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Obviously, a lot of work in between....
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In principle, given a lagrangian, and hence an action S, once can always
calculate an expectation value of a given operator:

@) = 5 [ Doo(s)exp(~5(0)

In practice, of course, this is not easily doable, especially analitically.



Numerical Methods in QCD (4/29)
L Introduction

n Lattice
Lattice

In principle, given a lagrangian, and hence an action S, once can always
calculate an expectation value of a given operator:

1
(@) = 5 [ Doo@) exp(-S(0)
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One possible way out: discretize the space-time. This transforms the
integral above into a finite sum:
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In principle, given a lagrangian, and hence an action S, once can always
calculate an expectation value of a given operator:

1
(@) = 5 [ Doo@) exp(-S(0)
In practice, of course, this is not easily doable, especially analitically.

One possible way out: discretize the space-time. This transforms the
integral above into a finite sum:

(®(¢)) ~ > (6D )w (o)

field configurations i

Price to pay: large computing power needed.
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Two distance scales are important:

) a: grid size
L: total lattice size

Of course, L must be larger than the system we are trying to describe,
while a must be small enough to ‘see’ its details.

Recalling that the size of a light hadron is ~ 1/Agcp, we'd like to have
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- Lattice

Two distance scales are important:

) a: grid size
L: total lattice size

Of course, L must be larger than the system we are trying to describe,
while a must be small enough to ‘see’ its details.

Recalling that the size of a light hadron is ~ 1/Agcp, we'd like to have
1 1
kK — <KL < —<<L
mq  Neco Mg
In practice, the finite amount of computing power restricts us to
1

1
anmy — KL < —<L
mqg  NAgcp Mg




Numerical Methods in QCD (6/29)
Introduction

Selected Lattice Results

Lattice
E—
.......... - Ungpelariet Fulasired
12 | CP-PACS (1098 | . | | - ol o
Q11 (1903 1 A . .
xpuriment = 1]
" iy -
.- .
. = ‘o L 2 | i = e
My : S AR~ 4 on e
12 A e . F .
[GeV] P = W 1
' = ¢ A I i 1
- T * ’ i 3 T
o e N P-4 |
K+ N Le 4 war-as | L 4 B
ol K ORI T [ = Experimen]
PROTON raniched
- quenched QCD toves sarneese maperres o Senams e mery | = h.vé:ndwd: |
7 a1

Moments of Structure Functions

Light hadron masses Couplings, masses, splittings (A. Shindler & K. Jansen)



Numerical Methods in QCD (6/29)

L Introduction Selected Lattice Results

- Lattice

. Uapslatized FPularised
CPPACS (1098) _ | | - L
¥ o cimom 1 " : ] 1
e ' = i
- . I m
14 - e xf Ly
. i .
yg e
P . i b
| GeV] -
GeV] P I - i
X &% =
ul . =
L TR TR - = Expetimens
- Plox PROTON e
i - TN Cpox e
T -
Moments of Structure Functions
Light hadron masses Couplings, masses, splittings (A. Shindler & K. Jansen)

“Decent” results, but mainly for ‘static’ quantities.
Lattice still cannot do much dynamics.
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“Decent” results, but mainly for ‘static’ quantities.
Lattice still cannot do much dynamics.

For this, we move to perturbative QCD.
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Feynman Diagrams

The main (or at least oldest) tool of z
perturbative QCD are the Feynman
diagrams, e.g.

Procedure fully algorithmic.
In principle any scattering process can be calculated:

1 —
do(ab— n) = —|M(ab — n)[>dLips,,
ux

M@b— )P~ > 3T NN ALl

polarizations colours spins ...
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Feynman Diagrams

e B
The main (or at least oldest) tool of 20
perturbative QCD are the Feynman
diagrams, e.g.

e+ “.+

Procedure fully algorithmic.
In principle any scattering process can be calculated:

1 —
do(ab— n) = —|M(ab — n)[>dLips,,
ux

M@b— )P~ > 3T NN ALl

polarizations colours spins ...

In practice, the calculation becomes quickly very complicated with
increasing number of particles in the final state, as both the number of

diagrams and the complexity of the phase space integration grow
dramatically.
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- Caleutations AP Splitting Functions

Example:
increasing complexity of Altarelli-Parisi splitting functions calculation.

— One-loop Feynman diagrams 5 5
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— Three-loop Feynman diagrams
— in total 9607 for i, / P
(cutting edge technology — computer
algebra system FORM Vermaseren '83-'04)
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L Calculations

2 loops
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Curci, Furmanski, Petronzio, 1979
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Calculations
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calculations:
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L Calculations Calculational tools

Of course, one cannot go on calculating traces and convolutions for thousands of
diagrams by hand.

Three main classes of tools are at our disposal for multi-particle, tree level
calculations:

@ Tools for computer-aided analytical manipulations (Schoonschip M. Veltman,
FORM [www.nikhef.nl/"form/], Mathematica/FeynCalc [www.feyncalc.org],

)

@ Tools for generating, calculating Feynman diagrams, and automatically
integrating over phase space (CompHEP [theory.sinp.msu.ru/comphep],
MadGraph/MadEvent [madgraph.hep.uiuc.edu], Sherpa, ...)

@ Tools for calculating amplitudes numerically directly from the lagrangian
(Alpha/ALPGEN [home.cern.ch/mIm/alpgen], ...)

[A different tack is of course to do analytical calculations without Feynman
diagrams techniques. See Kosower’s seminar for a very recent approach.]

Tree-level calculations have of course limited accuracy. Fully automated
procedures for loop calculations, however, do not yet exist.
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L Phase Space

Phase Space Integration

Given a differential cross section, one must calculate what is really
measured, i.e.

Ocuts = /da@(cuts)

The integration difficulty can range from non-existent
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measured, i.e.

Ocuts = /da@(cuts)

The integration difficulty can range from non-existent

et ptum cos 6> )
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to extremely elevated:

@ many particles in final state

@ cuts on momenta, energies, angles, invariant masses, ...

@ ‘almost singular’ behaviour of cross section due to Breit-Wigner peaks

@ convolutions with parton distribution and fragmentation functions

°
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" Integrations Phase Space Integration

L Phase Space

Given a differential cross section, one must calculate what is really
measured, i.e.

Ocuts = /da@(cuts)

The integration difficulty can range from non-existent

ety cos 6> )
T <0< ~ / (1 + cos” @) dcosb
cos 01
to extremely elevated:
many particles in final state
cuts on momenta, energies, angles, invariant masses, ...
‘almost singular’ behaviour of cross section due to Breit-Wigner peaks

°
°
°
@ convolutions with parton distribution and fragmentation functions
°
=

numerical integration
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U integrations Numerical Phase Space Integration

L Phase Space

Two large classes of numerical integrators: polynomial and Monte Carlo

@ Polynomial integration works best with smooth (well, polynomial) integrands.

Weights are constructed (depending on exact method), and the result is given
by

/ :/vf(X)dX ~ Jz:;wjf(xj)

Convergence (i.e. uncertainty on result) goes like op ~ l/N%, p being the
number of dimensions

@ Monte Carlo integration does not care about smoothness. The result is given by
L
I=V{f) =~V > f(x)
j=1

Convergence goes like oy ~ 1/\/N

= For p > 2,3 Monte Carlo integration starts being faster
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Monte Carlo Integration
L Phase Space

The n-particles phase space

dLipSn = 5(4) (Z Pinitial - Z Pfinal) - d3pi

L1 2F;
i=1

has dimension p = 3n — 4. Hence, already for 3 particles in the final state
Monte Carlo integration is convenient.
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Further advantage: while integrating over the whole phase space any
differential distribution can be calculated simultaneously, simply by binning
over the appropriate variable.
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U integrations Monte Carlo Integration

L Phase Space

The n-particles phase space

m43,.
dLipS,, — 5(4) (Z Pinitial — Z Pfinal) C;Ep’
i=1 "'

has dimension p = 3n — 4. Hence, already for 3 particles in the final state
Monte Carlo integration is convenient.

Further advantage: while integrating over the whole phase space any
differential distribution can be calculated simultaneously, simply by binning
over the appropriate variable.

Moreover, one can output unweighted events. This means that the
probability of producing an event with a given set of momenta is
proportional to its cross section.

= Hence, the output looks (almost) like nature
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U integrations Monte Carlo Integration

L Phase Space

NB. All this looks easy and straightforward. In practice, even the simple
exercise of evaluating accurately the average value for a function f can

turn into a very lenghty one if the integrand is especially badly behaved
(singularities, peaks, ....)

The generic name for approaches aimed at improving the convergence is
‘variance reducing techniques'. The goal is to calculate an average with a
small enough standard deviation, using a limited number of function
evaluations N (and hence of computing time)
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L Phase Space

Now we know how to
o calculate ab — n tree-level parton matrix elements

@ integrate over the phace space and produce total and differential cross
sections

@ use MonteCarlos to make exclusive event generators: for every event |
know what partons are out there and with what momenta. Moreover,
the probability of simulating the event is set by its cross section

However

o all this is tree-level. What happens when | try to calculate loops? How
many loops must/can | calculate?

@ | calculate partons, but | measure hadrons. How do | fill the gap?
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LIntegrations

Divergences
L Loop Integration

Calculating (by hand, aided by analytical manipulation tools) a one loop
amplitude is not the end of the effort. We must still integrate over the
phase space, with the additional complication that real and virtual

contributions have a different number of particles in the final states and
are separately divergent.

I, Lowes! order, Il. First-order real, . First-order virlual,
Oeram): Ofaemas): Ofovemas):

qq— 20 qq — 2" elc. qd — 29 with loops
de/dp defdp defdp

ry
virtual, —oc

_ LO
ono=J,do O+ [, | dorea+ [, dovir
lowes! order real, 4oc
finite og
Pl Fl l
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Divergences
L Loop Integration

Calculating (by hand, aided by analytical manipulation tools) a one loop
amplitude is not the end of the effort. We must still integrate over the
phase space, with the additional complication that real and virtual

contributions have a different number of particles in the final states and
are separately divergent.

I, Lowes! order, Il. First-order real, . First-order virlual,
O{aem): Ofaemas): O{aemas):
qg— 20 qf — 20 atc. qd — 29 with loops
de/dp defdp defdp
— LO
ono=J, do O+ [ dorea+ [, dovin
lowes! order real, 4oc
finite oq
Pl Pl ry
lvirlual. LS

How to calculate numerically a divergent quantity?
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LIntegrations

Working around divergences

L Loop Integration

Consider the emission of a massless particle of ‘energy’ x.
The general structure of Born, Virtual and Real cross sections are:

(&)s=B0(x) (%2),=a(2+V)i(x) (92),=al2

dx x

The Kinoshita-Lee-Nauenberg cancellation theorem (total cross section finite)
requires lim,_o R(x) = B.
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 integrations Working around divergences

L Loop Integration

Consider the emission of a massless particle of ‘energy’ x.
The general structure of Born, Virtual and Real cross sections are:

(£)=B30) (%), =a(B+V)il) (%)=t

The Kinoshita-Lee-Nauenberg cancellation theorem (total cross section finite)
requires lim,_o R(x) = B.

Calculating the generic infrared-safe observable O to NLO accuracy means
to evaluate

(0) = lim /0 g0l [(iﬁ)B - (ch;)v " <$>R]
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L Loop Integration

Take a parameter 0 < 1. The ‘real part’ of (O) becomes

Approximating and using the KLN limit (R(x — 0) = B) we find

(0% = 2BO(0) /0(S S /51 dx O(x) (Z;’) +o0)

X

_ (-216 +|og5> BO(O)—i—a/; ax SOORDI | 05.¢)
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LIntegrations SllCIﬂg MethOd

L Loop Integration

Take a parameter 0 < 1. The ‘real part’ of (O) becomes

Approximating and using the KLN limit (R(x — 0) = B) we find

(0% = 2BO(0) /0(S S /51 dx O(x) (ZZ) +o0)

X

_ (-216 +|og5> BO(O)—i—a/; ax SOORDI | 05.¢)

X

and, finally,

(O)stice = BO(0) + a [(B log & + V) 0(0) + /51 dx O(XLR(X)} o)

NB. One must choose § so that the final result is sufficiently independent on it.
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\—Loop Integration

Subtraction Method

Rewrite the ‘real part’ of (O) as follows:

(O)r =

0
:a/dx
0
B

lt2e R(x)O(x)

L O(x)R(x)—BO(0)

x1+2e

1 O(x)R(x) — BO(0)

X
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L Integrations . SUbtraCtion MethOd

L Loop Integration

Rewrite the ‘real part’ of (O) as follows:

1 X
Ok = a /0 O R(x)O(x)

_ a/ 5 BO )+a/1 O(x)R(x)—BO(0)
0 0

x1+2e x1+2e

B B 1 O(x)R(x) — BO(0)
= —32—60(0) + a/o .

Hence

1 J—
<o>sub=BO(0)+a[VO(0) . /0 O(x)R(x) — BO(0)

X

Exact method. Usually preferred in modern implementations.
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" Integrations Slicing vs. Subtraction

L Loop Integration

Take
B=1 V=1 RKx)=1+2x+3x* a=01

Let's use O(x) = 1. This will give ‘total cross section’

E(xyrx

slice,sub
100 1.45
2 1.445

£ 1.44

40
1.435

20
delta

0.0z 0. 04 0. 0& 00z el

R(x)/x obviously not integrable by itself, but combination with virtual
cross section gives a finite result (K-factor = 1.45)
[NB. The smaller §, the more difficult the numerical integration of course!!]
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Event generators vs. Integrators

An ‘integrator’ allows in principle the calculation of any well-defined

differential or total cross section in pQCD. There are however a number of
limitations:

1. the cancellation of singularities must be carefully studied analytically. The

numerical implementation can be cumbersome
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calculations)



Numerical Methods in QCD (23/29)

- Simulations Event generators vs. Integrators

An ‘integrator’ allows in principle the calculation of any well-defined

differential or total cross section in pQCD. There are however a number of
limitations:

the cancellation of singularities must be carefully studied analytically. The
numerical implementation can be cumbersome

in pQCD we deal with partons. The experimentalists measure hadrons

even NLO calculations only deal with a finite number of particles (i.e. ‘fixed
order’ calculations). However, the number of emitted particles is of course

unlimited (and actually large in soft/collinear regions. i.e. need for ‘all-orders’
calculations)

We can do something about points [2] and [3] (of course, paying a price for it).

We trade a full quantum mechanical calculation for a " classical-like”
approximation. We can then generate exclusive events on a probabilistic base,
iterate - and therefore resum - basic interactions, and simulate, via more or less
refined models, also the non-perturbative transition from partons to hadrons.
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Scetch of a proten—proton collision
at high energies
‘IIV.I;al\lW s s 2
ey e (]

- tl
N AT |
ii S ILLER LS BN R LT




Numerical Methods in QCD (25/29)
Simulations

Event generators

L Parton Showers

From Matrix Elements to Parton Showers
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Rewrite for ro — 1, i.e. q—a collinear limit:
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T. Sjostrand, http://agenda.cern.ch/fullAgenda.php?ida=a042790
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L Simulations Event genel’ators

L Parton Showers

The combination of the probabilistic parton shower with a hard scattering
process gives the (simulation of) a full partonic event:

2sn = (2—2) @ ISR @ FSR

a Q3 Q FSR = Final-State Rad.;
timelike shower
Q? ~ m? > 0 decreasing

B i ISR = Initial-State Rad.;
a Q3 Q spacelike shower

ISR 9. 5D FSR Q? ~ —m? > 0 increasing

2 — 2 = hard scattering (on-shell):
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L Parton Showers

The combination of the probabilistic parton shower with a hard scattering
process gives the (simulation of) a full partonic event:

2sn = (2—2) @ ISR @ FSR

a Q3 Q  FSR = Final-State Rad.;
timelike shower
Q? ~ m? > 0 decreasing

B 3 i ISR = Initial-State Rad.;
a Q3 Q spacelike shower
ISR 9. 5D FSR Q? ~ —m? > 0 increasing

2 — 2 = hard scattering (on-shell):

A hadron level event generator like PYTHIA or HERWIG will then include Parton
Distribution Functions in the initial state, and hadronization and decays in the
final state, hence fully simulating a high energy event
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LSimulatior\s Hadronlzatlon

Parton Showers

String vs. Cluster

55@:.0
-

program PYTHIA HERWIG
model string cluster
“energy—-momentum picture  powerful simple
predictive unpredictive
parameters few many
flavour composition messy simple
unpredictive in-between
parameters many few

“There ain't no such thing as a parameter-free good description”
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@ Lattice calculations are in principle “exact”. However, they are still limited by
techniques and/or available computing power

@ The techniques for automating multi-particle tree-level calculations have
greately improved in recent years. ab —~ 8 partons is feasible. But is it also
reliable? What about loops?

@ Two-loop calculations are becoming more common in QCD. However, they are
still technically demanding (no working phase space integration yet) and no
really automated/numerical approaches are available

@ Parton shower generators can replace to some extent fixed order calculations in
regions where resummation is important. Moreover, they can easily be
interfaced to hadronization models. Their theoretical accuracy is however
limited (usually LO + LL 4 some NLL). Proper ‘matching’ to NLO
calculations is only now becoming more common.

Certainly enough, no single tool can satisfy all the needs. The advances in
QCD testing/understanding are most certainly due to the development of
a broad range of numerical tools that have allowed extensive comparisons
to all sorts of experimental data
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Final Words of Warning

[...] The Monte Carlo simulation has become the major means of visual-
ization of not only detector performance but also of physics phenomena.
So far so good. But it often happens that the physics simulations provided
by the Monte Carlo generators carry the authority of data itself. They look
like data and feel like data, and if one is not careful they are accepted as
if they were data.

[...] | am prepared to believe that the computer-literate generation (of
which | am a little too old to be a member) is in principle no less compe-
tent and in fact benefits relative to us in the older generation by having
these marvelous tools. They do allow one to look at, indeed visualize, the
problems in new ways. But | also fear a kind of “terminal illness”, perhaps
traceable to the influence of television at an early age. There the way one
learns is simply to passively stare into a screen and wait for the truth to
be delivered. A number of physicists nowadays seem to do just this.

J.D. Bjorken

from a talk given at the 75th anniversary celebration of the Max-Planck Insfitute of Physics, Munich

Germany, December 10th, 1992. As quoted in: Beam Line, Winter 1992, Vol. 22, No. 4
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