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From Goto-Nambu to Polyakov

I We have seen that a free string is described by the Nambu-Goto
action:

SNG(xµ) = −T
∫

dτ
∫

dσ
√
−det (∂αxµ∂βxνηµν)

where ξα ≡ (τ, σ) and ∂α ≡ ∂
∂ξα .

I This Lagrangian is very non-linear and not easy to treat if we want
to quantize the string using the path integral formalism.

I On the other hand, there exists an alternative to the Nambu-Goto
action that was constructed by
[Brink, Deser, DV, Howe and Zumino] in 1976.

I It was then used by Polyakov in 1982 for quantizing the string with
the path integral formalism.

I For this reason it is called Polyakov action.
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I It is given by:

S(xµ,gαβ) = −T
2

∫
dτ
∫ π

0
dσ
√
−ggαβ∂αxµ∂βxνηµν

I xµ(σ, τ) is the coordinate of the string ([µ, ν = 0,2, ...d − 1]).
I T = 1

2πα′ is a dimensional (Energy per unit length) parameter
called the string tension.

I gαβ(σ, τ) is the two-dimensional world-sheet metric tensor with
g = det(gαβ).

I ηµν = (−1,1...1,1) is the d-dimensional target space metric.
I Viewed as a two dimensional field theory, it describes the

interaction of a set of d massless fields with an external
gravitational field gαβ.

I From this point of view the d-dimensional Lorentz index plays the
role of a flavour index.
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I It can be easily shown that the two actions are equivalent.
I We can immediately write the algebraic equation of motion for the

world-sheet metric:

θαβ ≡ ∂αx · ∂βx − 1
2

gαβgγδ∂γx · ∂δx = 0

where we have used

δ
√
−g

δgαβ
= −1

2
gαβ
√
−g

I From it we get:

det (∂αx · ∂βx) =
g
4

(
gαβ∂αx · ∂βx

)2

I Inserting it in the Polyakov action one gets the Nambu-Goto action
=⇒ the two actions are equivalent !!
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The bosonic string in the conformal gauge
I Let us start from the Polyakov action:

S(xµ,gαβ) = −T
2

∫
dτ
∫ π

0
dσ
√
−g gαβ∂αxµ∂βxνηµν

I It is invariant under an arbitrary reparametrization (ξ → ξ′(ξ)) of
the world-sheet coordinates ξα ≡ (τ, σ):

xµ(ξ) = x ′µ(ξ′) , gαβ(ξ) =
∂ξ′γ

∂ξα
∂ξ′δ

∂ξβ
g′γδ(ξ

′)

I The second equation implies:

d2ξ
√
−g = d2ξ′

√
−g′

I For infinitesimal transformations ξ′ = ξ − ε we get:

δxµ = εα∂αxµ ; δgαβ = εγ∂γgαβ + ∂αε
γgγβ + ∂βε

γgαγ

Paolo Di Vecchia (NBI+NO) Covariant quantization Collège de France, 19.02.10 6 / 59



I It is also invariant under Weyl rescaling of the metric:

gαβ(ξ)→ Λ2(ξ)gαβ(ξ) ; xµ(ξ)→ xµ(ξ)

I From the string action we can derive the Euler-Lagrange
equations of motion:

− 2
T
√
−g

δS
δgαβ

≡ θαβ = ∂αx · ∂βx − 1
2

gαβgγδ∂γx · ∂δx = 0

for the two-dimensional world-sheet metric.
I This equation implies that the two-dimensional world-sheet

energy-momentum tensor is identically vanishing.
I The eq. of motion for the string coordinate is instead

∂α

(√
−ggαβ∂βxµ

)
= 0

I It is still non-linear.
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I In order to solve the previous equations and find the most general
classical motion of a string it is convenient to choose a gauge
where the previous equation of motion linearizes.

I A convenient Lorentz covariant gauge is the conformal gauge
where the world-sheet metric tensor is taken to be of the form:

gαβ = ρ(ξ)ηαβ η11 = −η00 = 1

I This gauge choice does not fix completely the gauge.
I We can still perform conformal transformations that leave the

metric in the same form, but with a rotated ρ.
I They are characterized by the following equation:

∂αεβ + ∂βεα − ηαβ∂γεγ = 0

I Under the previous infinitesimal transformation we get:

gαβ + δgαβ = (ρ+ ∂γ (εγρ)) ηαβ
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I The conditions of the conformal gauge are more transparent if we
introduce light-cone coordinates:

ξ± = ξ0 ± ξ1 , ε± = ε0 ± ε1 ,
∂

∂ξ±
=

1
2

(
∂

∂ξ0 ±
∂

∂ξ1

)
I In terms of those variables, they reduce to

∂

∂ξ−
ε+ =

∂

∂ξ+
ε− = 0 =⇒ ε+(ξ+) ; ε−(ξ−)

I In the conformal gauge the equation of motion becomes:(
∂2

∂σ2 −
∂2

∂τ2

)
xµ(σ, τ) = 0

I Boundary conditions for open string
∂

∂σ
xµ(τ, σ)|σ=0,π = 0

I Boundary condition for closed string:

xµ(τ, σ) = xµ(τ, σ + π)
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I The most general solution for open string:

xµ(τ, σ) = qµ + 2α′pµτ + i
√

2α′
∑
n 6=0

αµn
n

e−inτcosnσ

I and for closed string

xµ(τ, σ) = qµ + 2α′pµτ +
i
2

√
2α′

∑
n 6=0

[
αµn
n

e−2in(τ+σ) +
α̃µn
n

e−2in(τ−σ)

]

I Here αn and α̃n are just constant parameters.
I We must impose the vanishing of the two independent

components of the world-sheet energy-momentum tensor:

θ00 ± θ01 ∼ 1
2
(
ẋ ± x ′

)2
= 0

ẋ ≡ ∂τx ; x ′ ≡ ∂σx
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Notations
I The operators αn and α̃n are related to the harmonic oscillators

and the center of mass variables by:

αµn =


√

naµn if n > 0√
2α′p̂µ if n = 0√
|n|a+µ

|n| if n < 0

for the open string,
I and by

αµn =


√

naµn if n > 0√
2α′ p̂

µ

2 if n = 0√
|n|a+µ

|n| if n < 0
; α̃µn =


√

nãµn if n > 0√
2α′ p̂

µ

2 if n = 0√
|n|ã+µ

|n| if n < 0

for the closed string.
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I In the case of the open string they give the same condition,
namely:

Ln =
1

4πα′

∫ π

0
dσ ein(τ±σ)(ẋ ± x ′)2 =

1
2

∞∑
m=−∞

αn−m · αm = 0

I where α0 ≡
√

2α′p
I In the case of a closed string we get instead:

Ln =
1

4πα′

∫ π

0
dσ ein(τ+σ)(

ẋ + x ′

2
)2 =

1
2

∞∑
m=−∞

αm · αn−m = 0

L̃n =
1

4πα′

∫ π

0
dσ ein(τ−σ)(

ẋ − x ′

2
)2 =

1
2

∞∑
m=−∞

α̃m · α̃n−m = 0

αµ0 = α̃µ0 =
√

2α′
pµ

2
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Old covariant quantization
I The theory is quantized by imposing the following commutation

relations:

[αµn , α
ν
m] = n ηµνδn+m;0 ; [q̂µ, p̂ν ] = iηµν

for an open string.
I In the case of a closed string, one must also imposes the

commutation relations for the other infinite set of oscillators:

[α̃µn , α̃
ν
m] = n ηµνδn+m;0

that commute with the oscillators of the previous set.
I In the quantum theory, the operators Ln are defined with the

normal ordering:

Ln =
1
2

∞∑
m=−∞

: αn−m · αm :

that, however, regards only L0 = α′p̂2 +
∑∞

n=1 na†n · an.
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I In the quantum theory, the vanishing of Ln for all n is too
restrictive.

I One can only impose their vanishing between physical states.
I In other words one can define a physical subspace where:

〈Phys.,P|(Ln − α0δn0)|Phys.′,P〉 = 0 ; −∞ < n < +∞

α0 is a constant to be determined.
I They are satisfied if

(L0 − α0)|Phys.,P〉 = Ln|Phys.,P〉 = 0 ; n = 1,2 . . .

I Those conditions are exactly those obtained from the analysis of
the residues of the poles in the N-point dual amplitude.

I except that there and in the light-cone gauge α0 = 1, while here
there is no obvious way to compute it.
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I In the present covariant way of quantizing the string, we cannot
reproduce two properties of the string that we have obtained in the
light-cone gauge, namely

I the fact that the intercept of the Regge trajectory α0 = 1
I and the critical dimension d = 26 that in the light-cone was

essential to have a Lorentz invariant theory.
I On the other hand, one expects that, quantizing the theory in two

different gauges, one would get the same result.
I Here conformal invariance is a gauge symmetry because it

comes from the invariance under reparametrizations.
I Therefore, we expect the energy momentum tensor to transform

as a two-index tensor without an anomaly term:

[Ln,Lm] = (n −m)Ln+m +
d
12

n(n2 − 1)δn+m;0

corresponding to the c-number of the Virasoro algebra.
I What is wrong in our present treatment of the conformal gauge?
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I Before this, let us consider shortly the case of the closed string.
I In this case we have two sets of Virasoro operators Ln and L̃n.
I The equations that characterize the on-shell physical states are:

(L0 − 1)|Phys.〉 = (L̃0 − 1)|Phys.〉 = 0
Ln|Phys.〉 = L̃n|Phys.〉 = 0 ; n = 1,2 . . .

I with

L0 = α′
(

p̂
2

)2

+
∞∑

n=1

na†n · an ; L̃0 = α′
(

p̂
2

)2

+
∞∑

n=1

nã†n · ãn

I The mass spectrum is given by (p̂2 = −m2):

α′

2
m2 =

∞∑
n=1

n
(

a†n · an + ã†n · ãn

)
− 2 ;

∞∑
n=1

na†n · an =
∞∑

n=1

nã†n · ãn
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I The lowest state is the ground state |0,P〉 with mass
−P2 = m2 = − 4

α′ =⇒ it is a tachyon.
I The state contributing to the next massless level is the following:

a†1µã†1ν |0,P〉

I The symmetric and traceless part corresponds to a massless spin
2 =⇒ graviton Gµν

I The trace part corresponds to a scalar particle called dilaton φ.
I The antisymmetric part corresponds to a 2-index antisymmetric

tensor Bµν .
I In the open string we have a massless gauge boson, while in the

closed string we have a massless graviton together with a
massless dilaton and a massless Bµν .
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I The physical states are a subset of the previous states that satisfy
the conditions:

Ln|Phys.〉 = L̃n|Phys.〉 = 0

I The analysis at this level proceeds as at the massless level of the
open string.

I In the reference frame where the momentum of the state is
Pµ = (P, . . . ,P), after the elimination of the zero norm states, the
only physical states are:

a†1,i ã
†
1,j |0,P〉 ; i , j = 1 . . . (d − 2)

I In conclusion, one gets (d−2)(d−1)
2 − 1 physical states for the

graviton, (d−2)(d−3)
2 physical states for the two-index

antisymmetric tensor and one state associated to the dilaton.
I The total number of physical states at this level is therefore

(d − 2)2.
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The Polyakov path integral
I The most convenient way to find what is lacking in the old

covariant quantization is to compute the string partition function
using the string path integral formalism:∫

DxµDgαβ e−S(xµ,gαβ)

I The string action in Euclidean space is equal to

S(xµ,gαβ) ≡ T
2

∫
d2ξ
√

g gαβ∂αx · ∂βx

I It is invariant under world-sheet reparametrizations that act on the
world-sheet metric and on the string coordinates as follows:

xµ(ξ) = (x ′)µ(ξ′) ; gαβ(ξ) =
∂ξ′γ

∂ξα
∂ξ′δ

∂ξβ
g′αβ(ξ′)

I For infinitesimal transformations ((ξ′α = ξα − εα(ξ)) they become

δxµ = εα∂αxµ ; δgαβ = εγ∂γgαβ + gαγ∂βεγ + gβγ∂αεγ = ∇αεβ +∇βεα
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I It is also invariant under Weyl transformations (rescaling of the
metric):

xµ(ξ)→ xµ(ξ) ; gαβ(ξ)→ Λ2(ξ)gαβ(ξ)

I These two invariances involve three arbitrary functions εα(ξ) with
α = 1,2 and Λ(ξ).

I The metric tensor has also three independent components.
I Locally, one can always choose a suitable reparametrization and a

Weyl transformation that lead to a flat metric or to the one in the
conformal gauge where

ĝαβ = δαβ ; ĝαβ = ρ(ξ)δαβ

if reparametrization and Weyl invariances are mantained at the
quantum level.

I Because of these two local invariances, the path integral is ill
defined being the volume of the reparametrizations and Weyl
transformations infinite.
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I We can define the functional integral by dividing by the volume of
the reparametrizations and Weyl rescalings:∫

Dgαβ Dxµ

Vrep. × VWeyl
e−S(x ,g)

I In order to extract from Dg the two volumes, we perform the
Faddeev and Popov procedure that can be applied to any theory
with local gauge invariance.

I Starting from a fixed fiducial metric ĝαβ(ξ) we can obtain the most
general metric by transforming it by a reparametrization and a
Weyl transformation:

ĝζαβ(ξ′) = e2ω(ξ) ∂ξ
γ

∂ξ′α
∂ξδ

∂ξ′β
ĝγδ(ξ) ; ζ ≡ (ξ′(ξ), ω(ξ))
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I In order to extract the volume of the reparametrization and Weyl
transformations, we change integration variables from the original
gαβ to the parameters of those transformations ω(ξ) and ξ′α(ξ).

I The integral over the parameters of the reparametrization and
Weyl transformations gives the volume Vrep. × VWeyl that cancels
the volume in the denominator.

I One is left with the jacobian of the transformation from gαβ to the
parameters of the invariance group, called the determinant of
Faddeev-Popov.

I This procedure is explained in detail in a section at the end of this
lecture.

I Here we only give the final result:∫
Dxµ ∆FP(ĝ) e−S(x ,ĝ)
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I The determinant of the Faddev-Popov can be expressed it terms
of a functional integral over the ghost fields bαβ (traceless) and cα

obtaining:

Z (ĝ) =

∫
Dx Db Dc e−Sx−Sgh

I where

Sgh =
1

2π

∫
d2ξ

√
ĝ bαβ∇̂αcβ ; Sx =

1
2π

∫
d2ξ

√
ĝ ĝαβ∂αx · ∂βx

I We call them ghosts because they anti-commute (they are
Grassmann variables), but not Dirac fermions.

I We have made x dimensionless by dividing it by
√

2α′.
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I In the conformal gauge and world-sheet light-cone coordinates
z = ξ1 + iξ2 and z̄ = ξ1 − iξ2 where

gαβ = ρ(ξ)δαβ =⇒ gzz̄ = gz̄z =
ρ

2
; gzz = gz̄z̄ = 0

I the ghost action becomes:

Sgh =
1

2π

∫
d2ξ

√
ĝ bαβĝαγ∇̂γcβ =

1
2π

∫
d2ξ

[
bzz∂z̄cz + bz̄z̄∂zcẑ

]

I In the present derivation we have ignored the possibility of
anomalies.

I It can be shown that, in general, we can have a Weyl anomaly that
disappears, however, if the space-time dimension d = 26.
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I One can quantize the theory preserving reparametrization
invariance.

I But then, in general, one cannot preserve Weyl invariance.
I How does a quantum violation of Weyl invariance manifest itself?
I On the fact that the functional integral over xµ,b, c will depend on
ρ =⇒ one does not get anymore the volume of the Weyl group.

I It turns out that the contribution of the functional integral over
xµ,b, c gives:

e
1

12π ( d
2−13)

R
d2ξ[ 1

2∂αϕ∂
αϕ+µ2eϕ] ; ρ ≡ eϕ

I The dependence on ϕ disappears only if d = 26.
I Only for d = 26 one has a Weyl invariant quantum theory.
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Conformal invariance
I Introducing the simpler notation:

b ≡ bzz ; b̄ ≡ bz̄z̄ ; c̄ ≡ cz̄ ; c ≡ cz ; ∂ ≡ ∂z ; ∂̄ ≡ ∂z̄

I the action becomes:

S =
1
π

∫
d2ξ [

1
2
∂x · ∂̄x + b∂̄c + b̄∂c̄]

I This action is conformal invariant if we assume that x ,b, c
transform as conformal fields with dimension respectively equal to
0,2,−1, namely:

δx = ε∂x + ε̄∂̄x
δb = ε∂b + 2∂ε b ; δc = ε∂c − ∂ε c
δb̄ = ε̄∂̄b̄ + 2∂̄ε̄ b̄ ; δc̄ = ε̄∂̄c̄ − ∂̄ε̄ c̄
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I Each of the three pieces of the previous Lagrangian transforms as
a total derivative (it is a conformal tensor with dimension ∆ = 1)
under the conformal transformations with parameters ε and ε̄:

δ

(
1
2
∂x · ∂̄x

)
= ∂

(
ε
1
2
∂x · ∂̄x

)
+ ∂̄

(
ε̄
1
2
∂x · ∂̄x

)
δ
(
b∂̄c

)
= ∂

(
εb ∂̄c

)
δ
(
b̄∂c̄

)
= ∂̄

(
ε̄ b̄ ∂c̄

)
I But now the energy-momentum tensor and the corresponding

operators Ln get also a contribution from the ghosts!!
I In particular, one get:

Ln =

∮
0

dz zn+1T (z) =

∮
0

dz zn+1
(

T x (z) + T gh(z)
)

I where

T x (z) = −1
2

: (
∂x
∂z

)
2

: ; T gh(z) =: cb′ + 2c′b :
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I It can be shown that the new operators Ln satisfy the following
algebra:

[Ln,Lm] = (n −m)Ln+m +
d − 26

12
δn+m;0n(n2 − 1)

I The c-number of the Virasoro algebra is vanishing at the critical
dimension D=26.

I as it must happen in any theory where the conformal symmetry is
a gauge symmetry obtained after a partial fixing of the
reparametrization invariance.

I This is the first sign that also in the covariant quantization we need
to have d = 26 as in the light-cone gauge.
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Some details of the previous calculation
I Using the following contraction rules:

< xµ(z)xν(ζ) >= −ηµν log(z − ζ) ; < b(z)c(ζ) >=
1

z − ζ

I it can be shown that the transformation properties of a conformal
tensor with dimension ∆ are completely equivalent to the following
singular terms in the OPE of the energy-momentum tensor with
the conformal field:

T (z)φ(w) ∼
∂φ
∂w

z − w
+ ∆

φ(w)

(z − w)2 + . . .

I In fact, from it we get:

δφ ∼ [Ln, φ(w)] =

∮
w

dz zn+1T (z)φ(w)

= wn+1∂φ(w)

∂w
+ ∆(n + 1)wnφ(w)

I In particular, we can compute the OPE between two
energy-momentum tensors (conformal fields with ∆ = 2):

T (z)T (ζ) =

∂
∂ζT (ζ)

(z − ζ)
+ 2

T (ζ)

(z − ζ)2 +
D−26

2

(z − ζ)4 + . . .
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I In particular, we can compute the OPE between two
energy-momentum tensors (conformal fields with ∆ = 2):

T (z)T (ζ) =

∂
∂ζT (ζ)

(z − ζ)
+ 2

T (ζ)

(z − ζ)2 +
D−26

2

(z − ζ)4 + . . .

I and from it we get:

[Ln,Lm] = (n −m)Ln+m +
d − 26

12
δn+m;0n(n2 − 1)

I Remember:

Ln =

∮
0

dz zn+1T (z)
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BRST invariance
I By fixing the gauge, we have lost the invariance under

reparametrizations and Weyl transformations.
I But we are left with BRST invariance.
I It is straightforward to show that, under the following

transformations:

δx = λc∂x δc = λc∂c δb = −1
2
λ(∂x)2 + λ[c∂b + 2∂cb]

I the gauge fixed Lagrangian transforms as a total derivative:

δL = ∂[λcL]

I λ is a constant Grassmann parameter.
I It is generated by the following operator:

Q =

∮
0

dz : c(z)[T x (z) +
1
2

T gh(z)] :
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I Because of its Grassmann character, in the classical theory the
product of two BRST transformations is identically vanishing.

I In the quantum theory the square of the BRST charge is given by:

{Q,Q} =
1

12
(d − 26)

∮
0

dζc′′′(ζ)c(ζ)

I The square of the BRST charge is vanishing only if d=26.
I This is another sign that our covariant quantization is consistent

only for the critical dimension d=26.
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Physical states
I In terms of the oscillators the BRST charge in given by:

Q =
∞∑

n=1

[cnLx
−n + c†nLx

n] + c0[Lx
0 + Lg

0] + Q̃

where

Q̃ =
∞∑

n,m=1

m[c†nc†mbn+m − cncmb†n+m]− 2b0

∞∑
n=1

nc†ncn+

+
∞∑

n,m=1

(n + 2m)[c†mcn+mb†n + c†n+mcmbn]

I The ghost fields have the following expansion in terms of the
harmonic oscillators:

b(z) =
∞∑

n=−∞
bnz−n−2 c(z) =

∞∑
n=−∞

cnz−n+1
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I The oscillators satisfy the algebra:

{cn,bm} = δn+m,0 ; {cn, cm} = {bn,bm} = 0

I In the BRST quantization the physical states are defined as those
annihilated by the BRST charge:

Q|Phys.〉 = 0

I This is the residual invariance left from having fixed the gauge.
I The generators of this invariance must annihilate the physical

states.
I What are the states that satisfy this equation?
I In order to answer this question we have to introduce and discuss

the ghost number current.
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I The ghost Lagrangian is invariant under a U(1) current that acts
on the ghost fields as follows:

δb = iαb δc = −iαc

I The generator corresponding to this invariance can be
constructed in terms of the the ghost number density:

j(z) =: c(z)b(z) :

I The ghost number is given by

q =

∮
0

dz j(z) =
∞∑

n=−∞
: cnb−n :

= c0b0 + c1b−1 + c−1b1 +
∞∑

n=2

(c−nbn − b−ncn)
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I It turns out that the ghost number current is anomalous and
requires the following unconventional normal ordering for the
ghost oscillators:

: cnb−n :=

{
cnb−n if n ≤ 1
−b−ncn if n ≥ 2

I or equivalently
b−1,b0,b1,b2 . . . c2, c3 . . . are "annihilation operators"
b−2,b−3,b−4 . . . c1, c0, c−1 . . . are "creation operators".

I In particular, a state that satisfies the following equations:

(. . . b2,b1,b0,b−1)|q = 0〉 = (. . . c3, c2)|q = 0〉 = 0

has ghost number zero.
I It plays the role of the vacuum because it is annihilated by all

"annihilation operators".
I The state with q = 1 is what "one would normally call a vacuum":

|q = 1〉 ≡ c1|q = 0〉 =⇒
(. . . b2,b1,b0)|q = 1〉 = (. . . c3, c2, c1)|q = 1〉 = 0
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I A detailed analysis shows that the on-shell physical states must
have the following form [Freeman and Olive, 1986]:

|Phys.〉 = |q = 1;ψa〉

where the state |ψa〉 is constructed only in terms of the oscillators
of the string coordinate x .

I Remembering the form of Q in terms of the oscillators we see that

Q̃|q = 1〉 = 0

I and the action of Q on the physical state is then given by:

Q|q = 1;ψa〉 =

[ ∞∑
n=1

[cnLx
−n + c†nLx

n] + c0[Lx
0 + Lg

0]

]
|q = 1;ψa〉

=

[ ∞∑
n=1

c†nLx
n + c0(Lx

0 − 1)

]
|q = 1;ψa〉 = 0
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I We have used the two identities:

cn|q = 1〉 = 0 ; n = 1,2 . . . ; Lgh
0 |q = 1〉 = −|q = 1〉

I The second equation follows from the following expression for Lg
0 :

Lg
0 =

∞∑
n=−∞

n : b−ncn :=
∞∑

n=2

n(b−ncn + c−nbn) + c−1b1 − c1b−1

I In conclusion, we correctly reproduce the conditions for on
physical states:

Lx
n|ψa〉 = (Lx

0 − 1)|ψa〉 = 0

I The most general physical state has therefore the following form:

|Phys.〉 = |q = 1, ψa〉+ Q|λ〉

where |λ〉 is an arbitrary state.
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Conclusions
I Quantizing correctly the bosonic string in a covariant gauge we

have obtained the same results as in the light-cone gauge !
I namely the correct values for the Regge intercept and the critical

dimensions:

α0 = 1 d = 26

I It turns out the equations characterizing the on-shell physical
states are precisely those obtained in 1970 from factorizing the
N-point amplitude without knowing that there was an underlying
string theory !!

I The new feature is the presence in the covariant gauge of the
reparametrization ghosts b and c.

I They are, however, in practice not relevant if we limit ourselves to
the computation of the spectrum and of tree diagrams.
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I They are, instead, essential for computing one-loop and especially
multiloop diagrams.

I If one computes loop diagrams in the light-cone gauge one has
only the physical transverse states circulating in the loop.

I In a covariant formulation one must keep all string oscillators and
not just the physical transverse ones.

I One has then too many states circulating in the loops.
I The ghost degrees of freedom that are fermions, are there to

cancel the contribution of the non-physical states kept in order to
have a manifest Lorentz invariant formulation of the string theory.
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The material that follows is for helping those interested in
understanding some of the more technical details.
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Faddeev-Popov procedure
I We define the functional integral by dividing by the volume of the

reparametrizations and Weyl rescalings:∫
Dg Dx

Vrep. × VWeyl
e−S(x ,g)

I In order to extract from Dg the two volumes, we perform the
Faddeev and Popov procedure that can be applied to any theory
with local gauge invariance.

I Starting from a fiducial metric ĝαβ(ξ) we can transform it by a
reparametrization and a Weyl transformation:

ĝζαβ(ξ′) = e2ω(ξ) ∂ξ
γ

∂ξ′α
∂ξδ

∂ξ′β
ĝγδ(ξ) ; ζ ≡ (ε, ω)

I We define the Faddeev-Popov measure by

1 = ∆FP(g)

∫
Dζδ(g − ĝζ)
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I Dζ is the invariant measure of the reparametrizations plus Weyl
transformations.

I We can insert 1 in the functional integral, integrate over h and
rename the dummy variable x → xζ :∫

Dζ Dxζ

Vrep. × VWeyl
∆FP(ĝζ) e−S(xζ ,ĝζ)

I Using the gauge invariance of the action, of the measure and of
∆FP one gets: ∫

Dζ Dx
Vrep. × VWeyl

∆FP(ĝ) e−S(x ,ĝ)

I Nothing depends on ζ and therefore we can integrate on it
producing the volume of the invariance groups that cancels the
volume in the denominator:∫

Dx ∆FP(ĝ) e−S(x ,ĝ)
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I ∆FP can be computed for ζ near the identity where:

ĝαβ − ĝζαβ ∼ 2δωgαβ −∇αεβ −∇βεα
= (2δω −∇γεγ)gαβ − 2(P1ε)αβ

and

(P1ε)αβ =
1
2

(∇αεβ +∇βεα − gαβ∇γεγ)

I Near the identity we can compute the Faddeev-Popov
determinant:

∆−1
FP (ĝ) =

∫
DεDδω δ

(
−2(δω − ∇̂ · ε)ĝ + 2P̂1ε

)
=

∫
DεDδωD β e2πi

R
d2ξ
√

ĝβαβ(−2(δω−∇̂·ε)ĝ+2P̂1ε)αβ

I The integration over δω forces βαβ to be traceless and one gets:

∆−1
FP (ĝ) =

∫
DεDβ e4πi

R
d2ξ
√

ĝβαβ(P̂1ε)αβ

I In this way we have computed the inverse determinant.
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I In order to obtain directly the Faddeev-Popov determinant we
have to replace any bosonic with a fermionic field:

βαβ → bαβ ; εα → cα

obtaining

∆FP(ĝ) =

∫
DcDb e4πi

R
d2ξ
√

ĝbαβ(P̂1c)αβ

where b is traceless.
I We call them ghosts because they are Grassmann, but not Dirac

fermions.
I In conclusion, with a convenient normalization of the two ghost

fields we obtain the following gauge fixed partition functiion:

Z (ĝ) =

∫
Dx Db Dc e−Sx−Sgh

I where

Sgh =
1

2π

∫
d2ξ

√
ĝ bαβ∇̂αcβ ; Sx =

1
2π

∫
d2ξ

√
ĝ ĝαβ∂αx · ∂βx

Paolo Di Vecchia (NBI+NO) Covariant quantization Collège de France, 19.02.10 45 / 59



Determinants in the numerator or in denominator
I If we have a gaussian integral with bosonic complex variables we

get: ∫ ∏
i

d2zie
−

P
i,j z̄i Mij zj =

1
det M

I Instead, if we have a gaussian integral involving fermionic
(Grassmann) complex variables we get:∫ ∏

i

d2ψie
−

P
i,j ψ̄i Mijψj = det M

I Remember that Grassmann variables anticommute:

ψiψj = −ψjψi ; ψi ψ̄j = −ψ̄jψi =⇒ ψ2
i = 0

I The determinant is computed using the following integration rules:∫
dψ = 0 ;

∫
dψψ = 1
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I We have made x dimensionless by dividing it by
√

2α′.
I In the conformal gauge and world-sheet light-cone coordinates

z = ξ1 + iξ2 and z̄ = ξ1 − iξ2 where

gαβ = ρ(ξ)δαβ =⇒ gzz̄ = gz̄z =
ρ

2
; gzz = gz̄z̄ = 0

I the ghost action becomes:

Sgh =
1

2π

∫
d2ξ

√
ĝ bαβĝαγ∇̂γcβ =

1
2π

∫
d2ξ

[
bzz∂z̄cz + bz̄z̄∂zcẑ

]

I In the present derivation we have ignored the possibility of
anomalies.

I It can be shown that, in general, we can have a Weyl anomaly that
disappears, however, if the space-time dimension d = 26.
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Conformal tensors
I Consider string theory in the conformal gauge, characterized by

the following choice of the Euclidean world-sheet metric tensor:

gαβ = ρ(ξ) δαβ ; ρ = eϕ(ξ)

I We have seen that the conformal transformations leave in the
conformal gauge.

I It is convenient to work with light-cone coordinates:

z = ξ1 + iξ2 ; z̄ = ξ1 − iξ2

I In these coordinates the invariant length is defined by:

(ds)2 = gαβdξαdξβ =
ρ

2
[dzdz̄ + dz̄dz]

I implying the following light-cone coordinates for the metric tensor:

gzz = gz̄z̄ = gzz = gz̄z̄ = 0
gzz̄ = gz̄z = 2/ρ gzz̄ = gz̄z = ρ/2
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I In terms of the light-cone components of a vector:

εz = ε1 + iε2 εz̄ = ε1 − iε2 εz =
1
2

(ε1 − iε2) εz̄ =
1
2

(ε1 + iε2)

I one can define the scalar product between two vectors:

AαBα = [AzBz + Az̄Bz̄ ] = [AzBz + AzBz ] = AzBz + Az̄Bz̄

where the indices are lowered and raised by means of the metric
tensor as follows:

Az = gzz̄Az̄ Az = gzz̄Az̄ Az̄ = gz̄zAz Az̄ = gz̄zAz

I The covariant derivatives are given by:

∇αεβ = ∂αε
β + Γβαγε

γ , ∇αεβ = ∂αεβ − Γγαβεγ

where the Christoffel symbols are given in the conformal gauge
by:

Γγαβ =
gγδ

2
[∂αgβδ + ∂βgαδ − ∂δgαβ] =

[
∂αδ

γ
β + ∂βδ

γ
α − ∂γδαβ

] log ρ
2
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I Only two non-vanishing components:

Γz
zz = ρ−1∂zρ , Γz̄

z̄z̄ = ρ−1∂z̄ρ

I One gets:

∇z̄ε
z = ∂z̄ε

z ; ∇z̄ε
z̄ = ρ−1∂z̄ρε

z̄

∇zε
z̄ = ∂zε

z̄ ; ∇zε
z = ρ−1∂zρε

z

I Raising the index of the covariant derivative with the metric tensor
one gets:

∇zεz =
2
ρ
∂z̄ε

z ; ∇z̄εz =
2
ρ2∂zρε

z

∇z̄εz̄ =
2
ρ
∂zε

z̄ ; ∇zεz̄ =
2
ρ2∂z̄ρε

z̄
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I The action of the covariant derivative on a conformal tensor T z···z

with rank n is given by:

∇n
z̄T z···z = ∂z̄T z···z ∇n

zT z···z = ρ−n∂zρ
nT z···z

∇z
nT z···z =

2
ρ
∂z̄T z···z ∇z̄

nT z···z = 2ρ−1−n∂zρ
nT z···z

I Under a general relativity transformation a vector transforms as
follows:

εµ(ξ)→ ∂ξµ

∂ξ′ν
εν(ξ′)

I In terms of light-cone coordinates one gets:

εz(z, z̄)→ ∂z
∂w

εw =
1

w ′(z)
εw εz̄(z, z̄)→ ∂z̄

∂w̄
εw̄ =

1
w̄ ′(z̄)

εw̄

I We have restricted us to conformal transformations for which:
∂w
∂z̄

=
∂w̄
∂z

= 0

Paolo Di Vecchia (NBI+NO) Covariant quantization Collège de France, 19.02.10 51 / 59



I A conformal tensor of rank n transforms as follows under a
conformal transformation:

T z···z(z)→ 1
[w ′(z)]n

T w ···w (w) ; T z̄···z̄(z̄)→ 1
[w̄ ′(z̄)]n

T w̄ ···w̄ (w̄)

Tz···z(z)→ [w ′(z)]
nTw ···w (z) ; Tz̄···z̄(z̄)→ [w̄ ′(z̄)]

nTw̄ ···w̄ (w̄)

I We have lowered the indices with the metric tensor and we have
used the transformation of ρ under a conformal transformation:

ρ(z, z̄)→ w ′(z)w̄ ′(z̄)ρ(w , w̄)

I The covariant derivative ∇z
n applied to a conformal tensor of rank

n gives a conformal tensor of rank n + 1:

∇z
nT z...z

(n) (z) ≡ 2
ρ
∂z̄T z...z

(n) (z)→ [w ′(z)]
−n−1∇wT w ...w

(n) (w)
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I The covariant derivative ∇n
z applied to a conformal tensor of rank

n gives a conformal tensor with rank n-1:

∇n
zT z...z

(n) (z) ≡ ρ−n(z)∂zρ
n(z)T z...z

(n) (z)→ [w ′(z)]
1−n∇wT w ...w

(n) (w)

I In conclusion, the action of the covariant derivative on a conformal
tensor of rank n gives the following tensors:

T (n) ∇
z
n−→ T (n+1) ∇

n+1
z−→ T (n)

T (n) ∇
n
z−→ T (n−1)

∇z
n−1−→ T (n)

I In terms of the covariant derivatives we can define the following
Laplacians:

∆
(+)
n = −∇n+1

z ∇z
n ∆

(−)
n = −∇z

n−1∇n
z
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I They satisfy the relation:

∆
(+)
n −∆

(−)
n =

n
2

R

where R is the scalar curvature:

R =
4
ρ

∂2ϕ

∂z∂z̄
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The ghost number current
I The ghost Lagrangian is invariant under a U(1) current that acts

on the ghost fields as follows:

δb = iαb δc = −iαc

I The generator corresponding to this invariance can be
constructed in terms of the the ghost number density:

j(z) =: c(z)b(z) :

I Using the b − c contraction one can to compute the following
OPE’s:

j(z)j(ζ) =
1

(z − ζ)2

T g(z)j(ζ) =

∂j(ζ)
∂ζ

z − ζ
+

j(z)

(z − ζ)2 −
3

(z − ζ)3

I j(z) is a conformal field with dimension ∆ = 1, but there is an extra
term that makes the analysis more complicated.
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I The ghost coordinates b(z) and c(z) are conformal fields with
conformal dimension ∆ = 2 and -1 respectively.

I Their expansion in term of the harmonic oscillators is given by:

b(z) =
∞∑
−∞

bnz−n−2 c(z) =
∞∑
−∞

cnz−n+1

I The oscillators satisfy the algebra:

{cn,bm} = δn+m,0 ; {cn, cm} = {bn,bm} = 0

I Introduce the Fourier components of j(z) and T g(z)

jn =

∮
0

dzznj(z) =
∑

m

: cn−mbm :

Lg
n =

∮
0

dzzn+1T g(z) =
∑

m

(m + n) : bn−mcm :
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I They satisfy the algebra:

[jn, jm] = nδn+m,0 ; [Lg
n , jm] = −mjn+m −

3
2

n(n + 1)δn+m,0

[Lg
n ,L

g
m] = (n −m)Lg

n+m −
26
12

n(n2 − 1)δn+M,0

I It can be reproduced in terms of the oscillators only if the normal
ordering is defined in the following non-conventional way:

: cnb−n :=

{
cnb−n if n ≤ 1
−b−ncn if n ≥ 2

I From the algebra it turns out that j0 is not anti-hermitian as jn for
n 6= 0, but it satisfies the more complicated relation:

j0 + j†0 − 3 = 0
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I Therefore if |q > is an eigenstate of the ghost number

j0|q >= q|q >

the previous equation implies that

< q′|q >∼ δq,3−q′

I It can be checked that the state defined by

bn|q >= 0 if n > q − 2

cn|q >= 0 if n ≥ −q + 2

is an eigenstate of the ghost number operator with ghost number
equal to q.

I It satisfies also the equation:

L0|q >=
1
2

q(q − 3)|q >
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I Among those eigenstates of j0 the only one, that is annihilated by
the three generators of the projective group is |q = 0 >:

L0|q = 0 >= L1|q = 0 >= L−1|q = 0 >= 0

|q = 0 > is therefore projective invariant.
I The non-anti-hermicity of j0 implies that, if we compute any matrix

element containing objects with a definite ghost number, we will
get zero unless the total ghost charge is equal to 3.

I In particular, in order to compute b − c the contraction, we must
compute the following matrix element:

< q = 3|b(z)c(ζ)|q = 0 >=
1

z − ζ
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