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Outline

• Identification of the relevant diagrams 

• Resumming classical corrections via an effective action
• Two-body scattering at b ≠ 0: a numerical solution
• The axisymmetric case: comparison with CTS criteria

• Graviton spectra below and near criticality 
• What happens above criticality?
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IV: Small-angle graviton (GW) emission  

=> Classical corrections to leading eikonal

=> Resumming classical corrections 

V: Large-angle inelastic scattering 
VI: Collapse? 

3



R(E)/lP

b/lP

ls/lP 

 IV:grav. 
rad.

critical line?

I: leading 
eikonal 

ls/lP 

1
1

II:tidal 
str. exc.

III: s-channel 
 string prod.

(ls/lP)2 

(ls/lP)1/2 

VI: black hole 
production/evaporation 

V: large angle 

log-log plot

strong 
gravity 
regimes 



11 mars 2011 G. Veneziano, Cours no. X

Power counting for connected trees:
The exponent (the “phase”) is given by connected trees 

δ(E, b) ∼ G2n−1sn ∼ Gs R2(n−1) → Gs (R/b)2(n−1)

Not surprisingly, they are related to tree diagrams 
once the coupling to the external energetic particles is 
replaced by a classical source. 

Classical corrections characterized by absence of h.
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Next to leading order: the H diagram

One of the produced graviton’s polarizations (“TT”) is IR-safe 
the other (“LT”) is not.

∼ G3s2 = Gs G2s = GsR2 → Gs (R/b)2

If gravitons do not interact we get the leading eikonal.
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NNL-order

∼ G5s3 = Gs G4s2 = GsR4 → Gs (R/b)4
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Reduced effective action & field equations
 There is a D=4 effective action generating the leading 
diagrams (Lipatov, ACV ‘93) but the resulting equations 
are too complicated. Drastic simplification: “freeze”
the longitudinal dynamics => a D=2 effective action.

Neglecting the IR-unsafe (LT) polarization, it contains: 
a and a, representing the longitudinal (++ and --) 
components of the gravitational field, coupled to the 
corresponding components of the E-M tensor;
φ, representing the TT graviton-emission field. 
Besides source and kinetic terms there is a derivative 
coupling of a, a and φ.
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∇2a+ 2s(x) = 2(πR)2(∇2a ∇2φ−∇i∇ja ∇i∇jφ), ā(x) = a(b− x)
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The action (generalized to extended null sources):

& corresponding eom

Semiclassical approximation: solve eom and compute the 
classical action on the solution. At leading order in R/b 
and for s(x) = δ(x), s(x) = δ(x-b), we recover the leading 
eikonal. Iterative procedure possible but not so useful 
for analytic study!

out a possible connection with Choptuik’s scaling [10] near critical collapse. Section 6
presents some conclusions and an outlook.

2 The axisymmetric case: general considerations

Our starting point is the effective two-dimensional action of [1] (see their equation (2.22)):

A
2πGs

= a(b) + ā(0) − 1

2

∫

d2
x∇ā∇a +

(πR)2

2

∫

d2
x(−(∇2φ)2 + 2H∇2φ)

−∇2H ≡ ∇2a ∇2ā −∇i∇ja ∇i∇j ā , (1)

where a, ā and φ are three real fields representing the two longitudinal and the (IR-safe)
transverse component of the gravitational field, respectively. Equation (1) can be easily
generalized in order to deal with two extended sources:

A
2πGs

=

∫

d2x

[

a(x)s̄(x) + ā(x)s(x) − 1

2
∇iā∇ia

]

+
(πR)2

2

∫

d2x
(

−(∇2φ)2 + 2φ∇2H
)

, (2)

where the center of mass energy
√

s provides the overall normalization factor 2πGs =
π

2GR2, while the two sources s(x), s̄(x) are normalized by
∫

d2x s(x) =
∫

d2x s̄(x) = 1.
Let us now specialize to the case of two extended axisymmetric sources moving in

opposite direction with the speed of light and undergoing a central collision. Using the
conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

2.1 Simplifications

One advantage of considering the axisymmetric case is that there is simply no dependence
of the physics upon the azimuthal angle, hence no need to take averages over it. This is
a useful technical simplification that allows us to reduce the problem to solving ODE.

The second more important advantage comes from the observation that the IR-singular
“LT” graviton polarization is not produced in that case. Thus the problem is completely
IR-finite even in D = 4. In order to see this, let us recall from [1] that the LT polarization
is produced with an amplitude proportional to sin θ12 cos θ12. In the notations of [1]:

ALT = Aµνε
µν
LT ∼ k

−2 sin θ12 cos θ12 , (3)

where θ12 is the angle between the two transverse momenta k1, k2 that combine to give a
physical graviton of momentum k. The angular factor can be expressed in terms of the
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Numerical solutions 
 (G. Marchesini & E. Onofri, 0803.0250)

Solve directly PDEs by Fast FT methods in Matlab
Result: real solutions only exist for:

Compare with Eardely-Giddings’s CTS lower bound:

b > bc ∼ 2.28R

bc > 0.80R
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Fig. 2: Rcrit vs. b in the dipole model.

which presents the same pattern as in Fig. 2 and reproduces the exact slope to an

accuracy of 0.5%; this check makes us confident on the accuracy of our code and
allows us to estimate the error in Eq. (4.2) to less than 1%.

4.1 Critical behaviour

In order to better understand the nature of the transition at R = Rcrit we shall now
present some results about the critical behaviour of certain observables. The main

fact we derive from our numerical data is that all observables that we examined have
a scaling behaviour near the transition which can be reproduced very accurately by
a square root singularity. This fact supports the conclusion that we are in presence

of a genuine transition and not simply a breakdown of the iteration scheme. The
argument is as follows: the iteration scheme represents an efficient way to sum up

the perturbative expansion in the parameter K = 2(πR)2; as such the iteration’s con-
vergence radius is regulated by the nearest singularity in the complex K plane. Our

analysis shows that the divergence of the iteration scheme is caused by a singularity
on the real line, which must then correspond to a physical singularity.

Spectral properties. Let’s start with the spectrum of the linearized equation
which is used in monitoring the convergence of the iteration algorithm. From the

data a scaling property emerges which appears to be rather robust against variations
of other parameters, namely the dependence of the spectral radius against R. Let λ0

denote the spectral radius of the linearized equation: the plot of 1−λ0 as a function
of

√

1 − R/Rcrit is reported in the next picture (Fig. 3) and it suggests a relation of

– 8 –
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 Axisymmetric Solutions
(J. Wosiek & G.V. ’08)

 For an analytic approach we turn to
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Central beam-beam collisions
A very rich problem in spite of its restrictive 

symmetry:
1. The two beams contain several parameters: total 
energy, shapes (same or different) & we can look for 
critical surfaces in their multi-dim.al space.
2. The CTS (KV) criterion is simple (see below).
3. Numerical results are coming (see below).
4. Two major simplifications occur in ACV eqns:
• PDEs become ODEs.
• The IR-singular polarization is just not produced.
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 A simpler case: 

 The relevant parameters

R1(r)=4GE1(r) R2 (r)=4GE2(r)r

14



ρ(0) = 0 ; ρ̇(∞) = 1
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Axisymmetric action, eqns (t=r2)

conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

It is straightforward to rewrite the action (4) for the axisymmetric case as a one
dimensional integral over the variable r2 = x2 ≡ t. Using

∫

d2x = π
∫

dt we find:

A
2π2Gs

=

∫

dt [a(t)s̄(t) + ā(t)s(t) − 2ρ ˙̄aȧ]

− 2

(2πR)2

∫

dt(1 − ρ̇)2 (5)

where a dot means d/dt and, as in [1], we have introduced the field:

ρ = t
(

1 − (2πR)2φ̇
)

(6)

Integrating by parts and using π
∫ t

dt′si(t′) = Ri(t)/R we arrive at the following
convenient form of the action:

A
!

= − 1

4l2P

∫

dt

[

(1 − ρ̇)2 − 1

ρ
R1(t)R2(t) + (2πR)2ρ

(

ȧ1 +
R1(t)

2πRρ

) (

ȧ2 +
R2(t)

2πRρ

)]

(7)

The equations of motion that follow from (7) read:

ȧi = − 1

2πρ

Ri(r)

R

ρ̈ =
1

2
(2πR)2ȧ1ȧ2 =

1

2

R1(r)R2(r)

ρ2
(8)

and therefore reduce to a closed 2nd order equation for ρ. We want to look for solutions
of that equation with the following boundary conditions [1]:

ρ(0) = 0 , ρ(r2) → r2 as r → ∞ (9)

Given the finite support of the sources the latter condition can be replaced by the
requirement:

ρ̇ =
√

1 − R2/ρ for r > Max(L1, L2). (10)

For given source profiles Ri(r2) a possible strategy for solving the problem is to reduce
it to a first order system:

ρ̇ =

√

σ − R1(r2)R2(r2)

ρ
i.e. σ ≡ ρ̇2 +

R1(r2)R2(r2)

ρ

σ̇ =
(R1R2).

ρ
, (11)
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1

2

R1(r)R2(r)

ρ2
(8)

and therefore reduce to a closed 2nd order equation for ρ. We want to look for solutions
of that equation with the following boundary conditions [1]:

ρ(0) = 0 , ρ(r2) → r2 as r → ∞ (9)

Given the finite support of the sources the latter condition can be replaced by the
requirement:

ρ̇ =
√

1 − R2/ρ for r > Max(L1, L2). (10)

For given source profiles Ri(r2) a possible strategy for solving the problem is to reduce
it to a first order system:

ρ̇ =

√

σ − R1(r2)R2(r2)

ρ
i.e. σ ≡ ρ̇2 +

R1(r2)R2(r2)

ρ

σ̇ =
(R1R2).

ρ
, (11)

4

conventions of [1] we will denote by Ei(ri) (in the following i = 1, 2 will represent unbarred
and barred fields/sources respectively) the energy carried by the ith beam below r = ri

and define Ri(r) = 4GEi(r). Let us also assume that the two sources have finite support
so that Ri(r) = Ri(∞) ≡ Ri for r > Li. By going to the overall center of mass, we may
always choose Ri = R = 2G

√
s.

It is straightforward to rewrite the action (4) for the axisymmetric case as a one
dimensional integral over the variable r2 = x2 ≡ t. Using

∫

d2x = π
∫

dt we find:

A
2π2Gs

=

∫

dt [a(t)s̄(t) + ā(t)s(t) − 2ρ ˙̄aȧ]
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4

2nd order ODE w/ Sturm-Liouville-like b. conditions. 
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CTS criterion 
(KV gr-qc/0203093)

 If there exists an rc such that

with initial conditions
ρ(0) = 0 , σ(0) = σ0, , (12)

and to find a σ0 such that σ(Max(L1, L2)) = 1. For sufficiently large Ri/Li one expects
to find that the latter condition cannot be imposed on real-valued solutions.

2.2 MCTS-criteria and critical points in the ACV equations: a

general result

In the general axisymmetric case, one can construct explicitly a MCTS [6] provided that
an rc exists such that (see eq. (4.4) of [6] for D = 4):

R1(rc)R2(rc) = r2
c (13)

We will now argue that such a condition implies the absence of real solutions to eqns.
(8) with ρ(0) = 0. Proof: Let us first note that, because of (11) and the fact that the Ri

are non-decreasing functions of r, the quantity σ, as well as ρ̇, are increasing functions of
t. Therefore, for any t:

σ(t) ≤ σ(∞) = 1 , i.e. ρ̇(t) ≤

√

1 − R1(t)R2(t)

ρ(t)
(14)

Assuming that the KV criterion (13) can be met let us write:

ρ(0) = ρ(tc) −
∫ tc

0

dt′ρ̇(t′) > ρ(tc) − tcρ̇(tc) > ρ(tc) − tc

√

1 − tc
ρ(tc)

(15)

where we have used eqs. (13) and (14). At this point it is easy to check that the rhs of
(15) cannot vanish for any (positive) value of ρ(tc) thus proving that we cannot impose
the condition ρ(0) = 0 when the criterion (13) is satisfied.

2.3 Momentum space formulation

In order to go to momentum space we start from eq. (5.2) of ACV generalized to extended
sources:

πA

Gs
=

∫

d2k

k2
[β1(k)s2(−k) + β2(k)s1(−k) − β1(k)β2(−k)]

− (πR)2

2

∫

d2
k

[

1

2
h(k)h(−k) − h(−k)H(k)

]

(16)

where the FT of the sources are normalized by requiring si(0) = 1 and

β1(k) =
k2a(k)

2
; β2(k) =

k2ā(k)

2
, h(k) = −k2φ(k) (17)

5

we can construct a CTS and therefore expect a BH to form.

Theorem (VW08):  whenever the KV criterion holds the ACV 
field equations do not admit regular (at r=0) real solutions. 
Thus:

KV criterion ==> ACV criterion
but of course not the other way around!

16



R1(r)R2(r) ≤
8
27

r4

(1 + r2)2

�
1 +

1
2

�
1− log(1 + r2)

r2

��2

R1(r)R2(r)

11 mars 2011 G. Veneziano, Cours no. X

A sufficient criterion for dispersion 
(P.-L. Lions, private comm.)

 the ACV eqns do admit regular, real solutions. 

If
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To summarize

clearly, there is room for improvement...
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Examples 
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ρ = ρ(0) + r2ρ̇(0) , (r < b)

ρ̇ =
�

1−R2/ρ , (r > b)ρ̈ =
R2

2ρ2
Θ(r2 − b2)
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Can be dealt with analytically: 

Example 1: particle-scattering off a ring

b

ρ(b2) = b2ρ̇(b2) = b2
�

1−R2/ρ(b2)

b2 >
3
√

3
2

R2 ≡ b2
c

Since ρ(0) =0:

This (cubic) equation has
positive real solutions iff

(b/R)c ~ 1.61
CTS: (b/R)c > 1 
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ρ̈(r2) =
R2

2ρ2
Θ(r − L) +

R2r4

2L4ρ2
Θ(L− r)
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The equation for ρ  becomes

Example 2: Two hom. beams of radius L. 

We can compute the critical value numerically:

It is compatible with (and close to) the CTS upper bound 
of KV: 

�
R

L

�

cr

∼ 0.47

�
R

L

�

cr

< 1.0
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Two extended sources with the same fixed total energy 
and Gaussian profiles centered at r=0 with different 
widths L1 and L2: 

The critical line in the (L1 , L2) plane can be compared with 
the one coming from the CTS criterion. 

Example 3: Two different Gaussian Beams
(GV & J.Wosiek ‘08)

parameter b. And indeed, from (8), we recover in this case the approximation used in [1]
to describe the latter process i.e.

ρ̈ =
1

2

R1(r)R2(r)

ρ2
=

1

2

R2

ρ2
Θ(t − b2) (31)

If we require ρ(0) = 0 this equation leads to the condition on ρ(b2):

ρ(b2) = b2ρ̇(b2) = b2

√

1 − R2

ρ(b)
(32)

which has a real solution only if R
b < (R

b )c = 21/23−3/4 ∼ 0.62. Such a result has to
be compared with the upper limit given by (13) which, in this case, simply becomes
(R/b)CTS

c < 1.
It is interesting to notice that exactly the same (R

b )c will apply to the situation in
which the point-like source is replaced by an arbitrary source “contained” inside the ring-
shaped one. Physically this makes sense since, by Gauss’ theorem, the compact source
should propagate undisturbed while the more extended source is only affected by the total
energy of the more compact one.

3.3 Gaussian sources

Point-like sources are difficult to deal with numerically, especially in momentum space.
Therefore we also introduce Gaussian-smeared versions of the above point and ring-like
sources.

s1(x) =
1

N1
exp

(

− r2

2σ2

)

Θ(L1 − r), N1 = 2πσ2(1 − exp

(

−L2
1

2σ2

)

), (33)

s2(x) =
1

N2
exp

(

−(r − L2)2

2σ2

)

Θ(L2 − r), N2 = 2π

(

σ2(exp

(

−L2
2

2σ2

)

− 1) + σL2

√

π

2
Erf

L2√
2σ

)

;

and their Fourier transforms

si(k) = 2π

∫ Li

0

rdrJ0(kr)si(x) (34)

When σ −→ 0 (∞) the problem reduces to the one of the point-ring (two homogeneous
beams) case.

Another interesting example is the one of gaussian sources concentrated at r = 0.
They correspond to:

si(t) =
1

2πL2
i

exp

(

− t

2L2
i

)

,
Ri(t)

R
= 1 − exp

(

− t

2L2
i

)

(35)

which in momentum space corresponds to

si(k
2) = exp

(

−k2L2
i

2

)

(36)

8
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Figure 3: Two gaussian sources at the origin. The critical line in the (L1, L2) plane. The
BH phase lies below this line. We also show (dash-dotted line) a lower bound on the curve
from the CTS criterion (13).
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Figure 4: The maximal solution, in the dispersive phase, also for t > 1.(two identical
ACV sources, d = 1, R/L = .44)

All above calculations required solving Eqs.(11) for t ≤ 1. Next we look for the
maximal solution in the larger domain t ≤ tmax. To this end it suffices to use the value σ0

found above and extend the profile Ri(t) beyond L2: Ri(t) = R, t > L2. The rest is again
done by Mathematica. As an example, we show in Fig.4 the derivative of the solution
ρ(t). It interpolates smoothly around t = 1 and, as expected, tends to 1 at large t. We
have also verified that for t > 1, ρ(t) obtained above is identical to the analytic solution
for the constant profiles

ρan(t) = R2F−1
[

F (ρ0/R
2) + t/R2 − t0/R

2
]

, (38)
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Dispersion
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In 0908.1780 Choptuik & Pretorius analyzed a “similar” 
situation numerically (relativistic central collision of two 
solitons of fixed mass and transverse size). 
BH formation occurs at a critical γc (i.e. Rc) which is a 
factor 2 or 3 below the naive CTS value.

*************

An amusing coincidence?

The above results are encouraging but real control over 
the different approximations is lacking, in particular on 
the freezing of longitudinal dynamics.
This is probably at the origin of some puzzles we find in 
connection with gravitational radiation at b >> R. 
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