Strings in Twistor Space

- String theory can be defined by a two-dimensional field theory whose fields take values in target space:
- n-dimensional flat space
- 5-dimensional Anti-de Sitter $\times 5$-sphere
- twistor space: intrinsically four-dimensional \Rightarrow Topological String Theory
- Spectrum in Twistor space is $N=4$ supersymmetric multiplet (gluon, four fermions, six real scalars)
- Gluons and fermions each have two helicity states

Amplitudes Beyond MHV

Witten's proposal:

- Each external particle represented by a point in twistor space
- Amplitudes non-vanishing only when points lie on a curve of degree d and genus g, where
- $d=\#$ negative helicities $-1+\#$ loops
- $g \leq \#$ loops; $g=0$ for tree amplitudes
- Integrand on curve supplied by a topological string theory
- Obtain amplitudes by integrating over all possible curves \Rightarrow moduli space of curves
- Can be interpreted as D_{1}-instantons

Simple Cases

Amplitudes with all helicities ' + ' \Rightarrow degree -1 curves.
No such curves exist, so the amplitudes should vanish. They do.

Amplitudes with one '-' helicity \Rightarrow degree- 0 curves: points. Generic external momenta, all external points won't coincide (singular configuration, all collinear), \Rightarrow amplitudes must vanish. They do.

Amplitudes with two '-' helicities (MHV) \Rightarrow degree-1 curves: lines. As we'll see, this is indeed true.

Other Cases

Amplitudes with three negative helicities (next-to-MHV) live on conic sections (quadratic curves)

Amplitudes with four negative helicities (next-to-next-to-MHV) live on twisted cubics

Fourier transform back to spinors \Rightarrow differential equations in conjugate spinors

Differential Operators

Equation for a line $\left(\mathrm{CP}^{1}\right): \quad \epsilon_{I J K L} Z_{1}^{I} Z_{2}^{J} Z_{3}^{K}=0$
gives us a differential (line') operator in terms of momentumspace spinors

$$
F_{123}=\left\langle\lambda_{1} \lambda_{2}\right\rangle \frac{\partial}{\partial \tilde{\lambda}_{3}}+\left\langle\lambda_{2} \lambda_{3}\right\rangle \frac{\partial}{\partial \tilde{\lambda}_{1}}+\left\langle\lambda_{3} \lambda_{1}\right\rangle \frac{\partial}{\partial \tilde{\lambda}_{2}}
$$

Equation for a plane $\left(\mathrm{CP}^{2}\right)$: $\quad \epsilon_{I J K L} Z_{1}^{I} Z_{2}^{J} Z_{3}^{K} Z_{4}^{L}=0$ also gives us a differential ('plane') operator

$$
K_{1234}=\left\langle\lambda_{1} \lambda_{2}\right\rangle \frac{\partial}{\partial \tilde{\lambda}_{3 \dot{a}}} \frac{\partial}{\partial \tilde{\lambda}_{4}^{\dot{a}}}+\text { perms }
$$

Even String Theorists Can Do Experiments

- Apply F operators to NMHV (3 -) amplitudes: products annihilate them! K annihilates them;
- Apply F operators to $\mathrm{N}^{2} \mathrm{MHV}(4-)$ amplitudes: longer products annihilate them! Products of K annihilate them;

$$
\begin{aligned}
& F_{512} F_{234} F_{345} F_{451} A_{5}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}\right)= \\
& F_{512} F_{234} F_{345} F_{451} \frac{[45]^{4}}{[12][23][34][45][51]}=0
\end{aligned}
$$

A more involved example

$F_{612} F_{234} F_{345} F_{561} A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)=0$

Don't try this at home!

Interpretation: twistor-string amplitudes are supported on intersecting line segments

Simpler than expected: what does this mean in field theory?

Cachazo-Svrcek-Witten Construction

> hep-th/0403047

Amplitudes can be built up out of vertices \leftrightarrow line segments
Intersections \leftrightarrow propagators
Vertices are off-shell continuations of MHV amplitudes: every vertex has two ' - ' helicities, and one or more ' + ' helicities

Includes a three-point vertex
Propagators are scalar ones: i / K^{2}; helicity projector is in the vertices

Draw all tree diagrams with these vertices and propagator
Different sets of diagrams for different helicity configurations

Seven-Point Example

How Do We Know It's Right?

No derivation from Lagrangian Physicists' proof:

- Correct factorization properties (collinear, multiparticle)
- Compare numerically with conventional recurrence relations through $n=11$ to 20 digits

Practical Applications

- Compact expressions for amplitudes suitable for numerical use
- Compact analytic expressions suitable for use in computing loop amplitudes
- Extend older loop results for MHV to non-MHV

From Trees To Loops

- Sew together two MHV vertices

Brandhuber, Spence, \& Travaglini (2004)

- Simplest off-shell continuation lacks ie prescription
- Use alternate form of continuation

$$
K=k^{b}+\frac{K^{2}}{2 \eta \cdot K} \eta, \quad\left(k^{b}\right)^{2}=0 \quad \Rightarrow \quad L=\ell+z \eta, \quad \ell^{2}=0
$$

to map the calculation on to the cut + dispersion integral
Brandhuber, Spence, \& Travaglini (2004)

- Reproduces MHV loop amplitudes
originally calculated by Dixon, Dunbar, Bern, \& DAK (1994)

Unitarity Method for Higher-Order Calculations

Bern, Dixon, Dunbar, \& DAK (1994)

- Proven utility as a tool for explicit calculations
- Fixed number of external legs
- All-n equations
- Tool for formal proofs
- Yields explicit formulae for factorization functions
- I-duality: phase space integrals \Leftrightarrow loop integrals
cf. Melnikov \& Anastasiou
- Color ordering

- At one loop in $\mathrm{D}=4$ for SUSY \Rightarrow full answer (also for $\mathrm{N}=4$ two-particle cuts at two loops)
- In general, work in $D=4-2 € \Rightarrow$ full answer van Neerven (1980): dispersion relations converge
- Merge channels: find function w/given cuts in all channels
- 'Generalized cuts': require more than two propagators to be present

- Isolate different contributions at higher loops as well

Twistor-space structure

- Can be analyzed with same differential operators
- 'Anomaly' in the analysis; once taken into account, again support on simple sets of lines

Cachazo, Svrček, \& Witten; Bena, Bern, DAK, \& Roiban (2004)

- Non-supersymmetric amplitudes also supported on simple sets

Cachazo, Svrček, \& Witten (2004)

Emerging Techniques

- Build on unitarity-based technique \& integral basis
- Computation of coefficients via 'holomorphic anomaly'
- Computation of coefficients using complex momenta
- Tree-level and rational one-loop amplitudes via on-shell recurrence relations in complex momenta

Recurrence Relations

On-Shell Recurrence Relations

Britto, Cachazo, Feng (2004)

- Amplitudes written as sum over 'factorizations' into on-shell amplitudes - but evaluated for complex momenta
$A_{n} \sim \sum_{j} A_{j+1}\left(\ldots,-\hat{K}_{1 \ldots j}\right) \frac{1}{K_{1 \cdots j}^{2}} A_{n-j+1}\left(\hat{K}_{1 \ldots j}, \ldots\right)$

$$
\begin{gathered}
k_{l}^{\mu} \text { unchanged, } \quad 1<l<n, \\
k_{1}^{\mu} \rightarrow \hat{k}_{1}^{\mu}=k_{1}^{\mu}-\frac{K_{1 \cdots j}^{2}}{2\left\langle n^{-}\right| K_{1 \ldots j}\left|1^{-}\right\rangle}\left\langle n^{-}\right| \gamma^{\mu}\left|1^{-}\right\rangle, \\
k_{n}^{\mu} \rightarrow \hat{k}_{n}^{\mu}=k_{n}^{\mu}+\frac{K_{1 \ldots j}^{2}}{2\left\langle n^{-}\right| K_{1 \cdots j}\left|1^{-}\right\rangle}\left\langle n^{-}\right| \gamma^{\mu}\left|1^{-}\right\rangle, \\
\hat{K}_{1 \cdots j}=K_{1 \cdots j}^{\mu}-\frac{K_{1 \cdots j}^{2}}{2\left\langle n^{-}\right| K_{1 \cdots j}\left|1^{-}\right\rangle}\left\langle n^{-}\right| \gamma^{\mu}\left|1^{-}\right\rangle,
\end{gathered}
$$

- Massless momenta: $\hat{k}_{1}^{2}, \hat{k}_{n}^{2}, \hat{K}_{1 \ldots j}^{2}=0$

Proof Ingredients

Britto, Cachazo, Feng, Witten (2004)

- Complex shift of momenta (j, l)

$$
\begin{aligned}
p_{j}^{\mu} \rightarrow p_{j}^{\mu}(z) & =p_{j}^{\mu}-\frac{z}{2}\left\langle j^{-}\right| \gamma^{\mu}\left|l^{-}\right\rangle \\
p_{l}^{\mu} \rightarrow p_{l}^{\mu}(z) & =p_{l}^{\mu}+\frac{z}{2}\left\langle j^{-}\right| \gamma^{\mu}\left|l^{-}\right\rangle
\end{aligned}
$$

- Purely rational function
- Behavior as $\mathrm{z} \rightarrow \infty$: need $A(\mathrm{z}) \rightarrow 0$
- Knowledge of factorization: at tree level, tracks known multiparticle-pole and collinear factorization

On-Shell Recurrence at Loop Level

> Bern, Dixon, DAK (2005)

- Subtleties in factorization: factorization in complex momenta is not exactly the same as for real momenta
- Study finite amplitudes: purely rational $\mathrm{A}(+\ldots+), \mathrm{A}(-+\ldots+)$
- Obtain recurrence relations which agree with known results (Chalmers, Bern, Dixon, DAK; Mahlon)
- and yield simpler forms
- Simpler forms involve spurious singularities

Challenges Ahead

- Twistor string side: understand one-loop structure (conformal supergravitons); connected-curve picture?
- Tree-level gauge theory: what relates all the different representations of amplitudes?
- Loop-level gauge theory: compute new QCD amplitudes
- Interface with non-QCD parts of amplitudes
- Higgs + Gluons (Dixon, Glover, \& Khoze)
- W + QCD (Bern, Forde, Mastrolia, \& DAK)
- Keep the virtuous circle twistor string gauge theory going

