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Particules Élémentaires, Gravitation et Cosmologie
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Théorie des Cordes: une Introduction
Cours V: 12 février 2010

Dual Resonance Models (cordes sans cordes) 

• Généralisation à N-particules
• Opérateurs et factorisation
• Croissance exponentielle de la dégénérescence
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Fear of ghosts

• The properties of the Beta-function were very nice 
and welcome, almost too good to be true.

• There was, however, a big worry based on previous 
experience: possibly, in order to satisfy all the 
constraints, the model had to contain “ghosts”, i.e. 
negative-norm states produced with negative 
probability. 

• If so the model would have been inconsistent.
• In order to find out, it was necessary to identify 

first all the states.
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A first look at the spectrum
Consider the Nth pole in s,  at α(s) = N, and its residue.

It is immediately realized that such a residue is a polynomial in 
t (hence in cosθ) of degree N.  As such it can be expanded in 

the first N Legendre polynomials each one corresponding to a 
definite J for the resonance. 
One finds that all J up to N do indeed contribute. Thus the 
spectrum is degenerate with a degeneracy growing at least 
linearly (quadratically if we count 2J+1 states for spin J) in N. 
At least, because a single 2->2 scattering process is unable to 
resolve the degeneracy within a given J. 
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To fully disentangle the spectrum we need to construct more 
general scattering amplitudes and use a basic property of each 
single intermediate state known as factorization. Each state 
contributes to the residue by the product of its couplings to 
the “initial” and “final” states.

This is what unitarity of the S-matrix reduces to in the single-
particle-exchange approximation.

Thus counting states amounts to answering the following 
question:
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in

out

out=Σi
Ri

Q: How many terms are needed (in the sum over i) in 
order to have, for all in and out states,

in



12 février 2010 G. Veneziano Cours V 6

In principle we could stick to 2-->2 processes varying the 
species of the initial and final particles. However, we do not 
have (yet) at our disposal those other possible initial and final 
particles (finding them is precisely the problem we want to 
solve!).

The simplest extension turned out to be in the direction of 
increasing the number of particles participating in the 
scattering process, without changing their nature.
This turns out to be good enough for our purposes.
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Which properties should our multiparticle amplitudes satisfy? 
How should we generalize the duality properties of two-body 
scattering that allowed us to find the solution?
We will insist on having poles (and only poles) in the 
appropriate Mandelstam variables as well as the appropriate 
crossing symmetries, but will not impose Regge behaviour 
(which, btw, can be generalized to multiparticle processes). 
Actually, (multi)Regge behaviour will come out as a bonus.
The other crucial input will be imposing “Planar Duality”.
**************
NB. There is also a notion of “Non-Planar-Duality”, embodied in 
the Shapiro-Virasoro model, later interpreted as describing 
the interaction of closed strings.

DRM=Multiparticle generalizations of the B-function



s = −(p1 + p2)2 , t = −(p1 − p3)2 , u = −(p1 − p4)2
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Planar Duality (to be related to open strings)

The Beta-function model for the 4-point function 
(2->2 scattering) exhibits “planar duality” i.e. duality 
w.r.t. the channels put in evidence by each particular 
(cyclic=anticyclic) order of the external lines. There 
are 3 of them (3 pairs of Mandelstam variables):

p1

p2

p1

p2

p3

p4

p4

p3

p1

p3

p4

p2

s-t duality s-u duality t-u duality
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 Consider now a process involving N > 4 external spinless 
particles. The corresponding (connected) amplitude is called 
an N-point function AN. There are (N-1)!/2 distinct terms 
(distinct cyclic orderings) that have to be added at the end 
(with some specific numerical weights). Consider the term 
corresponding to the “trivial” cyclic ordering:

p1

p2
pN-1

p3

pN

...

It will be given by an analytic function with poles in the 
Mandelstam invariants corresponding to its “planar channels”.
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Useful convention: all momenta are incoming so that        
4-momentum conservation reads: Σi  pi = 0. 

=> some of the pi0 = Ei must be negative. 
They correspond to outgoing particles w/ 4-momentum -pi

pi-2

pi-1

pj

pi

pj+1

...

Poles appear in the corresponding Mandelstam variables:        
sij = -(pi + pi+1  +...+  pj)2 = -(pj+1 + pj+2  +...+  pi-1)2 

Their total number is N(N-3)/2  (= 2, 5, 9, ...)

planar channels are 
defined by a partition of 
the external legs in two 
sets of adjacent legs 
each containing at least 
two particles
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Planar duality is very natural from 
a duality diagram viewpoint

    compatible, non 
overlapping channels

    incompatible, 
overlapping channels

There are (N-3) mutually 
compatible channels



B4 (−α(s),−α(t)) =
∫ 1

0
dx x−1−α(s)(1− x)−1−α(t)

BN =
∫ 1

0

∏

ij

duiju
−1−α(sij)
ij δ(. . . )

1− uP =
∏

P̄

uP̄

12 février 2010 G. Veneziano Cours V 12

Chan’s form for the N-point function (1968)
Chan’s form for the N-point function is the most
direct generalization of the integral form of the Beta 
function (now called B4):

where the δ-functions eliminate all but (N-3) 
integration variables (the maximal number of compatible 
poles) via the constraints:    

 where the product extends to all
 channels overlapping with P.



BN =
∫ 1

0

∏

ij

duiju
−1−α(sij)
ij δ(. . . ) 1− uP =

∏

P̄

uP̄

BN =
N−2∏

i=2

[∫ 1

0
duiu

−1−α(si)
i (1− ui)−1−α(si,i+1)

] ′∏

ij

(1− ui . . . uj−1)−γij

γij = α(sij) + α(si+1,j−1)− α(si+1,j)− α(si,j−1) = −2α′pipj
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Quite amazingly the constraint can be “easily” solved 
in terms of a natural subset:

where ui = u1i . After using the δ-functions, one finds 
(the ‘ means “over the remaining channels”):

432

1

N-2 N-1

N
u2 u3 uN-2



BN =
∫ 1

0

∏

ij

duiju
−1−α(sij)
ij δ(. . . ) 1− uP =

∏

P̄

uP̄
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Although this is not explicit, by its construction BN is 
invariant under cyclic permutations of the external 
lines (the analogue of s-t duality for B4)

    
If we go on the lowest lying pole in one of the 
privileged channels this amounts to setting the 
corresponding ui = 0. But then all the u’s in overlapping 
channels go to 1 making the residue at the pole 
independent of the corresponding Mv’s.
The rest simply gives the product of two lower BN’s
The lowest pole is consistent with being due to 
exchanging the external particle itself!
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i-1

j

i

j+1

...

... i-1

j

i

j+1

...

...

N

n+1

N-n+1

This is the simplest example of factorization telling 
us that the lowest state is non-degenerate.



(zi, zi−1, zj , zj+1)

≡ (zi − zj)(zi−1 − zj+1)
(zi−1 − zj)(zi − zj+1)
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Koba-Nielsen form for the N-point function
(taking already the special case ofα(0) =1)

For further developments a more useful form for the 
N-point function was given by Koba & Nielsen (1968). It 
has the advantage of treating all the external particles 
on the same footing. Their construction is as follows:
Associate with each external particle a (KN) real 
variable zi (i = 1,2, ... N) and to each planar channel a 
particular anharmonic ratio of the z’s:

i-1

j
i

j+1

...

...



(zi, zi−1, zj , zj+1)

≡ (zi − zj)(zi−1 − zj+1)
(zi−1 − zj)(zi − zj+1)

BN =
∫ +∞

−∞
dV (z)

∏

i,j

(zi, zi−1, zj , zj+1)−1−α(sij)

dV (z) =
∏

dziθ(zi − zi+1)∏
(zi − zi+2)dVabc

dVabc =
dzadzbdzc

(zb − za)(zc − zb)(za − zc)
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i-1

j

i

j+1

...

...

BN is then given by (a,b,c are chosen arbitrarily):



zi →
αzi + β

γzi + δ
; αδ − βγ = 1
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BN =
∫ +∞

−∞
dV (z)

∏

i,j

(zi, zi−1, zj , zj+1)−1−α(sij)

dV (z) =
∏

dziθ(zi − zi+1)∏
(zi − zi+2)dVabc

dVabc =
dzadzbdzc

(zb − za)(zc − zb)(za − zc)

Integrand and integration measure are invariant 
under projective O(2,1) transformations:

Without dividing by dVabc one would get infinity.
3 z’s can be fixed arbitrarily leaving N-3 int. variables.



BN =
∫ +∞

−∞

∏
dziθ(zi − zi+1)

dVabc

∏

j>i

(zi − zj)2α′pi·pj
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BN =
∫ +∞

−∞
dV (z)

∏

i,j

(zi, zi−1, zj , zj+1)−1−α(sij)

dV (z) =
∏

dziθ(zi − zi+1)∏
(zi − zi+2)dVabc

dVabc =
dzadzbdzc

(zb − za)(zc − zb)(za − zc)

Using relations such as:
γij = α(sij) + α(si+1,j−1)− α(si+1,j)− α(si,j−1) = −2α′pipj

we collect all the factors that contain a given (zi-zj) 
and obtain (for α(0) =1!) the standard KN form:



BN =
∫ +∞

−∞

∏
dziθ(zi − zi+1)

dVabc

∏

j>i

(zi − zj)2α′pi·pj

BN =
N−1∏

3

[∫ 1

0
dziθ(zi − zi+1)

] N−1∏

i=2

N∏

j=i+1

(zi − zj)2α′pi·pj

za = z1 =∞ ; zb = z2 = 1 ; zc = zN = 0
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Note that the integrand is now independent of the cyclic 
ordering of the external lines. This only appears in the 
integration measure through the ordering of the z’s 
(again only for α(0) =1).

A convenient choice for the 3 fixed z’s is: 



(n = 1, 2, . . . ; µ = 0, 1, 2, . . . D − 1)

[qµ , pν ] = iηµν , [an,µ , a†m,ν ] = δn,mηµν , ηµν = diag(−1, 1, . . . , 1)
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BN =
N−1∏

3

[∫ 1

0
dziθ(zi − zi+1)

] N−1∏

i=2

N∏

j=i+1

(zi − zj)2α′pi·pj

This was the starting point of the original study of the 
spectrum (FV & BM, 1969). 
By far the simplest way to describe it is by introducing 
(FGV, N, 1969) an operator formalism (which also leads 
straight into string theory!).

They look like innocent NR-QM operators, in particular 
those of an infinite set of decoupled harmonic oscillators 
with one crucial difference: Also time-components (and an 
indefinite metric) appear! We are relativistic!



|Nn,µ, k〉 ∼
∏

n,µ

(
a†n,µ

)Nn,µ
eiqk|0〉 ; an,µ|0〉 = pµ|0〉 = 0

−α′k2 = α′M2 = −1 +
∑

n,µ

n a†n,µ aµ
n
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We will show in a moment that a sufficient set of states for 
factorization consists of the eigenstates of momentum and 
of the occupation numbers of those harmonic oscillators i.e.

Because of the “wrong” sign of the timelike c.r., states 
created by an odd number of timelike operators are ghosts. 
Was the DRM doomed? One (tiny?) hope remained: all those 
states were sufficient but perhaps only a (ghost-free?) subset 
was necessary.
This will be the main topic of today’s seminar by PdV.



V (z, k) =: eik·Q(z) : ≡ eik·Q(−)(z) eik·q e2α′k·plogz eik·Q(+)(z)

Qµ(z) = Q(0)
µ (z) + Q(+)

µ (z) + Q(−)
µ (z) ; Q(0)

µ (z) = qµ − 2iα′pµlogz

Q(+)
µ (z) = i

√
2α′

∞∑

n=1

an,µ√
n

z−n ; Q(−)
µ (z) = −i

√
2α′

∞∑

n=1

a†n,µ√
n

zn
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Proof of factorization
We shall now rewrite the KN form of BN using our 
operators. Two essential ingredients are:
 1) a “field operator” Qμ(z) and

 2) a “vertex operator” V(z, k)

They satisfy the following operator identities:



V (z, k) =: eik·Q(z) : ≡ eik·Q(−)(z) eik·q e2α′k·plogz eik·Q(+)(z)

V (z, k)V (w, k′) =: V (z, k)V (w, k′) : (z − w)2α′k·k′

〈0|
N∏

i=1

V (zi, pi)|0〉 = (2π)Dδ(D)(
∑

pi)
∏

i>j

(zi − zj)2α′pi·pj

[Q(+)
µ (z), Q(−)

ν (w)] = −2α′log
(
1− w

z

)
ηµν
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leading easily to:

Qµ(z) = Q(0)
µ (z) + Q(+)

µ (z) + Q(−)
µ (z) ; Q(0)

µ (z) = qµ − 2iα′pµlogz

Q(+)
µ (z) = i

√
2α′

∞∑

n=1

an,µ√
n

z−n ; Q(−)
µ (z) = −i

√
2α′

∞∑

n=1

a†n,µ√
n

zn



(2π)Dδ(D)(
∑

pi)BN =
∫ +∞

−∞

∏
dziθ(zi − zi+1)

dVabc
〈0|

N∏

i=1

V (zi, pi)|0〉

L0 = α′p2 +
∑

n,µ

n a†n,µ aµ
n

V (z, k) = zL0−α′k2
V (1, k)z−L0 = zL0−1V (1, k)z−L0
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Consequently, recalling

BN =
∫ +∞

−∞

∏
dziθ(zi − zi+1)

dVabc

∏

j>i

(zi − zj)2α′pi·pj

we have the elegant result:

This looks already nicely factorized. To complete the 
proof we use the fact that the operator

acts on Q as z d/dz Q giving:



L0 = 1⇒ −α′p2 = α′M2 = −1 +
∑

n,µ

n a†n,µ aµ
n = −1 +

∑

n,µ

nNn,µ

(2π)Dδ(D)(
∑

pi)BN = 〈p1|V (1, p2) D V (1, p3) D V (1, p4) D . . .D V (1, pN−1)|pN 〉

D =
1

L0 − 1
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Using this repeatedly and performing the explicit 
integrals on zi+1/zi we finally arrive at the desired fully 
factorized form:

In order to factorize this amplitude it’s enough to 
introduce a complete set of harmonic oscillator states 
before and after a given “propagator” D. This will 
provide a pole at:



1 =
∑ ∫

dk|Nn,µ, k〉〈Nn,µ, k|
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432

1

N-2
N-1

N

V(1,p2)

D DD D

V(1,p3) V(1,p4)

(2π)Dδ(D)(
∑

pi)BN = 〈p1|V (1, p2) D V (1, p3) D V (1, p4) D . . .D V (1, pN−1)|pN 〉

D =
1

L0 − 1

L0 = 1⇒ −α′p2 = α′M2 = −1 +
∑

n,µ

n a†n,µ aµ
n = −1 +

∑

n,µ

nNn,µ
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