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Cold vs hot black holes
Last week we have seen how, for special kinds of 

black holes, string theory is able to give a microscopic 
explanation of their entropy.

Those BHs had the property of being extremal (and 
therefore had vanishing temperature).

Also, they were constructed as supersymmetry-
preserving field configurations. This allowed to extend 
a small-string-coupling calculation to the strong 
coupling regime where black holes supposedly do exist.

Today we shall see what we can say about the more 
realistic (but also technically harder) case of non-
extremal (and thus finite-temperature) BHs.
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Density of physical (DDF) states at tree level (i.e. in the limit 
of vanishing string coupling):

Density of free string states

Neglecting numerical factors this gives, at large M,

A nice physical interpretation of Sst: the number of “string 
bits” contained in the total length of the string, L = α’M.
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Relating string and GR parameters
Compare the tree-level effective action of string theory 
and the Einstein Hilbert action of GR:

for a constant Φ we find
In QST Planck’s length (G) emerges as an effective scale
(coupling) determined by ls and gs (Cf. GF vs MW in the SM). 
We will assume gs2 < (<<) 1 throughout.
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Comparing free string and BH entropies
The Bekenstein-Hawking formula for BH entropy can be 
easily extended to arbitrary D (                     )

which can be compared with:

The two entropies look very different... but in this case we 
cannot trust the zero-coupling result of string theory!
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The correspondence curve
SBH grows faster with M than Sst but the latter starts 
higher at small M. Hence, the two entropies must meet at 
some value of M. Indeed:

SBH wins over Sst  for R > ls, the opposite is true for R < ls. 
They coincide at R = ls and take the common value:

If we regards both M and gs as variables we see that   
SBH = Sst defines a hyperbola in the (gs, M) plane. We shall 
call it the correspondence curve.
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Comparing entropies in D=4, 10
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Below the correspondence curve
Below the correspondence curve (CC) the Schwarzschild 
radius of the string is smaller than the string length 
scale. However, the latter is believed to be the minimal 
size of any string (a consequence of QM!).
An object whose physical size is larger than its 
Schwarzschild radius (like the earth, the sun and most 
objects in the sky) is simply NOT a BH.
Interpretation: in QST there are no BHs whose SR is 
smaller than ls, i.e. whose Hawking temperature is higher 
than Ms. Actually, T = Ms is nothing but the so-called 
Hagedorn temperature of QST, believed to be a maximal 
temperature. Thus, so far, everything looks consistent!
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Evaporation of a BH at fixed gs (Bowick et al. 1987)

M/Ms

RS = ls  (T = THag) curve

  
gs
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Strings 

Black Holes 

trajectory of evaporating BH

Singularity at the end of evaporation avoided?
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Approaching the correspondence curve: 
the random-walk puzzle

Below the CC strings are not BHs. And above?
If we want to identify BH with FS above the CC, their 
properties should match as we approach the curve.
By definition the two entropies match (up to O(1) 
factors) but there is still a “random-walk puzzle”.
Sst can be understood in terms of a “random walk” but 
then a string on the CC being much longer (heavier) 
than ls (Ms),  will have a typical size much bigger than 
its Schwarzschild radius ls. 
But then it has nothing to do with a BH!
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Size distribution of free strings
The resolution of the RW puzzle is actually quite simple. 
One has to compute the distribution of the string size for 
a given M (NB: M fixes length not size!).
This was done in a paper by T. Damour & GV (2000). The log 
of the number of strings of given M and size R is given by 
(c1, c2 are pure numbers):

Entropy is maximized for:

However there are still many strings of size O(ls)!



Γ ∼ g2sM → Ms = l−1
s ; P ∼ g2sMMs → M2

s = l−2
s

25  février 2011 G. Veneziano, Cours no. VI 13

Solution of RW puzzle ?
The entropy in (free) strings whose size is of order ls is of 
order M/Ms and this ratio approaches the BH entropy gs-2 
as one approaches the correspondence line.
One finds that other properties, like the decay rate or the 
radiated power, agree as well:

the expected values for a BH of radius ls. Thus things seem 
to be working semi-quantitatively at least up to the CC. But 
did we have any reason to trust the calculation?
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Effects due to interactions

For a heavy string the most important effect is self-gravity. 
Bits of string interact with each other gravitationally. This 
“binding energy” will shift the masses of our free strings by 
an amount we can easily estimate (and even compute):

We have neglected corrections of order gs2: these were 
absent in the SUSY case but are present in ours. 
We took gs << 1, but can we really neglect interactions?
The answer is that we can... except if the strings are very 
heavy (or very energetic, see next lecture).

Negligible below the CC and of O(1) just on the CC!
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Above the correspondence curve 
It is reassuring that the string-coupling corrections 
become of O(1) just when we can reproduce BH 
properties up to factors O(1).
As we go farther and farther above the CC the 
discrepancy between free-string and BH entropy 
becomes larger and larger.
In order to see whether we can have agreement there 
we would have to compute the effect of interactions 
when they become very large. 
This is a hard & unsolved problem. Yet we have a 
qualitative understanding of what could possibly do 
the job. 



25  février 2011 G. Veneziano, Cours no. VI 16

The basic idea is that, as we increase the coupling, 
the mass of our heavy strings will generically 
decrease as a result of gravitational binding energy.
For a given bare (gs = 0) mass, M0, the more compact 
strings (the BH candidates) will be more affected 
than the bigger ones. Degeneracy will be broken and 
states will start to “migrate” towards the low-mass 
region.
Above the CC free-string entropy is smaller than SBH. 
This effect goes in the right direction but, in order 
to see whether it can restore full agreement, we 
would have to compute it when it becomes very large. 
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A toy model
Let’s assume that the effects of gravity can be 
resummed by expressing the mass M0 (at gs =0) in terms 
of the mass Mg at a generic finite gs  as:

The + sign corresponds to attraction. On the CC we 
recover the claim that M0 and Mg are of the same 
order. Assuming that the states at gs = 0 simply 
“migrate” but their number is conserved, the number 
of states of a given Mg will be obtained simply by 
replacing M in our previous formulae by M0(Mg).
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Recalling the previous formulae:
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we obtain (up to a possible renormalization of R):

We can look now at the most favoured R for different 
M, gs and D (see DV, 2000).
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This formula favours strings that are as small as possible.
For D=4 let us take R = ls. We get:

a formula that nicely interpolates between string 
entropy below the CC and BH entropy above it!

It works in D=4!
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However, if we take R = ls  at D > 4, we find a result that 
overshoots: string entropy exceeds BH entropy!

In order not to exceed BH entropy, the ratio M/M0 
cannot decrease faster than MP/Ms above the CC. 
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Bound on self-gravity effects (D > 4)
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To summarize
1. Black hole properties appear to agree with those of (a 
sufficient number of) fundamental strings on a 
“Correspondence Curve” defined by M = gs-2 Ms. 
2. Below this CC we can trust perturbative calculations 
and string entropy exceeds BH entropy. Actually, we 
expect no BH to exist in this mass region (neatly solving 
the problem of the end-point of BH evaporation?).
3. Near the CC perturbative calculations should be 
reliable modulo O(1) correction factors.
4. It is still a challenge to show that (some) fundamental 
strings match BHs above the CC, but one can identify 
non-perturbative effects that can possibly make this 
happen.


