Particules Élémentaires, Gravitation et Cosmologie Année 2007-'08

Le Modèle Standard et ses extensions

The 3 Theorems of the flavour sector (in spite of the many parameters in \mathcal{L}) $+\psi_i\lambda_{ij}\psi_jh+h.c.$ (the 2nd line of page 1)

* Theorem 1: Neglecting v-masses, L_e, L_μ and L_τ are separately conserved (and CP is exact in the lepton sector)

Theorem 2: In the quarks, all flavor violations reside in the weak charged-current amplitude proportional to a unitary matrix $u_i = (u, c, t)$ w $= V_{ij}A$ with $VV^+ = 1$ $d_j = (d, s, b)$

*Theorem 3: Neglecting v-masses, CP is violated in as much as V is "intrinsically" complex, i.e. a single phase δ is nonzero

(*with some qualifications - see below)

Theorem 3: Neglecting v-masses, CP is violated in as much as* V is "intrinsically" complex, i.e. a single phase δ is nonzero

Proof: 1. Under a CP transformation $\begin{aligned} \psi(\mathbf{x},t) \to i\gamma_2\gamma_0\psi(-\mathbf{x},t)^* \\ A_{\mu}(\mathbf{x},t) \to -A_{\tilde{\mu}}(-\mathbf{x},t) \\ Z_{\mu}(\mathbf{x},t) \to -Z_{\tilde{\mu}}(-\mathbf{x},t) \\ W^+_{\mu}(\mathbf{x},t) \to -W^-_{\tilde{\mu}}(-\mathbf{x},t) \\ h(\mathbf{x},t) \to h(-\mathbf{x},t) \end{aligned}$

(a Lorenz index with a ~ requires an overall extra - sign if it is a space index) so that:

$$particle(\mathbf{p}, \mathbf{s}) \rightarrow antiparticle(-\mathbf{p}, \mathbf{s})$$

*neglecting $\theta G^a_{\mu\nu}G^a_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$ where θ is a parameter which may be set to 0, maybe by a dynamical mechanism (the axion?)

2. Using the previous rules, the overall \mathcal{L} is unchanged* under a CP transformation, except for

$$gW^{+}_{\mu}\bar{u}\gamma_{\mu}Vd + gW^{-}_{\mu}\bar{d}\gamma_{\mu}V^{+}u \Rightarrow gW^{-}_{\mu}\bar{d}\gamma_{\mu}V^{T}u + gW^{+}_{\mu}\bar{u}\gamma_{\mu}V^{*}d$$

Counting "intrinsic" phases:

$$N(V_{n \times n}) = n^{2}$$

$$N(O_{n \times n}) = \frac{n(n-1)}{2} \implies N(phys.phases) = n^{2} - \frac{n(n-1)}{2} - (2n-1) = \frac{1}{2}(n^{2} - 3n + 2)$$

$$\boxed{\begin{array}{c}n & 2 & 3 & 4\\ angles & 1 & 3 & 6\\ phys. & 0 & 1 & 3\end{array}}$$
Q.E.D.

(*actually: $\mathcal{L}(\mathbf{x},t) \to \mathcal{L}(-\mathbf{x},t)$ so that $S = \int d^4x \mathcal{L}$ is unchanged)

CP-violating observables

- Useful to "integrate out" the heavy particles (t, W, Z) to obtain an \mathcal{L}^{eff} and repeat the logic just applied to the full SM Lagrangian (a low energy experiment is insensitive to "short distance" physics) Which operators can give rise to observable CP-violation? \Rightarrow In order of increasing dimensionality (= decreasing relevance): dim 5: <u>quarks Electric Dipole Moments</u> $\mathcal{L}^{eff} = \mu \bar{q_L} \sigma_{\mu\nu} q_R F^{\mu\nu} + m \bar{q_L} q_R \quad \text{with } \mu/\text{m complex}$ $\Rightarrow d_{neutron}(SM) \approx 10^{-31} e \cdot cm$ $d_{neutron}(exp) \le 6 \cdot 10^{-26} e \cdot cm \approx 10^{-11} \frac{e}{2m_{N}}$
 - $\begin{bmatrix} d_e(SM) \approx 0 \text{ against} \\ d_e(exp) = (0.07 \pm 0.07) 10^{-26} e \cdot cm \approx 10^{-16} \mu_B \end{bmatrix}$

CP-violating observables (continued) dim 6: FCNC $(\bar{q}q)(\bar{q}q)$ interactions

Consider, e.g., strangeness changing interaction

$$\mathcal{L}_{eff}^{(\Delta S\neq0)} = \mathcal{L}_{eff}^{(\Delta S=2)} + \mathcal{L}_{eff}^{(\Delta S=1)} + \mathcal{L}_{eff}^{(\Delta S=1;semilept.)} + h.c$$

$$\mathcal{L}_{eff}^{(\Delta S=2)} = A(\bar{s}_L \gamma_\mu d_L)(\bar{s}_L \gamma_\mu d_L) \longleftarrow (\bar{s}_L \gamma_\mu d_L) \bigoplus (\bar{q}_L \gamma_\mu d_L) \bigoplus (\bar{q}_L \gamma_\mu d_L)(\bar{q}_L \gamma_\mu d_L) \bigoplus (\bar{q}_L \gamma_\mu d_L) \bigoplus (\bar{q}_L \gamma_\mu d_L)(\bar{q}_L \gamma_\mu d_L) \bigoplus$$

A relative phase between:

- 1. A and any of the B_q ($\phi(A) \neq 2\phi(B)$)
- 2. the B_q themselves
- 3. A and any the C_l

is genuine and gives in principle an observable effect

Case 1 (*indirect*)

$$\epsilon_K \Rightarrow \Delta S = 2/\Delta S = 1$$

$$|\eta_{+-}| \equiv |\frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)}| = (2.236 \pm 0.007) 10^{-3}$$

$$|\eta_{00}| \equiv |\frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)}| = (2.225 \pm 0.007) 10^{-3}$$

$$\delta_{K} = \frac{\Gamma(K_{L} \to \pi^{-}l^{+}\nu) - \Gamma(K_{L} \to \pi^{+}l^{-}\bar{\nu})}{\Gamma(K_{L} \to \pi^{-}l^{+}\nu) + \Gamma(K_{L} \to \pi^{+}l^{-}\bar{\nu})} = (3.32 \pm 0.06)10^{-3}$$

(The 2π system in an S-wave is a CP eigenstate because of Bose statistic)

It follows that

$$CP \ \mathcal{H} \ CP^{-1} \neq \mathcal{H}$$

and that K_L, K_S are not quite the same as K_1, K_2 of lecture 6, but rather

$$|K_{L,S}\rangle = \frac{1}{\sqrt{|p|^2 + |q|^2}} (p|K^0 > \pm q|\bar{K}^0 >)$$
$$|\frac{q}{p}| = |\frac{1 - \varepsilon_K}{1 + \varepsilon_K}| \neq 1 \qquad |\varepsilon_K| = (2.232 \pm 0.007) 10^{-3}$$

$$\frac{\Gamma(\bar{B}_d \to K^- \pi^+) - \Gamma(B_d \to K^+ \pi^-)}{\Gamma(\bar{B}_d \to K^- \pi^+) + \Gamma(B_d \to K^+ \pi^-)} = -0.095 \pm 0.013$$
and in other channel

and in other channels as well

The Flavour Precision Tests 2

$(\Rightarrow = CP-violating measurements)$

(ϵ'_K not included because of uncertain matrix element)

	Observable	elementary process	exp. error	theor. error
\Rightarrow	ϵ_K	$\bar{s}d \to \bar{ds}$	1%	$10 \div 15\%$
	$K^+ \to \pi^+ \bar{\nu} \nu$	$s \to d \ \bar{\nu}\nu$	70%	3%
\Rightarrow	$K^0 \to \pi^0 \bar{\nu} \nu$	$s \to d \ \bar{\nu}\nu$		1%
	Δm_{Bd}	$\overline{b}d \to d\overline{b}$	1%	25%
\Rightarrow	$A_{CP}(B_d \to \Psi K_S)$	$\overline{b}d \to d\overline{b}$	5%	< 1%
	$B_d \to X_s + \gamma$	$b \rightarrow s + \gamma$	10%	$5 \div 10\%$
	$B_d \to X_s + \overline{l}l$	$b \to s + \overline{l}l$	25%	$10 \div 15\%$
	$B_d \to X_d + \gamma$	$b \rightarrow d + \gamma$		$10 \div 15\%$
	$B_d \to \overline{l}l$	$b\bar{d} \to \bar{l}l$		10%
	$B_d \to X_d + \overline{ll}$	$b \to d + \overline{l}l$		$10 \div 15\%$
	Δm_{Bs}	$\overline{b}s \to \overline{s}b$	< 1%	25%
\Rightarrow	$A_{CP}(B_s \to \Psi \phi)$	$bs \to \bar{s}b$		1%
·	$B_s \to \overline{ll}$	$b\overline{s} \to \overline{l}l$		10%

A remarkable list of <u>calculable loop effects</u>, with virtual Ws All agreeing with the SM ($\sim 2000 \rightarrow$)

The Flavour tests 2

a non degenerate triangle = CP violation

The Flavour tests 1

a non degenerate triangle= CP violation (see below)

The overall fit

A summary of the present status

1 - We know the SM works quantitatively in the full quark sector (<u>A major change in the 2000's</u>)

2 - If there are other degrees of freedom at the Fermi scale carrying flavour (e.g. the s-fermions), <u>unlikely</u> that there be no extra flavour phenomena observable at some level

3 - We know all the 10 parameters in the quark sector (6 +3+1) and 7 (3+2+2) out of the 10/12 (6 +3 +1/3) in the lepton sector (but no hard theory for them)

The persistent flavour puzzle

Many attempts

Can one claim any real success?