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Boucles en QFT et QST 

• Loops in QFT
• Loops in QST
• Modular invariance
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Σn=Im
n

i(T † − T ) = 2ImT = T †T

In QFT loops come out naturally from its formalism (Wick 
theorem etc.). Physically, loops are needed to ensure 
unitarity of the S-matrix. Writing S=1 +iT unitarity gives:

In pictures:

Even if the blobs are tree diagrams the rhs of this 
equation gives loop diagrams. Unitarity is implemented 
order by order in perturbation theory through Cutkowski’s 
cutting rules for Feynman’s diagrams.

Loops in QFT 



∫
d[φ(x)]exp(−1

!S(φ)) ∼

exp(−1
!S(φcl))

∫
d[φ(x)− φcl(x)]exp

(
− 1

2!S′′(φcl)(φ− φcl)2
)

= exp(−1
!S(φcl)) (detS′′(φcl))

−1/2 = exp

(
−1

!S(φcl)−
1
2
tr[logS′′(φcl)]

)
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Loops also follow, of course, from Feynman’s path integral 
formalism. Schematically, if φcl is a classical solution of the 
field equations,

The trlog(...) is h-independent and represents a one-loop 
correction to the semiclassical approximation.
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So far we have been working in what is usually referred to as 
1st quantization. In QFT books it is explained that, in order to 
go to a relativistic quantum theory where real and virtual 
particle production is allowed, we have to abandon 1st 
quantization techniques and go over to a so-called 2nd 
quantization (the wave-function itself has to be quantized). 
The coordinates xμ become c-numbers while the fields φ(xμ) 
become operators.

How do loops appear in string theory? In the DRM loops were 
first constructed by hand (sewing trees) but what is the 
analogue of Feynman’s path integral in ST? The quantum fields 
are NOT some spacetime fields in D= 10 but the string  
coordinates Xμ, ψμ and the 2D metricγαβ.
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Fortunately, it turns out that in QST, at least in perturbation 
theory, one can introduce the equivalent of QFT’s loops while 
staying all the time within 1st quantization. 
This amounts to working with a finite number of quantum 
fields in D=2, an immense simplification (also, D=2 QFTs have 
nice UV properties).

If we try to do the same in QST we end up with what is 
called String Field Theory which is a QFT involving an 
infinite number of spacetime fields, one for each state of 
the string. 
There have been attempts to construct such a theory (in 
particular by Witten on open strings) with some interesting 
conceptual results but also with a lot of technical 
complications.



Z ∼
∫

..

∫
[dγαβ(ξ)][dXµ(ξ)][dψµ(ξ)]exp(−SP )

SP = −T

2

∫
d2ξ
√
−γγαβ(ξ)∂αXµ(ξ)∂βXν(ξ)Gµν(X(ξ)) + . . .
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But how can loops emerge for 1st quantization? This looks 
impossible at first sight. 
Consider a Feynman path integral approach to string 
quantization starting from a Polyakov-like action:

We will see next week how the integrals over the bosonic and 
fermionic string coordinates produce effects proportional to 
α’ that are absent in QFT. Let us concentrate instead now on 
the integral over the 2-metricγαβ.
At first sight such integral should be trivial since 2D 
reparametrization plus Weyl invariance should allow to gauge-
fix completelyγαβ. This statement is certainly true locally 
but there is a “global obstruction”.



1
4π

∫
d2ξ
√
−γR(γ) = 2(1− g)
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A well-known theorem states that : 

where g is the genus of the 2D Riemann surface (g=0 for the 
sphere, g =1 for the torus, etc.) whose geometry is given by 
γαβ. Fixing globally γαβ would mean fixing g! 
But why should one fix g rather than summing over it? In 
other words, the functional integral over the 2D metric 
naturally splits into a sum of functional integrals each 
representing Riemann surfaces of a given genus g. Precisely 
this sum over g corresponds to the loop expansion in QFT! 
QST has managed to introduce QFT’s loops without invoking 
any 2nd quantization!
There is even an extra bonus: while in QFT the number of 
diagrams grows like a factorial of the loop order, here there 
is just one diagram at each loop order. It is again DHS duality 
at work...
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Loop expansion for closed string collisions

Closed strings attach at points on the Riemann surface. These 
are just our good old Koba-Nielsen variables zi (complex 
numbers for closed strings) on which one has to integrate. 

+ + + ...

a vertex correction a tadpole

sphere torus bagel
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Open strings instead attach to boundaries of the Riemann 
surface, the analogue of quark loops in QCD. The sum over 
topologies is also a sum over different “boundaries”, their 
total number, which have strings attached to them and which 
do not, etc.
The tree level corresponds now to the disc. At one loop we 
find the annulus, the cylinder, the Moebius strip. One can then 
also add “handles” (increasing the genus) as for closed strings.

+ +

annulus cylinderdisc
The positions at which the open strings are attached are real, 
ordered Koba-Nielsen variables on which one has to integrate. 
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Modular Invariance
Things are even more complicated.  For a given topology of the 
Riemann surface, one has to find out exactly what the 
integration variables are after gauge fixing. The result is that:
1. For the sphere (and the disc for open strings) there is no 
integral over the size of the sphere and, furthermore, there is 
a residual invariance under projective O(2,1) transformations 
that allows to fix 3 KN coordinates (exactly what we had in 
the DRM!).
2. For g=1 (torus) there is still an integration over the complex 
parameter τ that characterizes each torus.

2πτ
2π

τ-plane



τ → p τ + q

r τ + s
; p, q, r, s ∈ Z ; ps− qr = 1
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3. For g >1 there is an integration over 3(g-1) complex 
parameters that characterize the Riemann surface.

Coming back to the torus, there is still a discrete group of 
transformations that leaves the torus invariant. This is the 
group of modular transformations:

Such a transformation maps the same torus in the complex 
τplane an infinite number of times leading (again!) to an 
infinite result if we were to integrate over the whole 
complex plane. We should only take one region e.g. the so-
called fundamental region. This region nicely avoids the point 
τ= 0 that turns out to be associated (in a naive QFT limit) 
to the UV region. This is how string theory avoids UV 
infinities!
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Fundamental region for the torus (shaded) 

Im τ

Reτ

Reτ=-1/2 Reτ=1/2

|τ|=1
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Modular invariance is as essential for the consistency of 
string theory as Weyl and reparametrization invariance 
(they are all parts of the gauge invariances of ST). As it 
turns out, imposing modular invariance at the one-loop level 
eliminates the gauge and gravitational anomalies (also one-
loop effects!) that the GS mechanism cancels by a brute-
force calculation (see seminar #4).
The search for consistent QSTs is therefore reduced to 
the problem of finding theories that respect modular 
invariance (and have no tadpoles).
This is how the two consistent heterotic string theories 
were found!


