No ghosts and critical dimension

Paolo Di Vecchia

Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm

Collège de France, 12.02.10

Plan of the talk

1 The N-point amplitude in the operator formalism
2 Factorization properties of the N -point amplitude
3 Virasoro decoupling conditions
4. Characterization of the physical states

5 Analysis of the first few levels
6 Vertex operators for excited states
7 DDF operators
8 The no-ghost theorem
$9 d=26$ from the non-planar loop

The N-point amplitude in the operator formalism

- If the intercept of the Regge trajectory is $\alpha_{0}=1$, then the lowest state is a tachyon with mass $m^{2}=-\frac{1}{\alpha^{\prime}}$ and the N-point amplitude for N tachyons is given by:

$$
B_{N}=\int_{-\infty}^{\infty} \frac{\prod_{1}^{N} d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}} \prod_{i<j}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}} ; p_{i}^{2}=-m^{2}=\frac{1}{\alpha^{\prime}}
$$

that can be rewritten in the operator formalism as follows:

$$
(2 \pi)^{d} \delta\left(\sum_{i=1}^{N} p_{i}\right) B_{N}=\int_{-\infty}^{\infty} \frac{\prod_{1}^{N} d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}}\langle 0,0| \prod_{i=1}^{N} V\left(z_{i}, p_{i}\right)|0,0\rangle
$$

[Fubini, Gordon and Veneziano, 1969]

- Here we keep an arbitrary space-time dimension d for future use, but in $1969 d$ was taken to be $d=4$ as it was natural for hadrons.
- $V\left(z_{i}, p_{i}\right)$ is the vertex operator associated to the tachyon state:

$$
V\left(z_{i}, p_{i}\right)=: \mathrm{e}^{i p_{i} \cdot Q\left(z_{i}\right)}: \equiv \mathrm{e}^{\sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{p_{i} \cdot a_{n}^{\dagger}}{\sqrt{n}} z^{n}} \mathrm{e}^{i p_{i} \cdot \hat{a}} z^{2 \alpha^{\prime} p_{i} \cdot \hat{p}} \mathrm{e}^{-\sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{p_{i} \cdot a_{n}}{\sqrt{n}} z^{-n}}
$$

- $Q_{\mu}(z)$ is the Fubini-Veneziano-Gervais operator:

$$
Q_{\mu}(z)=\hat{q}_{\mu}-2 i \alpha^{\prime} \hat{p}_{\mu} \log z+i \sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty}\left[\frac{a_{n, \mu}}{\sqrt{n}} z^{-n}-\frac{a_{n, \mu}^{\dagger}}{\sqrt{n}} z^{n}\right]
$$

- The center of mass variables \hat{p}, \hat{q} and the harmonic oscillators satisfy the following commutation relations:

$$
\left[\hat{q}_{\mu}, \hat{p}_{\nu}\right]=i \eta_{\mu \nu} ; \quad\left[a_{n, \mu}, a_{m, \nu}^{\dagger}\right]=\delta_{n m} \eta_{\mu \nu} ; \eta_{\mu \nu}=(-1,1, \ldots, 1)
$$

- The vacuum $|0,0\rangle$ satisfies:

$$
\hat{p}_{\mu}|0,0\rangle=a_{n, \mu}|0,0\rangle=0 \quad ; \quad n=1,2 \ldots
$$

Some detail on the previous expressions

- The N-point amplitude can be obtained from the previous vacuum expectation value by bringing all annihilation operators and the term with \hat{p} to the right of the creation operators and of \hat{q}.
- This can be done by using the following reordering formula:

$$
: \mathrm{e}^{i k \cdot Q(z)}:: \mathrm{e}^{i p \cdot Q(w)}:=(z-w)^{2 \alpha^{\prime} k \cdot p}: \mathrm{e}^{i k \cdot Q(z)} \mathrm{e}^{i p \cdot Q(w)}:
$$

- It can be obtained using the Baker-Hausdorff relation:

$$
\mathrm{e}^{A} \mathrm{e}^{B}=\mathrm{e}^{B} \mathrm{e}^{A} \mathrm{e}^{[A, B]}
$$

that is valid if the commutator $[A, B]$ is a c-number.

- Once this is done all annihilation and creation operators give 1 hitting the oscillator vacuum, also the terms with \hat{q} give 1 hitting the vacuum of momentum and one gets the N-point function times the following matrix element:

$$
\langle 0| \mathrm{e}^{i \hat{q} \sum_{i=1}^{N} p_{i}}|0\rangle=(2 \pi)^{d} \delta\left(\sum_{i=1}^{N} p_{i}\right)
$$

- Since the integrand in the N -point amplitude is projective invariant we can fix for convenience $z_{1}=\infty, z_{2}=1$ and $z_{N}=0$:

$$
A_{N}=\int_{0}^{1} \prod_{i=3}^{N-1} d z_{i} \prod_{i=2}^{N-1} \theta\left(z_{i}-z_{i+1}\right)\left\langle 0,-p_{1}\right| \prod_{i=2}^{N-1} V\left(z_{i} ; p_{i}\right)\left|0, p_{N}\right\rangle
$$

where $\left(|0, p\rangle \equiv \mathrm{e}^{\mathrm{i} \cdot \hat{\mathrm{q}}}|0,0\rangle\right)$

$$
\lim _{z_{N} \rightarrow 0} V\left(z_{N} ; p_{N}\right)|0,0\rangle \equiv\left|0 ; p_{N}\right\rangle ;\langle 0 ; 0| \lim _{z_{1} \rightarrow \infty} z_{1}^{2} V\left(z_{1} ; p_{1}\right)=\left\langle 0,-p_{1}\right|
$$

- In the operator formalism, for reasons that will become clear in a moment, an infinite set of operators L_{n} (n is an integer $-\infty<n<\infty$) was introduced.
- It was recognized that the L_{n} operators satisfy algebra of the conformal transformations in two dimensions, called nowadays Virasoro algebra:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{d}{12} n\left(n^{2}-1\right) \delta_{n+m ; 0}
$$

[Fubini and Veneziano, 1969 and Weis, 1969]

- The Virasoro operators L_{n} are given by:

$$
L_{n}=\oint_{0} d z z^{n+1}\left[-\frac{1}{4 \alpha^{\prime}}:\left(\frac{d Q(z)}{d z}\right)^{2}:\right] \quad ; \quad \oint_{0} \frac{d z}{z} \equiv 1
$$

- The vertex operator satisfies the following commutation relation with the generators of the Virasoro algebra:

$$
\left[L_{n}, V(z, p)\right]=\frac{d}{d z}\left(z^{n+1} V(z, p)\right)
$$

[Fubini and Veneziano, 1969]

- It is therefore a conformal field with dimension $\Delta=1$.
- A conformal or primary field $\Phi(z)$ transforms under the conformal transformation generated by the operator L_{n} as follows:

$$
\left[L_{n}, \Phi(z)\right]=z^{n+1} \frac{d \Phi(z)}{d z}+\Delta(n+1) z^{n} \Phi(z)
$$

- In the following we want to rewrite the N-point amplitude in a form that is more convenient to study its factorization properties.
- Under a finite dilatation the vertex operator transforms as follows:

$$
z^{L_{0}-1} V(1, p) z^{-L_{0}}=V(z, p)
$$

- Changing the integration variables as follows:

$$
x_{i}=\frac{z_{i+1}}{z_{i}} ; \quad i=2,3 \ldots N-2 ; \quad \operatorname{det} \frac{\partial z_{i}}{\partial x_{j}}=z_{3} z_{4} \ldots z_{N-2}
$$

det $\frac{\partial z_{i}}{\partial x_{j}}$ is the jacobian of the transformation from z_{i} to x_{i}, we get the following expression:

$$
A_{N} \equiv\left\langle 0,-p_{1}\right| V\left(1, p_{2}\right) D V\left(1, p_{3}\right) \ldots D V\left(1, p_{N-1}\right)\left|0, p_{N}\right\rangle
$$

- The propagator D is equal to:

$$
D=\int_{0}^{1} d x x^{L_{0}-2}=\frac{1}{L_{0}-1}
$$

Factorization properties of the N-point amplitude

- The factorization properties of the amplitude can be studied by inserting in the channel $(1, M)$ described by the Mandelstam variable

$$
s=-\left(p_{1}+p_{2}+\ldots p_{M}\right)^{2}=-\left(p_{M+1}+p_{M+2} \cdots+p_{N}\right)^{2} \equiv-P^{2}
$$

the complete and orthonormal set of states

$$
A_{N}=\int \frac{d^{d} P}{(2 \pi)^{d}} \int \frac{d^{d} P^{\prime}}{(2 \pi)^{d}} \sum_{\lambda, \mu}\left\langle p_{(1, M)} \mid \lambda, P\right\rangle\langle\lambda, P| D\left|\mu, P^{\prime}\right\rangle\left\langle\mu, P^{\prime} \mid p_{(M+1, N)}\right\rangle
$$

- where

$$
\left\langle p_{(1, M)}\right|=\left\langle 0,-p_{1}\right| V\left(1, p_{2}\right) D V\left(1, p_{3}\right) \ldots V\left(1, p_{M}\right)
$$

and

$$
\left|p_{(M+1, N)}\right\rangle=V\left(1, p_{M+1}\right) D \ldots V\left(1, p_{N-1}\right)\left|p_{N}, 0\right\rangle
$$

- The operator L_{0} is given in terms of the oscillator number operator:

$$
L_{0}=\alpha^{\prime} \hat{p}^{2}+R \quad ; \quad R=\sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}
$$

- Choosing a complete and orthonormal set of states $|\lambda\rangle$ that are eigenstates of R,
- it is possible to rewrite $\left(\left\langle P \mid P^{\prime}\right\rangle=(2 \pi)^{d} \delta^{(d)}\left(P-P^{\prime}\right)\right)$

$$
\int \frac{d^{d} P^{\prime}}{(2 \pi)^{d}}\langle\lambda, P| D\left|\mu, P^{\prime}\right\rangle=\langle\lambda| \frac{1}{\alpha^{\prime} P^{2}+R-1}|\mu\rangle=\langle\lambda| \frac{1}{R-\alpha(s)}|\lambda\rangle \delta_{\lambda \mu}
$$

$$
\text { where } \alpha(s) \equiv 1+\alpha^{\prime} s \text { and } s \equiv-P^{2}
$$

- Using this equation we get

$$
A_{N}=\sum_{\lambda} \int \frac{d^{d} P}{(2 \pi)^{d}}\left\langle p_{(1, M)} \mid \lambda, P\right\rangle\langle\lambda| \frac{1}{R-\alpha(s)}|\lambda\rangle\left\langle\lambda, P \mid p_{(M+1, N)}\right\rangle
$$

- A_{N} has a pole in the channel $(1, M)$ when

$$
\alpha\left(-P^{2}\right) \equiv 1-\alpha^{\prime} P^{2}=N \quad ; \quad N=0,1,2 \ldots
$$

- The states $|\lambda\rangle$ contributing to its residue are those satisfying the relation:

$$
R|\lambda\rangle \equiv \sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}|\lambda\rangle=N|\lambda\rangle
$$

- The number of independent states $|\lambda\rangle$ contributing to the residue gives the degeneracy of states at the level N.
- A state $|\lambda, P\rangle$ is called an on shell state at the level N if

$$
1-\alpha^{\prime} P^{2}=N \quad \text { and } \quad R|\lambda, P\rangle=N|\lambda, P\rangle
$$

Virasoro decoupling conditions

- Because of manifest relativistic invariance, the space spanned by the complete set of states contains states with negative norm.
- They correspond to those states having an odd number of oscillators with timelike directions.
- But in a quantum theory, because of the probabilistic interpretation of the norm of a state, the states of a system must span a positive definite Hilbert space.
- At this point it seems that there is a contradiction between special relativity and quantum mechanics.
- But there is no contradiction if one finds a mechanism to decouple the non-positive norm states.
- In other words, there must exist a number of relations satisfied by the states $\left|p_{(1, M)}\right\rangle$ that decouple a number of states leaving a positive definite Hilbert space.
- It turns out that not all states $|\lambda\rangle$ contribute to the residue of the pole because the state $\left|p_{(1, M)}\right\rangle$ satisfies the equation:

$$
W_{n}\left|p_{(1, M)}\right\rangle=0 ; n=1 \ldots \infty ; W_{n}=L_{n}-L_{0}-(n-1) \equiv \text { ๑аc }
$$

Paolo Di Vecchia (NBI+NO)

- These are the Virasoro conditions [Virasoro, 1969].
- There is one condition for each negative norm oscillator and, therefore, there is the possibility that the physical subspace is positive definite.
- Let us prove the previous relations.
- The commutation relation of the L_{n}-operators with the vertex operator implies:

$$
W_{n} V(1, p)=V(1, p)\left(W_{n}+n\right)
$$

- that together with the following equation:

$$
L_{n} x^{L_{0}}=x^{L_{0}+n} L_{n}
$$

implies:

$$
\left(W_{n}+n\right) D=\left[L_{0}+n-1\right]^{-1} W_{n}
$$

- From the previous equations one gets:

$$
W_{n} V(1, p) D=V(1, p)\left[L_{0}+n-1\right]^{-1} W_{n}
$$

- Therefore one gets:

$$
\begin{aligned}
& W_{n}\left|p_{(1, M)}\right\rangle \\
& =W_{n} V\left(1, p_{1}\right) D V\left(1, p_{2}\right) D \ldots V\left(1, p_{M-2}\right) D V\left(1, p_{M-1}\right)\left|0, p_{M}\right\rangle \\
& =V\left(1, p_{1}\right)\left[L_{0}+n-1\right]^{-1} \ldots V\left(1, p_{M-2}\right)\left[L_{0}+n-1\right]^{-1} \\
& \times W_{n} V\left(1, p_{M-1}\right)\left|0, p_{M}\right\rangle \\
& =V\left(1, p_{1}\right)\left[L_{0}+n-1\right]^{-1} \ldots V\left(1, p_{M-2}\right)\left[L_{0}+n-1\right]^{-1} V\left(1, p_{M-1}\right) \\
& \times\left(L_{n}-L_{0}+1\right)\left|0, p_{M}\right\rangle=0
\end{aligned}
$$

because

$$
L_{n}\left|0, p_{M}\right\rangle=\left(L_{0}-1\right)\left|0, p_{M}\right\rangle=0
$$

Characterization of the physical states

- The subspace of the states, contributing to the residue of the pole $\alpha\left(-P^{2}\right)=N$, is spanned by the orthonormal set of states:

$$
|\lambda, P\rangle=\prod_{n} \prod_{\mu_{n}} \frac{\left(a_{n, \mu_{n}}^{\dagger}\right)^{m_{n, \mu_{n}}}}{\sqrt{m_{n, \mu_{n}!}!}}|0, P\rangle \quad ; \quad 1-\alpha^{\prime} P^{2}=N
$$

- satisfying the condition:

$$
\left(L_{0}-1\right)|\lambda, P\rangle=0 \Longleftrightarrow R|\lambda, P\rangle \equiv \sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}|\lambda, P\rangle=N|\lambda, P\rangle
$$

- We call them on shell states at the level N.
- Consider the (off shell by n units) states $|\psi, P\rangle$ at the level $N-n$ satisfying the equation:

$$
\begin{aligned}
& \left(L_{0}+n-1\right)|\psi, P\rangle=0 ; \quad 1-\alpha^{\prime} P^{2}=N \\
& R|\psi, P\rangle=\sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}|\psi, P\rangle=(N-n)|\psi, P\rangle
\end{aligned}
$$

- and from them, acting with L_{-n}, construct the states on shell at the level N :

$$
L_{-n}|\psi, P\rangle ; \quad\left(L_{0}-1\right) L_{-n}|\psi, P\rangle=0 ; \quad\left[L_{0}, L_{-n}\right]=n L_{-n}
$$

- we immediately see that they are decoupled from the physical states $\left|p_{(1, W)}\right\rangle$

$$
\langle\psi, P| W_{n}\left|p_{(1, W)}\right\rangle=\langle\psi, P|\left(L_{n}-L_{0}-n+1\right)\left|p_{(1, W)}\right\rangle=0
$$

- The on shell physical states are defined as those orthogonal to the previous states:
$\langle\psi, P| L_{n} \mid$ Phys., $\left.P\right\rangle=0 \Longrightarrow L_{n} \mid$ Phys., $\left.P\right\rangle=\left(L_{0}-1\right) \mid$ Phys., $\left.P\right\rangle=0$
[Del Giudice and Di Vecchia, 1970]
- These equations do not completely define the physical subspace because there could be states that are physical (satisfying the previous equations), but that are decoupled from the states $\left|p_{(1, M)}\right\rangle$.
- A set of them at the level N can be generated as follows.
- Let us consider a physical state $\left|\psi_{1}, P\right\rangle$ at the level $N-1$ that is off shell by one unit:

$$
L_{0}\left|\psi_{1}, P\right\rangle=L_{n}\left|\psi_{1}, P\right\rangle=0 ; n=1,2 \ldots ; 1-\alpha^{\prime} P^{2}=N
$$

- Starting from any of the previous states we can construct an on shell physical state at the level N as follows:

$$
\begin{equation*}
L_{-1}\left|\psi_{1}, P\right\rangle \Longrightarrow L_{n}\left(L_{-1}\left|\psi_{1}, P\right\rangle\right)=\left(L_{0}-1\right)\left(L_{-1}\left|\psi_{1}, P\right\rangle\right)=0 \tag{1}
\end{equation*}
$$

- that is decoupled from the states $\left|p_{(1, M)}\right\rangle$:

$$
\begin{equation*}
\left\langle\psi_{1}, P\right| L_{1}\left|p_{(1, M)}\right\rangle=0 \tag{2}
\end{equation*}
$$

- All those states have zero norm:

$$
\left\langle\psi_{1}, P\right| L_{1} L_{-1}\left|\psi_{1}, P\right\rangle=\left\langle\psi_{1}, P\right|\left(2 L_{0}+L_{-1} L_{1}\right)\left|\psi_{1}, P\right\rangle=0
$$

- It can be shown that Eqs. (1) and (2) can be satisfied only by zero norm states.
- In conclusion, the on shell physical subspace consists of the states satisfying the equations:

$$
\left.\left.L_{n} \mid \text { Phys., } P\right\rangle=\left(L_{0}-1\right) \mid \text { Phys., } P\right\rangle=0
$$

- and that are not decoupled from all states $\left|p_{(1, M)}\right\rangle$:

$$
\left\langle\text { Phys., } P \mid p_{(1, M)}\right\rangle \neq 0
$$

Analysis of the first few levels

- The ground state is a tachyon $|0, P\rangle$ that satisfies the physical conditions if $1-\alpha^{\prime} P^{2}=0$.
- The first excited level ($N=1$) corresponds to a massless gauge field.
- The most general state at this level has the form

$$
\epsilon^{\mu} a_{1 \mu}^{\dagger}|0, P\rangle \quad ; \quad P^{2}=0
$$

- In this case the only condition that we must impose is:

$$
L_{1} \epsilon^{\mu} a_{1 \mu}^{\dagger}|0, P\rangle=0 \Longrightarrow P \cdot \epsilon=0
$$

- In the frame of reference where the momentum of the photon is given by $P^{\mu} \equiv(P, 0 \ldots .0, P)$, the most general state satisfying the physical conditions is:

$$
\epsilon^{i} a_{1 i}^{\dagger}|0, P\rangle+\epsilon\left(a_{1 ; 0}^{\dagger}-a_{1 ; d-1}^{\dagger}\right)|0, P\rangle ; \quad i=1 \ldots d-2
$$

- But the state

$$
\left(a_{1 ; 0}^{\dagger}-a_{1 ; d-1}^{\dagger}\right)|0, P\rangle \sim P \cdot a_{1}^{\dagger}|0, P\rangle \sim L_{-1}|0, P\rangle
$$

has zero norm $\left(P^{2}=0\right)$ and is decoupled from the state $\left|p_{(1, M)}\right\rangle$:

$$
\langle 0, P| P \cdot a_{1}\left|p_{(1, M)}\right\rangle=0
$$

- This condition implies that the amplitude M_{μ} involving M tachyon and one massless state is gauge invariant

$$
P^{\mu} M_{\mu}=0
$$

- Gauge invariance prevents the presence of non-positive norm states in electrodynamics.
- In conclusion, at this level the only physical components are the $d-2$ transverse components corresponding to the physical degrees of freedom of a massless spin 1 state in d space-time dimensions.
- The most general state at the level $N=2$ is given by:

$$
\left[\alpha^{\mu \nu} a_{1, \mu}^{\dagger} a_{1, \nu}^{\dagger}+\beta^{\mu} a_{2, \mu}^{\dagger}\right]|0, P\rangle
$$

- In the center of mass frame where $P^{\mu}=(M, \overrightarrow{0})$ we get the following most general physical state $\left(1-\alpha^{\prime} P^{2}=2\right)$:

$$
\begin{gathered}
\mid \text { Phys }>=\alpha^{i j}\left[a_{1, i}^{\dagger} a_{1, j}^{\dagger}-\frac{1}{(d-1)} \delta_{i j} \sum_{k=1}^{d-1} a_{1, k}^{\dagger} a_{1, k}^{\dagger}\right]|0, P\rangle+ \\
\quad+\beta^{i}\left[a_{2, i}^{\dagger}-a_{1,0}^{\dagger} a_{1, j}^{\dagger}\right]|0, P\rangle+ \\
+\alpha\left[\sum_{i=1}^{d-1} a_{1, i}^{\dagger} a_{1, i}^{\dagger}+\frac{d-1}{5}\left(a_{1,0}^{\dagger 2}-2 a_{2,0}^{\dagger}\right)\right]|0, P\rangle
\end{gathered}
$$

where the indices i, j run over the $d-1$ space components.

- The first term corresponds to a spin 2 in d dimensional space-time and has a positive norm being made with space indices.
- The second term has zero norm, is orthogonal to the other physical states and it is decoupled from the states $\left|p_{(1, M)}\right\rangle$ since it can be written as

$$
L_{-1} a_{1, i}^{+}|0, P\rangle
$$

- The last state is spinless and has a norm given by:

$$
2(d-1)(26-d)
$$

- If $d<26$ it corresponds to a physical spin zero particle with positive norm.
- If $d>26$ it is a ghost.
- If $d=26$ it has a zero norm, is also orthogonal to the other physical states and it is decoupled from the states $\left|p_{(1, M)}\right\rangle$ since it can be written as:

$$
\left(2 L_{2}^{\dagger}+3 L_{1}^{\dagger 2}\right) \mid 0, P>\quad ; \quad 1-\alpha^{\prime} P^{2}=2
$$

- Can we generalize the previous analysis to an arbitrary level?

Some detail of the calculations at the level $N=2$

- Before we go, let us give here some detail of the calculations at the level $N=2$.
- At this level where $\sqrt{\alpha^{\prime}} M=1$, we need only the following expressions for L_{1} and L_{2} :

$$
L_{1}=\sqrt{2}\left(-a_{1,0}+a_{2} \cdot a_{1}^{\dagger}\right) ; \quad L_{2}=-2 a_{2,0}+\frac{1}{2} a_{1} \cdot a_{1}
$$

- At this level we have the following physical states:

$$
\begin{aligned}
|A\rangle & \equiv\left(a_{2, i}^{\dagger}-a_{1,0}^{\dagger} a_{1, i}^{\dagger}\right)|0\rangle \\
\left|A_{i j}\right\rangle & \equiv\left(a_{1, i}^{\dagger} a_{1, j}^{\dagger}-\frac{\delta_{i j}}{d-1} \sum_{k=1}^{d-1} a_{1, k}^{\dagger} a_{1, k}^{\dagger}\right)|0\rangle \\
|B\rangle & \equiv\left[\sum_{k=1}^{d-1} a_{1, k}^{\dagger} a_{1, k}^{\dagger}+\frac{d-1}{5}\left(\left(a_{1,0}^{\dagger}\right)^{2}-2 a_{2,0}^{\dagger}\right)\right]
\end{aligned}
$$

- Using the algebra of the harmonic oscillators it is easy to show that :

$$
\begin{aligned}
& L_{1}|A\rangle=L_{2}|A\rangle=0 \\
& L_{1}\left|A_{i j}\right\rangle=L_{2}\left|A_{i j}\right\rangle=0 \\
& L_{1}|B\rangle=L_{2}|B\rangle=0
\end{aligned}
$$

- It is not necessary to impose the vanishing of the L_{n} with $n>2$ because they are automatically satisfied as a consequence of the Virasoro algebra.
- We have already seen that, starting from any physical state $\left|\psi_{1}, P\right\rangle$ off shell by one unit $\left(1-\alpha^{\prime} P^{2}=N\right)$:

$$
\begin{aligned}
& L_{0}\left|\psi_{1}, P\right\rangle=L_{n}\left|\psi_{1}, P\right\rangle=0 \quad ; \quad n=1,2 \ldots \\
& R\left|\psi_{1}, P\right\rangle \equiv \sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}\left|\psi_{1}, P\right\rangle=N-1
\end{aligned}
$$

we can always construct the following on shell zero norm physical state:

$$
|\psi, P\rangle=L_{-1}\left|\psi_{1}, P\right\rangle \Longrightarrow\left(L_{0}-1\right)|\psi, P\rangle=L_{n}|\psi, P\rangle=0 ; n=1,2 \ldots
$$

- It is zero norm and decoupled from $\left|p_{(1, M)}\right\rangle$:

$$
\begin{aligned}
& \left\langle\psi_{1}, P\right| L_{1} L_{-1}\left|\psi_{1}, P\right\rangle=\left\langle\psi_{1}, P\right|\left(2 L_{0}+L_{-1} L_{1}\right)\left|\psi_{1}, P\right\rangle=0 \\
& \left\langle\psi_{1}, P\right| L_{1}\left|p_{(1, M)}\right\rangle=0
\end{aligned}
$$

- We can see the appearance of the critical dimension $d=26$ as the dimension for which we can construct an additional set of zero norm states.
- In fact, starting from the physical state $\left|\psi_{2}, P\right\rangle$ (but off shell by two units) satisfying the equations:

$$
\begin{aligned}
& \left(L_{0}+1\right)\left|\psi_{2}, P\right\rangle=L_{n}\left|\psi_{2}, P\right\rangle=0 ; n=1,2 \ldots \\
& R\left|\psi_{2}, P\right\rangle=\sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}\left|\psi_{2}, P\right\rangle=N-2 ; 1-\alpha^{\prime} P^{2}=N
\end{aligned}
$$

- we can construct the state:

$$
|\psi, P\rangle \equiv\left(2 L_{-2}+3 L_{-1}^{2}\right)\left|\psi_{2}, P\right\rangle
$$

- that is a zero norm on shell physical state:

$$
\begin{aligned}
& \left(L_{0}-1\right)|\psi, P\rangle=L_{n}|\psi, P\rangle=0 ; n=1,2 \ldots \\
& \left\langle\psi_{2}, P\right|\left(2 L_{2}+3 L_{1}^{2}\right)\left|p_{(1, M)}\right\rangle \\
& =\left\langle\psi_{2}, P\right|\left(2\left(L_{0}+1\right)+3 L_{0}\left(L_{0}+1\right)\left|p_{(1, M)}\right\rangle=0\right.
\end{aligned}
$$

- But then what are the real physical states with positive norm?

Vertex operators for excited states

- The previous analysis was done starting from the N-tachyon amplitude.
- It could have been done starting from an amplitude involving any physical state.
- We can associate to any physical state $|\alpha, P\rangle$ its corresponding vertex operator $V_{\alpha}(z, P)$ that is a conformal field with dimension $\Delta=1$:

$$
\left[L_{n}, V_{\alpha}(z, P)\right]=\frac{d}{d z}\left(z^{n+1} V_{\alpha}(z, P)\right)
$$

- It reproduces the physical state in the limits:

$$
\begin{aligned}
& \lim _{z \rightarrow 0} V_{\alpha}(z, P)|0,0\rangle \equiv|\alpha ; P\rangle ;\langle 0 ; 0| \lim _{z \rightarrow \infty} z^{2} V_{\alpha}(z, P)=\langle\alpha,-P| \\
& L_{n}|\alpha, P\rangle=\left(L_{0}-1\right)|\alpha, P\rangle=0 ; n=1,2 \ldots
\end{aligned}
$$

- It satisfies the hermiticity relation:

$$
V_{\alpha}^{\dagger}(z, P)=V_{\alpha}\left(\frac{1}{z},-P\right)(-1)^{m} ; 1-\alpha^{\prime} P^{2}=m
$$

[Campagna, Fubini, Napolitano and Sciuto, 1970] [Clavelli and Ramond, 1970]

- In terms of these vertices one can write the most general amplitude involving physical states:

$$
\begin{aligned}
& (2 \pi)^{d} \delta\left(\sum_{i=1}^{N} p_{i}\right) B_{N}\left(\alpha_{1}, p_{1} ; \ldots \alpha_{N}, p_{N}\right) \\
& =\int_{-\infty}^{\infty} \frac{\prod_{1}^{N} d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}}\langle 0,0| \prod_{i=1}^{N} V_{\alpha_{i}}\left(z_{i}, p_{i}\right)|0,0\rangle
\end{aligned}
$$

- It has precisely the same form as the N-tachyon amplitude except that the vertex operators depend on the physical states involved.
- There is a complete democracy among the physical states, as advocated by the followers of S-matrix theory.
- The vertex operator associated to the massless vector state is, however, somewhat special and will play an important role in the proof of the no-ghost theorem.
- It is given by:

$$
V_{\epsilon}(z, k) \equiv \epsilon \cdot \frac{d Q(z)}{d z} e^{i k \cdot Q(z)} ; k \cdot \epsilon=k^{2}=0
$$

DDF operators

- We want to construct an infinite set of physical states starting from the vertex operator for the massless spin 1 state.
- The starting point is the DDF operator defined in terms of the vertex operator corresponding to the massless gauge field:

$$
A_{i, n}=\frac{i}{\sqrt{2 \alpha^{\prime}}} \oint_{0} \frac{d z}{2 \pi i} \epsilon_{i}^{\mu} P_{\mu}(z) e^{i k \cdot Q(z)}
$$

where

$$
P(z) \equiv \frac{d Q(z)}{d z}=-i \sqrt{2 \alpha^{\prime}}\left[\sqrt{2 \alpha^{\prime}} \frac{\hat{p}_{0}}{z}+\sum_{n=1}^{\infty} \sqrt{n}\left(a_{n} z^{n-1}+a_{n}^{\dagger} z^{-n-1}\right)\right]
$$

- The index i runs over the $d-2$ transverse directions that are orthogonal to the momentum k.
- DDF stands for [Del Giudice, Di Vecchia and Fubini, 1971] who constructed this operator.
- The zero mode part of $Q(z)=\cdots-2 \alpha^{\prime} i \hat{p} \log z \ldots$ has a logarithmic singularity at $z=0$.
- The contour integral is well defined only if we constrain the momentum of the state, on which $A_{i, n}$ acts, to satisfy the relation:

$$
2 \alpha^{\prime} p \cdot k=n
$$

where n is a non-vanishing integer.

- The DDF operators commutes with the gauge operators L_{m} :

$$
\left[L_{m}, A_{n ; i}\right]=0
$$

because the vertex operator transforms as a total derivative under the action of L_{n}.

- They satisfy the algebra of the harmonic oscillator as we are now going to show.
- We get

$$
\left[A_{n, i}, A_{m, j}\right]=-\frac{1}{2 \alpha^{\prime}} \oint_{0} \frac{d \zeta}{2 \pi i} \oint_{\zeta} \frac{d z}{2 \pi i} \epsilon_{i} \cdot P(z) e^{i k \cdot Q(\zeta)} \epsilon_{j} \cdot P(\zeta) e^{i k^{\prime} \cdot Q(\zeta)}
$$

where

$$
2 \alpha^{\prime} p \cdot k=n ; 2 \alpha^{\prime} p \cdot k^{\prime}=m
$$

- k and k^{\prime} are supposed to be in the same direction, namely

$$
k_{\mu}=n \hat{k}_{\mu} \quad ; \quad k_{\mu}^{\prime}=m \hat{k}_{\mu}
$$

with

$$
2 \alpha^{\prime} p \cdot \hat{k}=1
$$

- Finally the polarizations are normalized as:

$$
\epsilon_{i} \cdot \epsilon_{j}=\delta_{i j}
$$

- Since $\hat{k} \cdot \epsilon_{i}=\hat{k} \cdot \epsilon_{j}=\hat{k}^{2}=0$ a singularity for $z=\zeta$ can appear only from the contraction of the two terms $P(\zeta)$ and $P(z)$ that is given by:

$$
\langle 0,0| \epsilon_{i} \cdot P(z) \epsilon_{j} \cdot P(\zeta)|0,0\rangle=-\frac{2 \alpha^{\prime} \delta_{i j}}{(z-\zeta)^{2}}
$$

- From it we get:

$$
\begin{gathered}
{\left[A_{n, i}, A_{m, j}\right]=\delta_{i j} i n \oint_{0} d \zeta \hat{k} \cdot P(\zeta) e^{i(n+m)) \hat{k} \cdot Q(\zeta)}=} \\
=i n \delta_{i j} \delta_{n+m ; 0} \oint_{0} \frac{d \zeta}{2 \pi i} \hat{k} \cdot P(\zeta) ; P(\zeta)=-2 i \alpha^{\prime} \frac{\hat{p}}{z}+\ldots
\end{gathered}
$$

- We have used the fact that the integrand is a total derivative and therefore one gets a vanishing contribution unless $n+m=0$.
- We get:

$$
\left[A_{n, i}, A_{m, j}\right]=n \delta_{i j} \delta_{n+m ; 0} ; \quad i, j=1 \ldots d-2
$$

- In terms of this infinite set of transverse oscillators we can construct an orthonormal set of states:

$$
\left|i_{1}, N_{1} ; i_{2}, N_{2} ; \ldots i_{m}, N_{m}\right\rangle=\prod_{h} \frac{1}{\sqrt{\lambda_{h}!}} \prod_{k=1}^{m} \frac{A_{i_{k},-N_{k}}}{\sqrt{N_{k}}}|0, p\rangle
$$

where λ_{h} is the multiplicity of the operator $A_{i_{h},-N_{h}}$ in the product.

- They all have positive definite norm and satisfy the on shell physical conditions:
$\left(L_{0}-1\right)\left|i_{1}, N_{1} ; i_{2}, N_{2} ; \ldots i_{m}, N_{m}\right\rangle=L_{n}\left|i_{1}, N_{1} ; i_{2}, N_{2} ; \ldots i_{m}, N_{m}\right\rangle=0$ for $n=1,2 \ldots$, because the DDF oscillators commute with any Virasoro operator and the tachyon state $|0, p\rangle$ satisfies the previous conditions.
- The momentum of the state and its mass are given by

$$
P=p-\sum_{i=1}^{m} \hat{k} N_{i} ; 1-\alpha^{\prime} P^{2}=\sum_{k} N_{k}=N
$$

The no-ghost theorem

- Going back to level $N=2$ we have the following DDF states contributing at this level:

$$
A_{-1, i} A_{-1, j}|0, p\rangle \quad ; \quad A_{-2, i}|0, p\rangle ; i, j=1 \ldots d-2
$$

- Therefore the number of states contributing is equal to

$$
\begin{equation*}
\frac{(d-2)(d-1)}{2}+d-2=\frac{(d-2)(d+1)}{2} \tag{3}
\end{equation*}
$$

- that is equal to the number of components of the state:

$$
\left[a_{1, I}^{\dagger} a_{1, J}^{\dagger}-\frac{1}{(d-1)} \delta_{l J} \sum_{K=1}^{d-1} a_{1, K}^{\dagger} a_{1, K}^{\dagger}\right]|0, P\rangle \quad ; \quad I, J=1 \ldots d-1
$$

given by:

$$
\frac{(d-1) d}{2}-1=\frac{(d-2)(d+1)}{2}
$$

describing a spin 2 in $d-1$ space dimensions.

- This state is the only physical state at the level $N=2$ if $d=26$.
- For $d=26$ the DDF states are a complete set of states at the level $N=2$.
- It turns out, after a detailed analysis, that, if $d=26$, they are indeed a complete set of states at an arbitrary level N. [Goddard and Thorn, 1972 and Brower, 1972]
- Since they span a positive definite Hilbert space, this means that the dual resonance model is ghost-free if $d=26$.
- It can be shown that this is also true for any $d<26$.
- However, in this case there are additional operators to be included besides the DDF ones.
- The states produced by these additional operators are called Brower states [Brower, 1972].
- They are needed already at the level $N=2$ to take care of the additional scalar state not taken into account by the DDF states.

$d=26$ from the non-planar loop

- Historically, the critical dimension was not found as described before.
- It was first found in the study of one-loop amplitudes.
- The Veneziano model and its extension, the N-point function, satisfies all the axioms of S matrix theory except unitarity.
- In fact, unitarity in a model with only resonances imposes that the total width of a resonance 「 must be the sum of the partial widths over all the possible decay channels:

$$
\Gamma=\sum_{n} \Gamma_{n}
$$

- If the model is ghost-free, all partial widths are positive definite and a sum of positive numbers cannot give zero unless $\Gamma_{n}=0$ for any n.
- In the Veneziano model, the total width $\Gamma=0$, but the partial widths are non zero \Longrightarrow unitarity is violated!
- Immediately after the discovery of the Veneziano model, it was proposed to make it unitary by adding to it the contribution of loop diagrams.
- Unitarity is, in fact, implemented in this way in perturbative field theory.
- The tree diagrams are not unitary and unitarity is implemented order by order in perturbation theory by adding loop diagrams.
- By doing so, one generates the branch points required by unitarity and corresponding, for instance, to the two- three- etc. particle thresholds.
- At one-loop level in the DRM, two kinds of loop diagrams appear: the planar and the non-planar.
- They correctly generate the branch cuts required by unitarity, but the non-planar one showed additional branch cuts violating unitarity.
- In 1970, Lovelace noticed that these branch cuts become poles if the dimension of the space-time $d=26$.
- And poles create no problem with unitarity.
- They are just additional states appearing at one-loop level.
- Today we know that, while the original poles correspond to the excitation of an open string, the new poles correspond instead to the excitation of a closed string.
- They both lie on linear Regge trajectories given respectively, by:

$$
\alpha_{\text {open }}(s)=1+\alpha^{\prime} s ; \quad \alpha_{\text {closed }}(s)=2+\frac{\alpha^{\prime}}{2} s
$$

- At that time, practically nobody took Lovelace's observation seriously.
- But this has been the first evidence of the existence of a critical dimension.

