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D-cordes, D-branes

• T-duality for open strings, D-strings
• D-branes as end-points of D-strings
• D-branes as classical solutions, DBI action
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Several compact dimensions (Narain)
Consider the case of d > 1 (but still toroidal) compact 
coordinates. Both the internal momenta and the windings 
become d-dimensional vectors. The analogues of the 
constraints we had for 1 compact (closed string) coordinate:

now become (the suffix 0 indicates the zero-mode part):

M2 =
n2

R2
+

w2R2

α′2 +
2
α′ (N + Ñ − 2) ; N − Ñ + nw = 0

The second constraint is invariant under an O(d,d) non-
compact group of rotations in 2d-dimensions, while the first is 
only invariant under an O(d)xO(d) subgroup. The coset  
O(d,d)/[O(d)xO(d)] labels the inequivalent compactifications.

where:
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The number of parameters needed to specify a given toroidal 
compactification is thus 2d(2d-1)/2 - d(d-1) =d2. 
This is precisely the number of “internal” Gij and Bij 
backgrounds which, indeed, can be used to specify the 
compactification while keeping the d-coordinates simply 
periodic with the same period 2π R. 

However, as for d=1, this is not the full story: there are 
discrete duality transformations (of the R-->1/R type) that 
make apparently different compactifications actually 
equivalent. 
They form a discrete O(d,d;Z) group. Thus the true moduli 
space of toroidal compactifications is: 

O(d,d)/[O(d)xO(d)x O(d,d;Z)].

O(d,d)/[O(d)xO(d)]
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Constraints on compactifications
Consider the dimensionless left and right-moving momenta:

and rewrite one of the constraints:

Left + right momenta belong to a 2d-dimensional lattice Γ. 
Defining a Lorentzian scalar product (with d +signs and d        
-signs) we conclude that Γmust be an even lattice (k2 = even). 
This is sufficient for the modular subgroup τ--> τ+1. 
However, invariance under τ--> -1/τis more restrictive
and requires Γto be a self-dual lattice: Γ= Γ*, where Γ*  
consists of all the points having integer scalar product with 
those of Γ.
In conclusion: modular invariance (and thus Green-Schwarz 
anomaly cancellation) restricts Γ to be even and self-dual.



g−2
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T-duality and the dilaton
There is a subtle point about T-duality. It can be appreciated 
by looking at the effective action:

When one dimension is compactified on a circle, physics in the 
remaining D-1 dimensions depends on a rescaled dilaton:

As it turns out T-duality has to be accompanied by a 
transformation of Φ such that the effective coupling in the 
non-compact dimensions remains the same. In general:

Γeff = −
(

1
ls

)D−2∫
dDx

√
−Ge−2Φ

[
4(D −Dc)

3l2s
+ R(G)− 4∂µΦ∂µΦ +

1
12

H2 + . . .

]
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A cosmological variant of T-duality?
In our description of toroidal compactifications and of T-
duality all the “internal” backgrounds Gij and Bij were constant. 
For certain properties it is sufficient that they are 
independent of just the “internal” coordinates themselves. 
A physically interesting case it that of an homogeneous 
cosmology with Gij and Bij  just functions of cosmic time. In 
that case we can still perform CT mixing Pi and Xi’ and find out 
what transformations they induce on Gij(t) and Bij(t). In 
analogy with Narain’s case these transformations, if applied 
to a cosmological solution, lead, in general, to other 
inequivalent cosmological solutions.  They form, again, an 
O(d,d) group (involving also a change of the dilaton). 
An interesting example is scale-factor-duality whereby the 
scale factor a(t) of FRW cosmology goes to a-1(±t) (it can 
connect a decelerating expansion to an accelerating one driven 
by a growing dilaton) => a non-singular string cosmology?
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T-duality for open strings

We have seen that, for closed strings moving in a space with 
a compact dimension, there is an interesting duality changing 
R into ls2/2R and swapping momentum and winding.
This result looks so peculiar to closed strings that, for many 
years, no one thought that anything similar could apply to 
open strings since they cannot wind.
On the other hand, open strings can evolve into closed 
strings and back (in fact they cannot exist in isolation!) and 
closed strings can wind. Something looks wrong (or rather 
looked wrong to J. Polchinski in 1995). 
It was the start of the so-called 2nd revolution (after the 
1984 GS revolution)!
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We have seen that T-duality corresponds to a canonical 
transformation exchanging TX’ with P. 
Neumann boundary conditions correspond to setting X’=0 
at the ends of the open string, while Dirichlet boundary 
conditions mean δX=0, which amounts to setting P = 0. 

It looks therefore highly reasonable that, for open strings, 
T-duality simply changes their boundary conditions from N 
to D, and vice versa.
Unlike closed strings, open string are not “self T-dual”: 
they come in two kinds which are T-dual to each other!
Recall that we can choose N or D boundary conditions 
independently for each string coordinate.

X ′
µδXµ(σ = 0) = X ′

µδXµ(σ = π) ; (no sum over µ)

The key to solving this puzzle is in the boundary conditions 
for open strings:
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If we set Dirichlet BC for a certain number n of spatial 
directions, the ends of such strings are only free to move 
in the remaining (D-n) directions. These span (D-n)-
dimensional  hyperplanes immersed in the full spacetime.
Such hyperplanes are called D-branes (D for Dirichlet) or, 
more precisely, Dp-branes, where p = (D-n-1). p is the 
number of spatial dimensions of the hyperplane to which 
one should add time in order to arrive at p+1 = D-n.
Time is usually assumed to satisfy NBC, otherwise it does 
not flow for the ends of the string (however, see below). 
Summarizing: the hypersurface on which the ends of our 
D-strings can move is (p+1)-dimensional. Such open strings 
have (p+1) Neumann and n Dirichlet directions. Examples:
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D-1-Brane

D0-Brane D1-Brane D2-Brane

Time Time Time

(instanton)

(point-particle) (string) (membrane)
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26 mars 2010 G. Veneziano Cours XIII 11

Let’s now look at how this works when we compactify one 
dimension, x5. The X5 coordinate of an N-string is given by:

X(N)
5 (σ, τ) = q5 + 2nα′

!
R

τ + i
√

2α′
∞∑

n=1

[
an,5√

n
e−inτ −

a†n,5√
n

einτ

]
cos(nσ)

We now use T-duality i.e. interchange P5 and TX’5. It is 
easy to see that the result is simply:

X(D)
5 (σ, τ) = q5 + 2wR̃σ + i

√
2α′

∞∑

n=1

[
an,5√

n
e−inτ −

a†n,5√
n

einτ

]
sin(nσ)

Indeed:

But then the D-string winds around the dual circle w-times! 
D-strings can wind!!
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X
5
!

Xi,T

w=1
2R

w=0

N-stringD-strings

NB: T-dual N and D-strings move/wind around dual circles!

or
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!
R

τ + 2wRσ
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n

e2in(τ+σ)

]
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X
5
!

Xi,T

w=1 w=2
w= -1

2R

to be compared with the closed string case:



26 mars 2010 G. Veneziano Cours XIII

14

(D-2)-Brane
(1 D-coordinate)

w=0

w=1 x5x5

identified hyperplanes

14



L0 = 1⇒M2 =
!2n2

R2
+

w2R2

α′2 +
1
α′ (N − 1)

a†1µ|0〉
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For the open bosonic string the mass shell condition reads:

where w=0 for the N-case and n=0 for D. For generic R the 
massless states are given by n=w=0, N=1,  i.e. by the states

.  Let us concentrate on the Dirichlet case.

The answer is quite simple and elegant. The presence of the 
brane clearly breaks (spontaneously) translation invariance in 
the 5th direction. The massless scalar is the Nambu-
Goldstone boson of that broken symmetry and describes the 
possible local deformations of the brane itself!

If the index of the oscillator is not 5 this is a gauge boson 
stuck on the brane (in (D-1)-dimensions with (D-3) physical 
components); if the index is 5 it’s a massless scalar also 
confined to the brane. What’s the meaning of this scalar?



WR
C = TrTexp

(
iq

∫

C
dxµAa

µ(x)T a
R

)

qAa
5(x)T a

R = − 1
2πR

diag (θ1, θ2, . . . θN ) W =
N∑

i=1

e−iθi
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In QFT there are interesting gauge-invariant non-local 
operators called Wilson loops (cf. confinement criteria):

where C is a closed loop in spacetime. When one dimension of 
space is compactified one can consider a (topologically non-
trivial) C that wraps around the compact dimension. Even if 
the gauge field is trivial (a pure gauge) such a Wilson loop, 
called a Wilson line, can be non-trivial. Take indeed:

Turning on Wilson lines

Where the θi are constants (hence A is a pure gauge). It is 
known that non-trivial Wilson lines break spontaneously the 
gauge symmetry.



M2
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R

+
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2πR
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+
1
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In the presence of a U(1) gauge potential, we need to make 
the usual (minimal) substitution:

In our case, consider the open string sector with Chan-Paton 
quantum numbers (ij). It has charge +q with respect to the ith 
gauge boson and charge -q wrt the jth. Hence, for such a (ij) 
string, minimal substitution gives:

and the mass formulae become:

Its T-dual is again obtained by P-->X’ and R--> ls2/2R. It has:

i.e. the string spans an angle 2wπ +(θi - θj) around the circle.



M2
ij =

(
wR̃

α′ +
(θi − θj)R̃

2πα′

)2

+
1
α′ (N − 1) for DBC
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We thus see that, in the T-dual (Dirichlet) description, the 
presence of Wilson lines has added a contribution to the mass 
of the gauge bosons equal to T times the distance between 
two branes placed at anglesθi and θj along the (dual) circle. 

w=1,ii

w=0,ii
w=0,ij

brane j

brane i

Also:

A D-string with quantum numbers ij has now one end on the ith 
brane and the other on the jth brane. While the (ii) & (jj) 
strings can be massless, the (ij) string cannot. This is how one 
sees the breaking of the U(N) gauge symmetry in the dual 
picture!



θ1R̃ θ2R̃ θN R̃
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19

identified hyperplanes

.......
In general the symmetry is broken down to U(1)N. If some 
branes overlap it is broken to U(1)N1 U(1)N2 ..... U(1)Np 

19
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Note that in the generic case each “diagonal” massless 
vector is accompanied by a massless scalar interpreted as 
the field describing the transverse fluctuations of that 
brane.
When n branes overlap (i.e. when some of the angles 
coincide) we get n2 massless gauge bosons since each end 
can be on any of the n coincident branes without 
generating mass.
Also, one finds the same number n2 of massless scalars 
whose meaning is not entirely clear (I think). 
These scalar fields are themselves matrices and are like 
non-commuting coordinates of a many-brane system.



1
!Sp = −cpl

−(d+1)
s

∫
dp+1ξe−Φ

[
−det (Gab + Bab + πl2sFab)

]1/2

Gab =
∂Xµ

∂ξa

∂Xν

∂ξb
Gµν(X(ξ)) Bab =

∂Xµ

∂ξa

∂Xν

∂ξb
Bµν(X(ξ))

26 mars 2010 G. Veneziano Cours XIII 21

Can we find a low-energy effective action that describes 
the dynamics of a single D-brane?
The answer is yes and quite simple. It goes back to an 
action invented long ago by Born and Infeld (for completely 
different and unsuccessful purposes), used by Dirac, and 
called the DBI (Dirac-Born-Infeld) action.

The Dp-brane action

where cp is a known p-dependent number and Gab , Bab , are 
the induced metric and B on the brane’s world sheet: 

while Fab is the gauge field strength of its associated U(1). 
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The physical scalar degrees of freedom are only (D-p-1), i.e. 
exactly what we have after using invariance under 
reparametrization of the (p+1)ξa coordinates.

Note that this action also includes the scalar fields         
Xμ, describing the transverse fluctuations of the brane.

Another observation concerns the dependence of the brane 
action from the dilaton. Instead of the overall exp(-2Φ) of the 
effective closed-string action we get here a factor exp(-Φ). 

 This is exactly what we should expect since the open-string 
coupling is exp(-Φ) while the closed-string coupling is exp(-2Φ).
 Let us finally mention the idea of a brane Universe. Since the 
ends of open strings are stuck on the brane, if all the SM 
particles are open strings we may be living on a 3-brane and only 
gravity and other gravitational-like forces would feel the full 
dimensionality of spacetime. In this brane-Universe scenario 
gravity is typically modified at short distances without 
contradicting, so far, any experimental facts.
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D-branes as classical solutions
We have described D-branes from an open-string viewpoint 
(hypersurfaces on which open strings end) but actually D-
branes also emerge as classical solutions of the string 
effective action when we add all the massless bosonic fields 
contained in Type IIa or IIb superstring theories. Of crucial 
importance are the RR forms present in such theories since, 
as it turns out, D-brane are “charged” under those fields (i.e. 
they are sources for the forms). A p-brane couples naturally 
to a (p+1)-form potential. Thus, Type IIa, having odd forms, 
gives rise to even-p-branes, the opposite being the case for 
Type IIb. 
The solutions are relatively simple: metric, dilaton and the 
relevant forms only depend on the transverse distance from 
the brane. If wrapped they can give rise to “black-branes”.
We will not need these for this year’s course (but will be 
important for Black-Holes, AdS/CFT etc.)


