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Black holes in General Relativity
The universal attractive character of gravity can lead, 
according to GR, to a phenomenon known as 
gravitational collapse.
An isolated system can become so compact to be 
completely surrounded by a surface, called the 
horizon, out of which nothing, even light, can escape.

While the collapse process and the solution inside the 
horizon are complicated problems, the “late-time” 
stationary solutions outside the horizon are simple and 
basically “unique”: they depend on a small number of 
parameters each one with a precise physical meaning.
Hereafter we shall use units in which G = c =1 
(M~length, J~length2).

2



ds2Schw. = −
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r )

dr2 + r2dΩ2

dΩ2 ≡ dθ2 + sin2 θdφ2
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The Schwarzschild solution
The simplest black-hole solution was given very soon after 
the final formulation of GR (Schwarzschild, 1916). It is 
given in terms of a single parameter, the BH mass M.
It can be written in different coordinate systems. In the 
original Schwarzschild coordinates it has the explicitly 
static and spherically symmetric form (G = c = 1):



dt(∞)
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ds2Schw. = −
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�
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1

(1− 2M
r )

dr2 + r2dΩ2

As in the gravitational field of the earth clocks tick slower 
and slower as one approaches the source of gravity (see 
gravitational redshift, 2009 course):

This means that light coming from r = 2M (+ε) suffers an 
infinite (very large) redshift (for the earth r= 2M is deep 
inside the earth where solution is not valid).
Nevertheless r = 2M (the horizon H) is a regular 
submanifold of the Schw. spacetime. This can be easily 
seen by going to different coordinates.



ds2Schw. = −
�
1− 2M

r

�
dv2 + 2dvdr + r2dΩ2

v = t+ r∗
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Ingoing Eddington-Finkelstein 
coordinates

This goes to a perfectly smooth metric at r = 2M.
The hypersurface (r - 2M) = 0  is lightlike (null) i.e.:

The light cone gets more and more tilted as one 
approaches H. On H the light cone is tangential to H so 
that light emitted near H can barely escape to infinity.
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Instead, r=0 is a true (Riemann) curvature singularity 
(Ricci is zero except at r=0). The hypersurface r=0 is 
spacelike (meaning that its normal is timelike) so that 
r=0 is to be thought of as an instant in time (rather than 
as a point in space). The metric close to r=0 corresponds 
to an anisotropically collapsing Universe (a big crunch).
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In reality we should solve the time-dependent EEs 
for a collapsing object made of realistic matter and 
the problem becomes much harder. 
A lot of work strongly suggests that, under certain 
conditions, a horizon forms and the (outside vacuum) 
solution settles to a stationary (not necessarily 
static) one characterized by just a few conserved 
quantum numbers (associated with the large-
distance fields of the theory): the mass M, the 
angular momentum J, and the electric charge Q.
This general solution is known as the Kerr-Newman 
metric the other black holes solutions being special 
cases of it.
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FIG. 1. Spacetime representation of the formation of a black hole by the collapse of a star.

The horizon is the spacetime history of a bubble of light (i.e. a null hypersurface) which stabilizes

itself under the strong pull of relativistic gravity

ds2
SCHW = −

(
1 −

2GM

c2r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θ dϕ2) . (1.4)

In these coordinates the horizon is located at r = rS, the other coordinates (v, θ, ϕ) taking

arbitrary, but finite values. [Note that a finite value of the new “time variable” v corresponds

to an infinite (and positive) value of the original Schwarzschild time coordinate t.] One easily

checks that the geometry ( 1.4) is regular near r = rS.

One can then see that the hypersurface H (r = rS) is a quite special submanifold in that

it is a null hypersurface, i.e. a co-dimension-1 surface which is locally tangent to the light

cone. In other words, the (co-)vector normal to the hypersurface, say #µ (such that #µ dxµ = 0

for all directions dxµ tangent to the hypersurface) is a null vector: 0 = gµν#µ #ν = gµν #µ#ν .

As a consequence #µ is both normal and tangent to the hypersurface (because #µ #µ = 0).

The local light cone, gµν(x) dxµ dxν = 0, is tangent to H along the special direction #µ.

[This gives a special, fibered structure to H, generated by the lines tangent to #µ, called the

“generators” of H.] Physically, the tangency between H and the local light cone (and the
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ds2RN = −
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1− 2M

r
+

Q2
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�
dt2 +

dr2

(1− 2M
r + Q2

r2 )
+ r2dΩ2
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          Kerr (M, J)

Kerr-Newman (M, J, Q)                       Schwarzschild (M)

Reissner Nordstrom (M,Q)

Black hole solutions with angular momentum (K & KN) 
correspond to rather complicated metrics (see below).
Instead, the RN solution is a rather trivial generalization 
of Sch. (note that, in our units, Q is also a length):



r = r+ = M +
�
M2 −Q2

ARN = 4πr2+ = 4π
�
2M2 −Q2 + 2M

�
M2 −Q2

�
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The RN metric possesses a horizon H if and only if the 
quadratic form (1 - 2M/r + Q2/r2) can vanish at some real 
value of r. This happens if Q < M (i.e. sufficiently small 
Coulomb repulsion) in which case the horizon is at:

The area of (a time section of) H is

ds2RN = −
�
1− 2M

r
+

Q2

r2

�
dt2 +

dr2

(1− 2M
r + Q2

r2 )
+ r2dΩ2

For Q = M the BH is said to be “extremal”.



ds2KN = −∆

Σ
(dt− a sin2 θdφ)2 +

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

�
(r2 + a2)dφ− adt

�2

a =
J

M
; ∆ = r2 − 2Mr + a2 +Q2 ; Σ = r2 + a2 cos2 θ

AKN = 4π(r2+ + a2) = 4π
�
2M2 −Q2 + 2M

�
M2 − a2 −Q2

�

r+ = M +
�

M2 − a2 −Q2
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The Kerr Newman solution
The general KN solution is considerably more complicated:

There is also, of course, an electromagnetic field.
The KN metric has a horizon if Δ vanishes at some real 
value of r. It does if M2 > a2 + Q2. 
KN is extremal for M2 = a2 + Q2  while Kerr is extremal for  
M = a  (i.e. for J = GM2).
The area of the KN horizon is:



Ω =
a

(r2+ + a2)
; Φ =

Qr+
(r2+ + a2)
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Area theorem and entropy hints
In 1972, extending work by Christodoulou & Ruffini, 
Hawking proved that in any conceivable process the 
area A of a BH horizon cannot decrease. This started 
a feeling in the GR community that A had something to 
do with an entropy (Cf. 2nd law of thermodynamics):
    S = A/λ2 with λ a length (in units where kB = 1).

One could also prove the analogue of the 1st law and 
extract a temperature:

SBH = αA , (2.9)

where α is a constant with dimension of inverse length squared. By varying the mass formula

(2.3) one then finds the “first law of the thermodynamics of black holes”,

dM = Ω dJ + Φ dQ + TBH dSBH , (2.10)

where (see Eq. (2.2)) Ω = a/(r2
+ +a2) can be interpreted as the angular velocity of the black

hole, Φ = Q r+/(r2
+ + a2) as its electric potential (see [2] for discussions of Ω and Φ), and

where

TBH ≡
1

α

∂M

∂A
=

κ

8πα
(2.11)

is expected to represent the “temperature” of the black hole. The quantity κ in Eq. (2.11) is

the surface gravity of a black hole, generally defined as the coefficient relating the covariant

directional derivative of the horizon normal vector %µ along itself to %µ : %ν ∇ν %µ = κ %µ.

[Here, %µ is normalized so that, on the horizon, %µ ∂µ = ∂t + Ω ∂ϕ where ∂t is the usual

Killing vector of time translations.] The surface gravity may be thought of as the redshifted

acceleration of a particle staying “still” on the horizon. [As we said above, the proper-time

acceleration of a particle sitting on the horizon is actually infinite, but the infinite redshift

factor associated to the difference between the proper time and the “time” associated to the

generator %µ compensates for this infinity.]

In the case of a Kerr-Newman hole, the value of the surface gravity reads (r± ≡ M ±
√

M2 − a2 − Q2)

κ =
1

2

r+ − r−
r2
+ + a2

=

√
M2 − a2 − Q2

r2
+ + a2

. (2.12)

Note that the surface gravity of a Schwarzschild black hole is given by the usual formula for

the surface gravity of a massive star, i.e. κ = GM/r2
S = M/(2M)2 = 1/(4M). Note also

that the surface gravity (and therefore the expected “temperature”) of extremal black holes

vanishes.
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= angular velocity and 
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AKN = 4π
�
2M2 −Q2 + 2M

�
M2 − a2 −Q2

�
→ 4π(M2 + a2) > 0
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Note that the temperature drops to zero in the 
extremal case while the area of the horizon does not:

After a straightforward calculation we find (G = 1):

Furthermore, one can prove a general relation between 
TBH and the “surface gravity” κ of the BH:
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Puzzles

There were still some puzzles when associating an 
entropy and a temperature with a black hole:

1. The area of the BH did always increase even (or 
particularly) if the BH was not an isolated system. 
Instead, entropy can decrease for a subsystem.

2. Entropy is a pure number (kB =1). An area is not.
3. Hot bodies radiate (Cf. black-body radiation) while 

the black hole did not.
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Bekenstein’s educated guess (1972)
Bekenstein was the first to suspect that the length λ  
relating entropy to area had to do with QM (GR has no 
fundamental length!). He guessed that λ had to be 
proportional to the only length that one can construct out 
of the fundamental constants of quantum gravity: c, h, and 
G. It had been introduced in physics by Max Planck at the 
beginning of the 20th century and carries his name:

Bekenstein proposed to rewrite the previous formulae as 

and even tried to estimate the dim.less constant α.
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Hawking’s 1974 breakthrough
In a ground-breaking paper Steven Hawking found 
that BH aren’t black after all. They behave like 
black bodies whose temperature is given by 
Bekenstein’s expression but now with a precise 
coefficient α = 1/4. Thus:

He also argued in favour of a generalized 2nd law 
(GSL) stating that the sum of the entropy of the BH 
and that of the surrounding matter/radiation can 
never decrease.
This appears to solve the previous puzzles but...
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Poor man’s derivation of TBH

A rigorous derivation of Hawking’s formula is quite 
involved and even subject to possible criticism (e.g. 
the “transplanckian problem”). A much simplified 
“proof” goes as follows:
Consider an observer staying at a fixed r near the 
horizon of a Schwarzschild BH and write the 
metric he/she sees in terms of new coordinates τ 
and u:
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This map only covers a wedge in the (t’,x) plane in which an 
observer sitting at fixed u (r) describes a hyperbola along 
which 1/u is the constant acceleration of the observer.
The above transformation is periodic with an imaginary 
period Δ τ = 8 π G M i. Periodicity in imaginary time is 
naturally associated with finite temperature: 

 This metric is known as Rindler’s and (as a 2-D metric) is 
just flat spacetime as seen by an accelerated observer. 
This can be seen by the change of coordinates:



β(r) = βτ
u

4M
=

2πu

� =
2π

�a =
2π

�
�

8M(r − 2M)

TU =
�a
2π

1 + z =

�
1− 2M

r
⇒ β(r = ∞) =

2π

�

�
8M(r − 2M)�

1− 2M
r

=
8πM

�
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Actually, the physical β = T-1 at some fixed u (or r) is:

Unruh has shown that
an accelerated observer 
measures a temperature 
given by

while the temperature at infinity is redshifted by a factor



d�N�
dtdω

=
1

2π

Γl(ω)

e8πGMω − 1

8πGMω =
�ω
TBH

; TBH =
�

8πGM

TBH = 10−6K
Msun

M
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Spectrum of Hawking’s radiation
Hawking’s calculation gives essentially a Planck spectrum 
for the radiation emitted by a black hole as if the black 
hole were a black body of temperature TBH with a 
surrounding barrier giving a transmission (or grey-body) 
factor:

effect of V!(r) in Eq. (3.11) (see Fig. 2), we get a rate of particle creation by the black hole

of the form

d〈N〉
dt

=
∑

!,m

∫
dω

2π
|Nω|2 Γ!(ω) =

∑

!,m

∫
dω

2π

Γ!(ω)

e8πMω − 1
. (3.21)

r/M

2

v

SI
N

G
U

LA
R

IT
Y POTENTIAL

AND 

CENTRIFUGALCENTRIFUGALCENTRIFUGAL

BARRIER

TRANSMITTED

BACK-

SCATTERED

FIG. 2. Splitting of an initial negative-frequency mode straddling the horizon into a mode

falling into the black hole, and an outgoing mode which, after being partially reflected back into

the black hole by the potential barrier representing gravitational and centrifugal effects, ends up

as positive-frequency Hawking radiation at infinity. The antiparticle mode falling into the black

hole can be interpreted as a particle travelling backwards in time, from the singularity down to the

horizon [25] (hence the downwards orientation of the arrow).

The formula (3.21) exhibits, in the simple case of a Schwarzschild black hole, the

Hawking phenomenon: a black hole radiates as if it were a black body of temperature

TBH = 1/(8πM), covered up by a “blanket” with transmission factor Γ!(ω). [The blanket

being due to the effect of the potential V!(r) in Eq. (3.11), i.e. physically to the combined
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Numerically: 



e
�ω

TBH → e
(�ω−jΩ−qΦ)

TBH
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Generalizations
For more general black holes the result is similar the 
temperature being directly related to the gravitational 
acceleration at the horizon:

Furthermore, the Boltzmann factor gets replaced by a 
more general one for the emission of a quantum of charge q 
and angular momentum j:

 where Ω is the angular velocity of the BH and Φ its 
electric potential (signs favour loss of Q, J).



tP =
lP
c

∼ 5.4 10−44s ; MP =
�

�c/G ∼ 2.2 10−5gr ⇒ τev ∼ 1010yr

�
M

1014gr

�3

d(GM)

dt
∼ − l2P

(GM)2
⇒ (GM)3t = (GM)30 − l2P t ⇒ τev ∼ tP

�
M

MP

�3
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Black hole lifetime
Let us make a (rough) estimate of the lifetime of a 
(Schwarzschild) BH of mass M if we simply let it evaporate.
(the BH emits O(1) Hawking quanta per R/c time)

In numbers: 
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An information puzzle?
The BH evaporation is slow, except towards its end, 
justifying a-posteriori the static approximation used in 
the calculation.
However, the finite evaporation time raises some 
interesting conceptual issues that go under the name of 
information puzzle (or paradox).
They have to do with the fact that the Hawking 
radiation appears to depend only from the quantum 
numbers that characterize the black hole (M, J, Q in our 
case) and NOT from what made the BH in the first 
place. 
Information about the initial state appears to be lost.
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At the quantum level we can imagine to start from a pure 
state (of zero entropy) prepared in such a way that it 
should produce a BH. As long as some information is hidden 
forever beyond the horizon there is really no contradiction.
However, if the BH evaporates and eventually disappears, 
information about the initial state should be recovered. 
This is not possible if the final state is a (superposition of) 
thermal state(s) that does not care about what went into 
the BH. Even if the semiclassical treatment will break down 
in the latest stages of evaporation,  possible “remnants” 
will not be able to carry all the missing information.
In 1976 Hawking went as far as saying that, in the 
presence of BHs, the laws of QM have to be modified and 
there is no longer a unitary description of the quantum 
system’s evolution.
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Hawking’s claim raised a big controversy. Abandoning one 
of the very basic principles of QM, the unitary evolution of 
a system which is at the basis of quantum coherence and all 
that, was hard to swallow particularly for the particle 
physics community.
On the other hand, in the absence of a really consistent 
theory of gravity, the problem itself was not completely 
well-posed: the BH metric was taken to be classical while 
the matter fields to be radiated away were quantized. The 
back reaction of the emission on the geometry was also 
treated in an approximate way.
With the advent of QST as a candidate theory of quantum 
gravity the issue became of central interest.The string 
theory community became increasingly convinced that 
there had to be a way to save QM from the threat of BHs.
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Can string theory solve the puzzle?
There are good reasons to believe that QST offers a 
solution to the puzzle:
1. At least in some favourable cases QST can give a 
microscopic (stat. mech.) interpretation of BH entropy (see 
today’s seminar and next week’s lecture);
2. In QST we can hope to study the quantum process of BH 
formation and decay from a simple pure initial state and to 
construct an explicitly unitary S-matrix (see next few 
lectures); 
3. In some cases QST can map the collapse problem into an 
explicitly unitary QFT problem via holography (AdS/CFT 
correspondence).


