Particules Élémentaires, Gravitation et Cosmologie Année 2007-'08

Le Modèle Standard et ses extensions

Where can new physics hide?

Particle Physics in one page

- The gauge sector (1)
- The flavour sector (2)
- The EWSB sector (3)
- The v-mass sector (4) (if Majorana)

What could replace current Page 1?

The central question of particle physics

What is the next relevant symmetry in particle physics, if any?

Have symmetries exhausted their role?

The Gauge Sector

Test proton decay \leftarrow see lecture 11 by GV

In suspersymmetry:

Proton Decay Theory: $\frac{\tau_p}{B(p \to e^+ + \pi^0)} = 10^{36 \pm 2} \ years \ \left| \frac{\tau_p}{B(p \to K^+ + \bar{\nu})} \approx 10^{32 \div 36} \ years \right|$ Present knowledge (SK): $\geq 6.7 \cdot 10^{32}$ years $> 5 \cdot 10^{33}$ years Future: Megaton Detector (x 10 years): $\approx 2 \cdot 10^{34}$ years $\approx 10^{35}$ years Future: Liquid Argon 100 kTon (x 10 years): $\approx 2 \cdot 10^{34}$ years $\approx 2 \cdot 10^{34}$ years ??

Not a easy task, to say the least

$(\Rightarrow = of special interest for the future)$

	Observable	elementary process	exp. error	theor. error
	ϵ_K	$\bar{s}d \to \bar{d}s$	1%	$10 \div 15\%$
⇒	$K^+ \to \pi^+ \bar{\nu} \nu$	$s \to d \ \bar{\nu}\nu$	70%	3%
⇒	$K^0 \to \pi^0 \bar{\nu} \nu$	$s \to d \ \overline{\nu}\nu$		1%
	Δm_{Bd}	$\overline{b}d \to d\overline{b}$	1%	25%
	$A_{CP}(B_d \to \Psi K_S)$	$\overline{b}d \to d\overline{b}$	5%	< 1%
	$B_d \to X_s + \gamma$	$b \rightarrow s + \gamma$	10%	$5\div 10\%$
	$B_d \to X_s + \overline{l}l$	$b \to s + \bar{l}l$	25%	$10 \div 15\%$
	$B_d \to X_d + \gamma$	$b \rightarrow d + \gamma$		$10 \div 15\%$
	$B_d \to \overline{ll}$	$bd \to \overline{l}l$		10%
	$B_d \to X_d + \overline{l}l$	$b \to d + \overline{l}l$		$10 \div 15\%$
	Δm_{Bs}	$\overline{b}s \to \overline{s}b$	< 1%	25%
⇒	$A_{CP}(B_s \to \Psi \phi)$	$\overline{b}s \to \overline{s}b$		1%
⇒	$B_s \to \overline{l}l$	$b\overline{s} \to \overline{l}l$		10%

My own favorite test of Flavour Physics

 \Leftarrow see my seminar 1

$$\mu \rightarrow e + \gamma$$

Current limit $BR(\mu \rightarrow e + \gamma) < 1.2 \cdot 10^{-11}$

An experiment, MEG, just starting at PSI aiming at a factor of 100 better sensitivity

Two good reasons to believe in it:

- 1. Unification
- 2. Neutrino oscillations

(not only the LHC)

$\mathbf{v} - \mathbf{Masses} \quad \mathcal{L}^{(\mathbf{v}-mass)} = L_i \lambda_{ij}^{\mathbf{v}} N_j \mathbf{v} + N_i M_{ij} N_j$ $\Leftarrow \text{ see seminars by FF} \qquad \text{(the 4th line of page 1)}$

1. Three DIRAC neutrinos $M_{ij} = 0$

 \Rightarrow Neutrinos are Dirac spinors ($v_L, v_R \equiv N^C$), like charged fermions \Rightarrow Lepton number is exactly conserved, like Baryon number

2. Three MAJORANA neutrinos $|M_{ij}| >> |\lambda_{ij}^{v}|v$ \Rightarrow A basic asymmetry between neutrinos and charged fermions \Rightarrow Lepton number badly broken

- 3. More than three light neutrinos $|M_{ij}| \sim |\lambda_{ij}^{
 m v}|_{\mathcal{V}}$
- \Rightarrow Not incompatible with current observations

To decide between 1,2,3 at least as important as completing the "standard" picture

Currently: a claimed observation at $0.17 eV < |m_{ee}| < 2.0 eV$

Riccardo Barbieri

ElectroWeak Interactions: Theory 2004

The experimental prospects in Neutrino-less double-beta decay

 \Leftarrow see seminars by FF

$$\Gamma(2\beta^{0\nu}) \propto |m_{ee}|^2$$
$$m_{ee} = \sum_i V_{ei}^2 m_i$$

Exp.s promise a few x 10 meV significant (although maybe not enough)

The Large Hadron Collider: where will it lead us?

Due to start operating in a few months from now

The very first exploration of a crucial energy scale

In all of particle physics as known today: $\Lambda_{QCD}, (G_{D})$

A road map to follow the LHC data

- 1. *Higgs-less: a "conservative" view* \leftarrow see my seminar 4
- 2. The "naturalness" problem of the Fermi scale ⇐ see lecture 9 by GV
 - a. Supersymmetry \Leftarrow see lecture 10 by GV
 - b. Goldstone symmetry
 - c. Gauge symmetry in extraD
- 3. Dark Matter
- 4. The Planck/Fermi hierarchy ⇔ extraD
 - a. Gravity weak by flux in extraD b. $G_F^{-1/2}/M_{Pl}$ as a red shift effect c. Symmetry breaking by boundary conditions \leftarrow see my seminar 4

Examples of supersymmetry signals

 \Rightarrow gluino/stop decays

$$pp \to \tilde{t}\tilde{t} \to t\bar{t} + E_T$$
$$\downarrow \to t + \chi^0$$

$$pp \to \tilde{g}\tilde{g} \to 2t \ 2\bar{t} + E_T$$

$$\longrightarrow \begin{array}{c} \tilde{t} \ \bar{t} \\ & & \downarrow \end{array} \qquad t + \chi^0 \end{array}$$

⇒ ew gauge/higgs-ino decays

$$pp \rightarrow \chi_1^{\pm} \chi_2^0 \rightarrow 3leptons + E_T$$
$$\downarrow \qquad \downarrow l \bar{l} + \chi^0$$
$$\downarrow \gamma + \chi^0$$

A simulated event at the Large Hadron Collider

The matter/energy components of the universe

with the most abundant ones of unknown nature

Calculating the relic abundance of a Weakly Interacting Massive Particle

Suppose you have a stable particle χ that decouples from the hot primordial plasma by $\chi\chi \rightarrow ff$ with a cross section σ . Then, for its relic density Ω

$$\Omega h^2 = \frac{688\pi^{5/2}T_{\gamma}^3(n+1)x_f^{n+1}}{99\sqrt{5g_*}(H_0/h)^2 M_{\rm Pl}^3\sigma} \approx 0.2\frac{pb}{\sigma} \qquad \Longleftrightarrow$$

and $\sigma \approx pb$ is a typical weak interaction cross section for a particle of mass $m_{\chi} \approx G_F^{-1/2}$

against the observed $\Omega_{\rm DM}h^2 = 0.113 \pm 0.009$

 \Rightarrow Perhaps DM is made of WIMPS

$$pp \to E^{\pm} v_{2,3} \to W^{\pm} Z v_1 v_1 \to 3l + \not\!\!\!E_T$$

H_T [GeV]

(Not a) Conclusion

