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Particules Élémentaires, Gravitation et Cosmologie
Année 2008-’09

Gravitation et Cosmologie: le Modèle Standard
Cours 4: 16 janvier 2009

Einstein’s Equations 
and first consequences

• Construction of an invariant action
• Einstein’s equations and conservation laws
• The Schwarzschild solution
• Motion in Schwarzschild and two tests of GR
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A GCT-invariant action 
Instead of following the historical route let us arrive at
Einstein’s Equations via the action principle.
Like for the non-gravitational interactions we will impose
that the action obey the same symmetries that we wish
our theory to have. In the case of the SM the basic
symmetry to be imposed was the gauge symmetry. 
Similarly, for gravity, the relevant symmetry is the one
under GCT.
From our previous mathematical discussion we know how
to construct quantities which are invariant under GCT. 
We shall proceed in two steps: 1) Suitably modify the SM
action; 2) Add a pure gravitational term. This will give EEs.
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According to the EP we should modify the SM 
action in such a way that: i) it becomes invariant 
under GCT; ii) it reduces to the SM action when we 
go to locally-inertial-coordinates (gμν --> ημν)

This is relatively easy: it basically consists of:
1. Adding a (-g)1/2 to the integration measure d4x
2. Convert derivatives into “covariant derivatives” also 
w.r.t. GCT (i.e. using Γ, there is a little technical 
subtlety for fermions but it can be done)

Modifying the SM action 



S = − 1
16πG

∫
d4x

√
−g(x)R(x)

S = λ

∫
d4x

√
−g(x)
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Like again with the SM we shall limit ourselves to 
terms with up to two derivatives (= low-energy, 
large-distance approximation). It is easy to find an 
invariant term with no derivatives.  It is simply:

There is no invariant term with one derivative and a 
unique one with two derivatives. It contains the 
curvature scalar and is called the Einstein-Hilbert term

Adding a pure-gravity term

 where λ is a constant

 where G will be 
identified with 
Newton’s constant



S = S(gen. cov.)
SM + Sgr

Sgr = − 1
16πG

∫
d4x

√
−g(x) (R(x)− 2Λ)

Λ ≡ 8πGλ
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This is basically it! Summarizing, we can write the 
full action of all interactions (!!) simply as:

It is quite amazing how the EP and invariance under GCT 
tell us how to add gravity to our chosen theory of the 
other interactions! This makes it even more fustrating 
the fact that we are unable to fully quantize such a 
simple and beautiful generalization of the SM.



16 January 2009 G. Veneziano, Cours no. 4 6

Einstein’s equations
In order to get Einstein’s Equations (EE) we simply have to 
put to zero the variation of the action. Consider first the 
variation of Sgr. With the help of a few formulae for the 
variation of det g and R we arrive at:

There is actually a tricky point here: the variation of R 
gives the above result modulo some boundary terms. In 
the usual variational principle boundary terms are 
neglected since  δgμν=0 on the boundary. But here we also 
get derivatives of δgμν  on the boundary. Need to add 
surface term to Sgr (Hawking-Gibbons). Unimportant here.

δSgr =
1

16πG

∫
d4x

√
−g(x)

(
Rµν(x)− 1

2
gµνR(x)− gµνΛ

)
δgµν(x)



Rµν(x)− 1
2
gµνR(x)− gµνΛ = −8πGTµν

δ (Sm + Sgr) = 0
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The variation of the SM action is well defined but 
complicated. One replaces the SM action by an effective 
model generally called the matter action, Sm. Then one 
simply defines the energy momentum tensor of matter 
from the variation of Sm:

 Imposing now:  we get:

These are just Einstein’s equations in the presence of a 
cosmological constant (apparently needed experimentally!)

δSm =
1
2

∫
d4x

√
−g(x)Tµν(x)δgµν(x)



0 = δGCT Sm =
1
2

∫
d4x
√
−gTµνδGCT gµν +

∑

i

∫
δSm

δφi
δGCT φi

δGCT gµν = gµρε
ρ
,ν + gνρε

ρ
,µ + gµν,ρε

ρ

x̃µ = xµ − εµ(x)
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Covariant conservation of Tμν 
There is an important consequence of the independent 
invariance of Sm and Sgr . On the equations of motion the 
energy-momentum tensor is covariantly conserved!

T ν
µ;ν = 0

Proof: set to 0 the variation of Sm wrt infinitesimal GCT

Last term vanishes on eom. For 

Integrating by parts, since ερ is arbitrary, gives T ν
µ;ν = 0



(Rν
µ −

1
2
δν
µR);ν = 0

Rµν = −8πG

(
Tµν −

1
2
gµνTλ

λ

)
− gµνΛ

Rµν −
1
2
gµνR− gµνΛ = −8πGTµν
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The Bianchi identities
We may repeat the argument for Sgr itself. Instead of Tμν 
we get the Einstein tensor and therefore the analogue of

T ν
µ;ν = 0 becomes

as it should, because of EEs! The latter equation is part of 
a larger set of (differential) identities satisfied by the 
Riemann tensor and known as the Bianchi identities (Cf. 
homogeneous Maxwell eqns.). Other forms of E.equations:

(trivial for gμν )

or also



Rµν −
1
2
gµνR = −8πGTµν ; (Λ = 0)
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10 formidable equations!

Non linear 2nd order PDEs. An enormous literature, often 
mathematically very sophisticated. Four kinds of results:

1. General results on the existence of solutions and on their 
qualitative properties (e.g. development of singularities)

2.  Explicit analytic solutions in the presence of special 
symmetries (leading to ODEs or, in some cases, 2D-eqns). 
Homogeneous isotropic cosmology belongs here (see later)

3. Perturbations of trivial space-times and/or of exact 
solutions (e.g. gravitational waves, cosm. perturbations)

4. Numerical solutions (much progress recently)



ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2 ; dΩ2 = dθ2 + sin2θdφ2
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The Schwarzschild solution
One of the first and simplest examples of exact solutions 
is that of static, spherically symmetric gravitational field 
(Schwarzschild, 1916).
A very interesting property of the Sch. metric is its 
uniqueness outside the region of space where the source of 
the gravitational field is. Like in the Newtonian case, the 
solution is fully determined by a single parameter, M.

The Sch. metric can be written in different coordinate 
systems. In a particularly convenient one the most 
general solution has the explicitly static and spherically 
symmetric form:



ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2 ; dΩ2 = dθ2 + sin2θdφ2

ds2
Schw. = −

(
1− 2GM

r

)
dt2 +

1
(1− 2GM

r )
dr2 + r2dΩ2

−g00 ∼ 1− 2GM

r

(AB)′ = 0⇒ A = 1/B ; (rB)′ = 1⇒ B = 1 +
C

r
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The Schwarzschild solution

Assume that there is no matter for r > r* (Tμν(r > r*)=0) 
Then also Rμν(r > r*)=0. Also A(r), B(r) -->1 at very large r
Only Rrr, Rtt, Rθθ give non trivial equations (and Rrr =0 follows 
from the other two). We get the following two equations:

We have already found (cours 2) the 
meaning of the constant of integration
Finally we have (r >r*): => C = -2GM



ds2
Schw. = −

(
1− 2GM

r

)
dt2 +

1
(1− 2GM

r )
dr2 + r2dΩ2

S = −m

∫
dλ

√
−gµν(x)

dxµ(λ)
dλ

dxν(λ)
dλ

S = −m

∫
dλ

√

B(r)
(

dt

dλ

)2

−B−1(r)
(

dr

dλ

)2

− r2

(
dφ

dλ

)2

(
B(r) = 1− 2GM

r

)

16 January 2009 G. Veneziano, Cours no. 4 13

Motion in a Schwarzschild metric

Easier to get eom by varying the action for a particle in that 
specific metric. For r >r* and for a motion on the equatorial 
plane θ= π/2, the generic action (c=1)

gives

The actual motion is the one minimizing S wrt variations of  
t(λ), φ(λ), r(λ). First two variations are quite trivial:



S = −m

∫
dλ

√

B(r)
(

dt

dλ

)2

−B−1(r)
(

dr

dλ

)2

− r2

(
dφ

dλ

)2 (
B(r) = 1− 2GM

r

)

d

dλ

(
B

dt

dλ

)
= 0 ⇒ dt

dλ
= B−1

d

dλ

(
r2 dφ

dλ

)
= 0 ⇒ dφ

dλ
=

J

Er2

(
dr

dλ

)2

= 1− B(r)
E2

(
m2 +

J2

r2

)
≡ ∆(r;E, J)
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Motion in a Schwarzschild metric

(normalizing λ)

The third equation corresponds to conservation of energy

(J and E are 
int. constants)

This is the (implicitly given) analytic solution of the problem!



(
dr

dλ

)2

= 1− B(r)
E2

(
m2 +

J2

r2

)
≡ ∆(r;E, J)

dt

dλ
= B−1 ;

dφ

dλ
=

J

Er2
;

(
B(r) ≡ 1− 2GM

r

)

dλ =
dr√
∆(r)

; dt =
dr

B(r)
√

∆(r)
; dφ =

Jdr

Er2
√

∆(r)
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Motion in a Schwarzschild metric

reduces to quadratures (elliptic integrals)

 Δ=0 corresponds to closest point for unbound trajectories 
or to perihelion and aphelion for bound trajectories. 
If the Schwarzschild radius RS= 2GM lies outside the body 
we have a black hole with a horizon at r = RS.



∆φ = 2
∫ ∞

r0

dr(J/E)
r2

√
∆(r)

− π ; J/E = b ∼ r0

∆φ ∼ 2RS

b
=

4GMsun

Rsun

Rsun

b
∼ 1.75′′ Rsun

b
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I. Deflection of light

Δφ
r0

b

The approximate calculation is long but straightforward 
and gives:

Confirmed during sun eclipses (first time in 1919!)



∆φ = 2
∫ r+

r−

dr(J/E)
r2

√
∆(r)

− 2π

∆φ ∼ 3πRS

2

(
1
r+

+
1
r−

)
=

3πRS

(1− e2)a
; r± = (1± e)a
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II. Precession of Perihelia

r-r+

Another long calculation gives:

a

For Mercury this is ~ 0.1038’’ /revolution or ~ 43.03’’/century 
(100y~ 415 revolutions). Data since 1765 confirm it (Clemence 
1943) with high accuracy (better than from light deflection)

sun

Mercury’s 
orbit
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Addendum about GR tests
Actually, the perihelion precession test is affected by 
uncertainties. These are due to the existence of other 
competing contributions having nothing to do with GR:
1) planetary perturbations, 2) the Earth’s spin precession, 
and 3) a possible quadrupole moment of the sun. In 
particular, the latter effect is small but poorly known

As we shall see in T. Damour’s seminars, there are by now 
better tests of GR. Furthermore, it has become standard 
practice to test GR against alternative theories by 
establishing experimental bounds on some “GR-deformation” 
parameters that characterize them. No evidence for 
significant deviations from GR has been found so far.


