFπ√

2

θ −
Nf∑
i=1

φi

Tr

[
Fπ√

2
sin
√

2Φ
Fπ

− Φ

]
(23)

where Φ is given in Eq. (10).
The way to proceed is the following. First we have to solve Eq.s (22) that determine

φi as a function of θ, a and µ2
i . Then insert them in the effective Lagrangian in Eq. (23)

that will depend on θ, a and µ2
i . Before we proceed it is useful to show that the quantities

that we will extract from the previous effective Lagrangian will be invariant under the
shift θ → θ +2π. This follows from the fact that, if we have found a solution φi(θ) of Eq.s
(22) then it is easy to show that also the following will be a solution:

φ1(θ + 2π) = φ1(θ) + 2π ; φi(θ + 2π) = φi(θ) ; i = 2 . . . Nf (24)

But the physical quantities depend only on eiφi and therefore are invariant under a shift
of 2π of the θ angle.

It is also clear that strong CP is conserved if θ −
∑Nf

i=1 φi = 0. This happens when:

1. θ = 0 that implies that φi = 0,

2. the mass of a quark flavour is zero

3. and also sometimes if θ = π.
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3 The Witten-Veneziano relation

In order to get the Witten-Veneziano relation we have to consider the theory without
fermions. In this case the original effective Lagrangian in Eq. (15) becomes:

Lnoferm. =
q2

aF 2
π

− θq − iqJ (25)

where we have added an external source that is coupled to the topological charge density
q. From the previous expression one can compute the partition function:

Z(J, θ) ≡ e−iW (J,θ) = e−iV4aF 2
π(θ+iJ)2/4 (26)

The vacuum energy is equal to:

E(θ) ≡ W (0, θ)
V4

=
aF 2

π

4
θ2 (27)

From it we get:

d2E(θ)
dθ2

|θ=0 =
aF 2

π

2
(28)

On the other hand the mass of the singlet field can be obtained from the effective La-
grangian in Eq. (23) and it is equal to:

M2
S = aNf (29)

Putting together Eq.s (28) and (29) we get the Witten-Veneziano relation:

M2
S =

2Nf

Fπ

d2E(θ)
dθ2

|θ=0 (30)

4 Strong CP violating mesonic amplitudes

We start this section by solving the minimization equations in Eq. (21) in the case of two
flavours and in the limit where a >> µ2

1, µ
2
2. In this case we must impose that θ = φ1 +φ2

and the minimization equations become:

µ2
1 sinφ1 = µ2

2 sin(θ − φ1) (31)

that can be easily solved giving:

sinφ1 =
µ2

2 sin θ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

; sinφ2 =
µ2

1 sin θ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

(32)

and

cos φ1 =
µ2

1 + µ2
2 cos θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

; cos φ2 =
µ2

2 + µ2
1 cos θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(33)
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Computing the corresponding energy in Eq. (21) we get:

E(θ) = −F 2
π

2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ (34)

For equal masses (µ1 = µ2 = µ) we get:

E(θ) = −F 2
πµ2

∣∣∣∣cos
θ

2

∣∣∣∣ (35)

Notice that both Eq.s (34) and (35) are periodic of period 2π in θ.
We have solved the minimization equation in the limit in which a >> µ2

1, µ
2
2. Let us

add the first correction. We have to solve the following equations:

µ2
1 sinφ1 = µ2

2 sin φ2 = a(θ − φ1 − φ2) (36)

and let us insert in it the following expansion:

φ1,2 = φ̄1,2 + εδφ1,2 ; ε =
µ1µ2

a
(37)

One gets:

φ1 = φ̄1 − ε
sin θ

R3

µ2
2 + µ2

1 cos θ

µ2
1

; φ2 = φ̄2 − ε
sin θ

R3

µ2
1 + µ2

2 cos θ

µ2
1

(38)

where φ̄1,2 is the previous solution:

φ̄1 + φ̄1 = θ ; R =

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

µ2
1µ

2
2

(39)

Using the previous expression we can compute the coefficient of the CP violating term:

θ − φ1 − φ2 = ε
sin θ

R
=

µ2
1µ

2
2 sin θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(40)

It is vanishing if θ = 0 or if µ2
1 and/or µ2

2 are equal to zero. If µ1 6= µ2 it is also zero for
θ = π. But if µ1 = µ2 ≡ µ we get:

θ − φ1 − φ2 =
µ2

a
6= 0 (41)

In conclusion if µ1 = µ2 then CP is violated at θ = π.
From the CP violating term in Eq. (23) we can extract a cubic term in the fields of

the pseudoscalar mesons that is given by:

−
a
(
θ −

∑Nf

i=1 φi

)
3
√

2Fπ

Tr(Φ3) =⇒ −
a
(
θ −

∑Nf

i=1 φi

)
√

3Fπ

π+π−η8 (42)

from which we have extracted the decay amplitude η8 → Π+Π− given by:

T (η → π+π−) =
a
(
θ −

∑Nf

i=1 φi

)
√

3Fπ

=
2m2

π(θ)√
3Fπ

· µ2
1µ

2
2 sin θ

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

(43)
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where

m2
π(θ) =

µ2
1 cos φ1 + µ2

2 cos φ2

2
=

1
2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ (44)

For small values of θ we get

T (η → π+π−) ∼ 2m2
π√

3Fπ

θ(√
m1
m2

+
√

m2
m1

)2 (45)

where mi is the quark mass related to the meson mass through Eq. (6).
This implies that

Γ(η → π+π−)) = θ2 · (135 KeV ) :
Γ(η → π+π−)

Γtot
= 159 θ2 (46)

From experiments we get:

Γ(η → π+π−)
Γtot

< 3 · 10−4 (47)

that gives an upper limit to the value of θ < 10−3. We will get a much better limit from
the electric dipole moment of the neutron.

Notice that the decay amplitude of η → π+π− is zero for θ = 0, π if µ2
1 6= µ2

2, while if
µ2

1 = µ2
2 it is not vanishing anymore at θ = π.

In the previous analysis we have assumed that there are only two quark flavours. A
more realistic case is the one with three flavours. In this case one finds that

1. If |µ2
2 − µ2

1|µ2
3 > µ2

1µ
2
2 then CP is conserved at θ = π

2. If |µ2
2 − µ2

1|µ2
3 > µ2

1µ
2
2 then CP is violated at θ = π.

From the meson mass matrix one can easily get the mass of the pseudoscalar mesons
as a function of the angle θ. One gets:

m2
π0,π± =

µ2
1 cos φ1 + µ2

2 cos φ2

2
; m2

k± =
µ2

1 cos φ1 + µ2
3 cos φ3

2
(48)

and

m2
k0;k̄0 =

µ2
2 cos φ1 + µ2

3 cos φ3

2
(49)

They imply:

R(θ) ≡
m2

k0 −m2
k+ −m2

π0 + m2
π+

m2
π

=
µ2

2 cos φ2 − µ2
1 cos φ1

µ2
2 cos φ2 + µ2

1 cos φ1
=

(µ2
2 − µ2

1)(µ
2
2 + µ2

1)
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

(50)

where we have used Eq.s (33). In particular we get:

R(θ = 0) =
µ2

2 − µ2
1

µ2
2 + µ2

1

; R(θ = π) =
µ2

2 + µ2
1

µ2
2 − µ2

1

(51)
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Experimentally R = 0.3 that is consistent with θ = 0. The ratio of masses for the two
lighest quarks is determined from the following relation:

m1

m2
=

µ2
1

µ2
2

=
2m2

π0 −m2
π+ + m2

k+ −m2
k0

m2
k0 −m2

k+ + m2
π+

= 0.56 (52)

For the sake of completeness we give also the ratio between the mass of the strange and
that of the down quarks:

m3

m2
=

µ2
3

µ2
2

=
m2

k0 −m2
π+ + m2

k+

m2
k0 −m2

k+ + m2
π+

= 20.1 (53)

5 Strong CP violating amplitudes with baryons

In order to compute the CP violating terms involving baryons it is convenient to add
to the effective Lagrangian terms involving baryons. The baryons belong to an octet of
SU(3) and are described by the following matrix:

Σ0
√

2
+ Λ√

6
Σ+ p

Σ− −Σ0
√

2
+ Λ√

6
n

Ξ− Ξ0 2 Λ√
6

 (54)

Remember that B is also a Dirac spinor. Under the chiral U(3) × U(3) the baryons
transform as follows:

R ≡ 1 + γ5

2
B → ARB† ; L ≡ 1− γ5

2
B → BLA† (55)

Remember that the meson fields transform as in Eq. (8).
The Lagrangian involving baryons can be written as follows:

Lbar = Tr
[
B̄iγµ∂µB

]
−
√

2α

Fπ
Tr
[
L̄URU + R̄U †LU †

]
+

+δTr
[
L̄URM + R̄U †LM †

]
+ γTr

[
L̄MRU + R̄M †LU †

]
(56)

As before we introduce

VijUije
iφj ; Rij = eiφiR′

ij ; L̄ij = eiφiL̄′
ij (57)

and the previous Lagrangian becomes:

Lbar = Tr
[
B̄′iγµ∂µB′]− i

√
2α

Fπ
Tr
[
L̄′V R′V + R̄′V †L′V †

]
+

+δTr
[(

L̄′V R′ + R̄′V †L′
)

M(θ)
]

+ γTr
[
L̄′M(θ)R′V + R̄′M(θ)L′V †

]
+

+i

(
θ −

∑
i

φi

)[
δTr

(
L̄′V R′ − R̄′V †L′

)
+ γTr

(
L̄′R′V + R̄′L′V †

)]
(58)
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The Lagrangian has the same structure as the one before with in addition a CP violating
term.

One can determine α, γ and δ in terms of the baryon masses:

α =
√

2
Fπ

[
mΣ +

3µ2

2(µ2
3 − µ2)

(mΣ −mΛ)
]

(59)

γ =
√

2
2Fπ(µ2

3 − µ2)

[
3
2
(mΣ −mΛ)− (mΞ −mN )

]
(60)

δ =
√

2
2Fπ(µ2

3 − µ2)

[
3
2
(mΣ −mΛ) + (mΞ −mN )

]
(61)

It is easy to check that the baryon masses satisfy the Gell-Mann-Okubo mass formula:

3mΛ + mΣ = 2(mΞ + mN ) (62)

From the previous Lagrangian one can extract the πN coupling constants:

√
2N̄ [iγ5gπNN + ḡπNN ]πiτ iN (63)

that are given by:

FπgπNN = mN +
µ2

2(µ2
3 − µ2)

[
3
2
(mΣ −mΛ)− (mΞ −mN )

]
(64)

that is the Goldeberger-Treiman relation apart from terms that vanish in the chiral limit
and

ḡπNN =
m1m2θ

2Fπ(m1 + m2)(m3 −m)

[
3
2
(mΣ −mΛ)− (mΞ −mN )

] [
1 +

3m(mΣ −mΛ)
2(m3 −m)mN

]
(65)

Having computed ḡπNN we can use it to estimate the electric dipole moment of the neutron
that, if different from zero, implies a violation of CP . The dominant contribution comes
from the two diagrams discussed and computed in Ref. [5] and one gets:

Dn =
1

4π2mN
· gπNN ḡπNN log

mN

mπ
= 3.6 · 10−16θcm (66)

in units where the electric charge e = 1. The experimental limit is:

Dn < 6 · 10−26 =⇒ θ < 10−9 (67)

6 Including the axion

From the analysis of the previous sections, we have seen that, if (at seems to be the case)
none of the quark masses is exactly zero, the θ angle must be very small and is actually
consistent with zero. If instead one of the quark masses were zero, CP violation would be
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absent thanks to an exact classical symmetry (the chiral rotation of the massless quark)
which allows to rotate θ away.

The Peccei-Quinn (PQ) solution of the strong-CP problem uses a similar mechanism,
but is based on extending QCD to include, in the matter sector, some new degrees of
freedom. The essential property of the PQ model is that such an extension should provide
a new classically exact, but anomalous and spontaneously broken, U(1)PQ symmetry.

The low-energy effective action of such a theory will have to contain, besides the usual
QCD degrees of freedom, an extra would-be Goldstone boson related to the spontaneously
broken U(1)PQ symmetry. If we denote by aPQ the coefficient of the U(1)PQ anomaly and
by Fα the scale of its spontaneous breaking (the analog of Fπ), we can easily write down an
effective action that incorporates all the relevant (anomalous and non-anomalous) Ward
identities. It consists of adding a couple of terms to the effective Lagrangian of Eq. (15)
to give:

L =
1
2
Tr(∂µU∂µU †) +

1
2
Tr(∂µN∂µN †) +

Fπ

2
√

2
Tr
(
M(U + U †)

) q2

aF 2
π

− θq+

+
i

2
q(x)

(
Tr(log U − log U †) + aPQ(log N − log N †)

)
(68)

where U

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; N(x) =
Fα√

2
ei
√

2α(x)/Fα (69)

Notice that, following our assumptions, the only term that breaks U(1)PQ is the one
related to the anomaly.

Under the axial U(1) and the additional U(1)PQ defined by:

U → eiβU ; N → eiγN , (70)

the effective Lagrangian transforms as follows:

δL = − (Nfβ + aPQγ) q(x) (71)

It is invariant if we choose Nfβ+aPQγ = 0. This is an anomaly-free U(1) subgroup, whose
spontaneous and explicit breaking (by quark masses) implies a new, presudo-Goldstone
boson, the (Peccei-Quinn-Weinberg-Wilczek) axion.

Proceeding as in the previous sections (< Uij >= e−iφiδijFπ/
√

2 and < N >=
e−φFα/

√
2 ), we have to minimize the energy given by:

E =
F 2

π

2

a

2
(θ −

Nf∑
i=1

φi − φ)2 −
Nf∑
i=1

µ2
i cos φi

 (72)

obtaining

a

θ −
Nf∑
i=1

φi − φ

 = µ2
i sinφi ; θ − φ−

Nf∑
i=1

φi = 0 (73)
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that imply φi = 0 and θ − φ = 0. In this case there is no dependence on the θ angle and
no CP violation because θ− φ−

∑Nf

i=1 φi = 0 (in analogy, again, with the case of a single
massless quark).

The mass matrix involving the axion and the components of Φ belonging to the Cartan
subalgebra of U(Nf ) (Φij = viδij) is given by:

−1
2

 Nf∑
i=1

µ2
i v

2
i −

a

2

 Nf∑
i=1

vi + bα

2 (74)

where b ≡ aPQ
Fπ
Fα

. The masses of the neutral mesons and of the axion are given by setting
to zero the determinant of the following matrix:

b2a− λ ba ba ba . . . ba

ba µ2
1 + a− λ a a . . . a

ba a µ2
2 + a− λ a . . . a

. . . . . . . . . . . . . . . . . .

ba a a a . . . µ2
Nf

+ a− λ

 (75)

that is by solving the equation:

λ

1
a

+
Nf∑
i=1

1
µ2

i − λ

 = b2 (76)

Since b << 1 the lowest eigenvalue, corresponding to the mass of the axion, can be easily
written down:

mα =
b2

1
a +

∑Nf

i=1
1
µ2

i

∼ b2

1
µ2

1
+ 1

µ2
2

= 2m2
πb2 · m1m2

(m1 + m2)2
(77)

In order to be consistent with experiments we have to require that Fα ≥ 109GeV corre-
sponding to an axion mass mα < 0.01eV .
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