Covariant quantization of a relativistic string

Paolo Di Vecchia

Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm
Collège de France, 19.02.10

Plan of the talk

1 From Goto-Nambu to Polyakov
2 The bosonic string in the conformal gauge
3 Old covariant quantization
4 The Polyakov path integral
5 Conformal invariance
6 BRST invariance
7 Physical states
8 Conclusions
9 Faddeev-Popov procedure
10 Conformal tensors
11 The ghost number current

From Goto-Nambu to Polyakov

- We have seen that a free string is described by the Nambu-Goto action:

$$
S_{N G}\left(x^{\mu}\right)=-T \int d \tau \int d \sigma \sqrt{-\operatorname{det}\left(\partial_{\alpha} x^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}\right)}
$$

where $\xi^{\alpha} \equiv(\tau, \sigma)$ and $\partial_{\alpha} \equiv \frac{\partial}{\partial \xi^{\alpha}}$.

- This Lagrangian is very non-linear and not easy to treat if we want to quantize the string using the path integral formalism.
- On the other hand, there exists an alternative to the Nambu-Goto action that was constructed by
[Brink, Deser, DV, Howe and Zumino] in 1976.
- It was then used by Polyakov in 1982 for quantizing the string with the path integral formalism.
- For this reason it is called Polyakov action.
- It is given by:

$$
S\left(x^{\mu}, g_{\alpha \beta}\right)=-\frac{T}{2} \int d \tau \int_{0}^{\pi} d \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} \eta_{\mu \nu}
$$

- $x^{\mu}(\sigma, \tau)$ is the coordinate of the string $([\mu, \nu=0,2, \ldots d-1])$.
- $T=\frac{1}{2 \pi \alpha^{\prime}}$ is a dimensional (Energy per unit length) parameter called the string tension.
- $g^{\alpha \beta}(\sigma, \tau)$ is the two-dimensional world-sheet metric tensor with $g=\operatorname{det}\left(g_{\alpha \beta}\right)$.
- $\eta^{\mu \nu}=(-1,1 \ldots 1,1)$ is the d-dimensional target space metric.
- Viewed as a two dimensional field theory, it describes the interaction of a set of d massless fields with an external gravitational field $g_{\alpha \beta}$.
- From this point of view the d-dimensional Lorentz index plays the role of a flavour index.
- It can be easily shown that the two actions are equivalent.
- We can immediately write the algebraic equation of motion for the world-sheet metric:

$$
\theta_{\alpha \beta} \equiv \partial_{\alpha} x \cdot \partial_{\beta} x-\frac{1}{2} g_{\alpha \beta} g^{\gamma \delta} \partial_{\gamma} x \cdot \partial_{\delta} x=0
$$

where we have used

$$
\frac{\delta \sqrt{-g}}{\delta g^{\alpha \beta}}=-\frac{1}{2} g_{\alpha \beta} \sqrt{-g}
$$

- From it we get:

$$
\operatorname{det}\left(\partial_{\alpha} x \cdot \partial_{\beta} x\right)=\frac{g}{4}\left(g^{\alpha \beta} \partial_{\alpha} x \cdot \partial_{\beta} x\right)^{2}
$$

- Inserting it in the Polyakov action one gets the Nambu-Goto action \Longrightarrow the two actions are equivalent !!

The bosonic string in the conformal gauge

- Let us start from the Polyakov action:

$$
S\left(x^{\mu}, g_{\alpha \beta}\right)=-\frac{T}{2} \int d \tau \int_{0}^{\pi} d \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} \eta_{\mu \nu}
$$

- It is invariant under an arbitrary reparametrization $\left(\xi \rightarrow \xi^{\prime}(\xi)\right)$ of the world-sheet coordinates $\xi^{\alpha} \equiv(\tau, \sigma)$:

$$
x^{\mu}(\xi)=x^{\prime \mu}\left(\xi^{\prime}\right), \quad g_{\alpha \beta}(\xi)=\frac{\partial \xi^{\prime \gamma}}{\partial \xi^{\alpha}} \frac{\partial \xi^{\prime \delta}}{\partial \xi^{\beta}} g_{\gamma \delta}^{\prime}\left(\xi^{\prime}\right)
$$

- The second equation implies:

$$
d^{2} \xi \sqrt{-g}=d^{2} \xi^{\prime} \sqrt{-g^{\prime}}
$$

- For infinitesimal transformations $\xi^{\prime}=\xi-\epsilon$ we get:

$$
\delta x^{\mu}=\epsilon^{\alpha} \partial_{\alpha} x^{\mu} ; \delta g_{\alpha \beta}=\epsilon^{\gamma} \partial_{\gamma} g_{\alpha \beta}+\partial_{\alpha} \epsilon^{\gamma} g_{\gamma \beta}+\partial_{\beta} \epsilon^{\gamma} g_{\alpha \gamma}
$$

- It is also invariant under Weyl rescaling of the metric:

$$
g_{\alpha \beta}(\xi) \rightarrow \Lambda^{2}(\xi) g_{\alpha \beta}(\xi) ; x^{\mu}(\xi) \rightarrow x^{\mu}(\xi)
$$

- From the string action we can derive the Euler-Lagrange equations of motion:

$$
-\frac{2}{T \sqrt{-g}} \frac{\delta S}{\delta g^{\alpha \beta}} \equiv \theta_{\alpha \beta}=\partial_{\alpha} x \cdot \partial_{\beta} x-\frac{1}{2} g_{\alpha \beta} g^{\gamma \delta} \partial_{\gamma} x \cdot \partial_{\delta} x=0
$$

for the two-dimensional world-sheet metric.

- This equation implies that the two-dimensional world-sheet energy-momentum tensor is identically vanishing.
- The eq. of motion for the string coordinate is instead

$$
\partial_{\alpha}\left(\sqrt{-g} g^{\alpha \beta} \partial_{\beta} \chi^{\mu}\right)=0
$$

- It is still non-linear.
- In order to solve the previous equations and find the most general classical motion of a string it is convenient to choose a gauge where the previous equation of motion linearizes.
- A convenient Lorentz covariant gauge is the conformal gauge where the world-sheet metric tensor is taken to be of the form:

$$
g_{\alpha \beta}=\rho(\xi) \eta_{\alpha \beta} \quad \eta_{11}=-\eta_{00}=1
$$

- This gauge choice does not fix completely the gauge.
- We can still perform conformal transformations that leave the metric in the same form, but with a rotated ρ.
- They are characterized by the following equation:

$$
\partial^{\alpha} \epsilon^{\beta}+\partial^{\beta} \epsilon^{\alpha}-\eta^{\alpha \beta} \partial^{\gamma} \epsilon_{\gamma}=0
$$

- Under the previous infinitesimal transformation we get:

$$
g_{\alpha \beta}+\delta g_{\alpha \beta}=\left(\rho+\partial_{\gamma}\left(\epsilon^{\gamma} \rho\right)\right) \eta_{\alpha \beta}
$$

- The conditions of the conformal gauge are more transparent if we introduce light-cone coordinates:

$$
\xi^{ \pm}=\xi^{0} \pm \xi^{1} \quad, \quad \epsilon^{ \pm}=\epsilon^{0} \pm \epsilon^{1} \quad, \quad \frac{\partial}{\partial \xi^{ \pm}}=\frac{1}{2}\left(\frac{\partial}{\partial \xi^{0}} \pm \frac{\partial}{\partial \xi^{1}}\right)
$$

- In terms of those variables, they reduce to

$$
\frac{\partial}{\partial \xi^{-}} \epsilon^{+}=\frac{\partial}{\partial \xi^{+}} \epsilon^{-}=0 \Longrightarrow \epsilon^{+}\left(\xi^{+}\right) \quad ; \quad \epsilon^{-}\left(\xi^{-}\right)
$$

- In the conformal gauge the equation of motion becomes:

$$
\left(\frac{\partial^{2}}{\partial \sigma^{2}}-\frac{\partial^{2}}{\partial \tau^{2}}\right) x^{\mu}(\sigma, \tau)=0
$$

- Boundary conditions for open string

$$
\left.\frac{\partial}{\partial \sigma} x^{\mu}(\tau, \sigma)\right|_{\sigma=0, \pi}=0
$$

- Boundary condition for closed string:

$$
x^{\mu}(\tau, \sigma)=x^{\mu}(\tau, \sigma+\pi)
$$

- The most general solution for open string:

$$
x^{\mu}(\tau, \sigma)=q^{\mu}+2 \alpha^{\prime} p^{\mu} \tau+i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{\alpha_{n}^{\mu}}{n} e^{-i n \tau} \cos n \sigma
$$

- and for closed string

$$
x^{\mu}(\tau, \sigma)=q^{\mu}+2 \alpha^{\prime} p^{\mu} \tau+\frac{i}{2} \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0}\left[\frac{\alpha_{n}^{\mu}}{n} e^{-2 i n(\tau+\sigma)}+\frac{\tilde{\alpha}_{n}^{\mu}}{n} e^{-2 i n(\tau-\sigma)}\right]
$$

- Here α_{n} and $\tilde{\alpha}_{n}$ are just constant parameters.
- We must impose the vanishing of the two independent components of the world-sheet energy-momentum tensor:

$$
\begin{aligned}
& \theta^{00} \pm \theta^{01} \sim \frac{1}{2}\left(\dot{x} \pm x^{\prime}\right)^{2}=0 \\
& \dot{x} \equiv \partial_{\tau} x ; x^{\prime} \equiv \partial_{\sigma} x
\end{aligned}
$$

Notations

- The operators α_{n} and $\tilde{\alpha}_{n}$ are related to the harmonic oscillators and the center of mass variables by:

$$
\alpha_{n}^{\mu}=\left\{\begin{array}{cl}
\sqrt{n} a_{n}^{\mu} & \text { if } n>0 \\
\sqrt{2 \alpha^{\prime}} \hat{p}^{\mu} & \text { if } n=0 \\
\sqrt{|n|} a_{|n|}^{+\mu} & \text { if } n<0
\end{array}\right.
$$

for the open string,

- and by
$\alpha_{n}^{\mu}=\left\{\begin{array}{cl}\sqrt{n} a_{n}^{\mu} & \text { if } n>0 \\ \sqrt{2 \alpha^{\prime}} \hat{\hat{p}}^{\mu} & \text { if } n=0 \\ \sqrt{|n| a_{|n|}} & \text { if } n<0\end{array} \quad ; \quad \tilde{\alpha}_{n}^{\mu}=\left\{\begin{array}{cl}\sqrt{n} \tilde{a}_{n}^{\mu} & \text { if } n>0 \\ \sqrt{2 \alpha^{\prime}} \frac{\hat{p}^{\mu}}{2} & \text { if } n=0 \\ \sqrt{|n|} \tilde{a}_{|n|}^{+\mu} & \text { if } n<0\end{array}\right.\right.$
for the closed string.
- In the case of the open string they give the same condition, namely:

$$
L_{n}=\frac{1}{4 \pi \alpha^{\prime}} \int_{0}^{\pi} d \sigma \mathrm{e}^{i n(\tau \pm \sigma)}\left(\dot{x} \pm x^{\prime}\right)^{2}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{n-m} \cdot \alpha_{m}=0
$$

- where $\alpha_{0} \equiv \sqrt{2 \alpha^{\prime}} p$
- In the case of a closed string we get instead:

$$
\begin{aligned}
L_{n}= & \frac{1}{4 \pi \alpha^{\prime}} \int_{0}^{\pi} d \sigma \mathrm{e}^{i n(\tau+\sigma)}\left(\frac{\dot{x}+x^{\prime}}{2}\right)^{2}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{m} \cdot \alpha_{n-m}=0 \\
\tilde{L}_{n}= & \frac{1}{4 \pi \alpha^{\prime}} \int_{0}^{\pi} d \sigma \mathrm{e}^{i n(\tau-\sigma)}\left(\frac{\dot{x}-x^{\prime}}{2}\right)^{2}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \tilde{\alpha}_{m} \cdot \tilde{\alpha}_{n-m}=0 \\
& \alpha_{0}^{\mu}=\tilde{\alpha}_{0}^{\mu}=\sqrt{2 \alpha^{\prime}} \frac{p^{\mu}}{2}
\end{aligned}
$$

Old covariant quantization

- The theory is quantized by imposing the following commutation relations:

$$
\left[\alpha_{n}^{\mu}, \alpha_{m}^{\nu}\right]=n \eta^{\mu \nu} \delta_{n+m ; 0} \quad ; \quad\left[\hat{q}^{\mu}, \hat{p}^{\nu}\right]=i \eta^{\mu \nu}
$$

for an open string.

- In the case of a closed string, one must also imposes the commutation relations for the other infinite set of oscillators:

$$
\left[\tilde{\alpha}_{n}^{\mu}, \tilde{\alpha}_{m}^{\nu}\right]=n \eta^{\mu \nu} \delta_{n+m ; 0}
$$

that commute with the oscillators of the previous set.

- In the quantum theory, the operators L_{n} are defined with the normal ordering:

$$
L_{n}=\frac{1}{2} \sum_{m=-\infty}^{\infty}: \alpha_{n-m} \cdot \alpha_{m}:
$$

that, however, regards only $L_{0}=\alpha^{\prime} \hat{p}^{2}+\sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}$.

- In the quantum theory, the vanishing of L_{n} for all n is too restrictive.
- One can only impose their vanishing between physical states.
- In other words one can define a physical subspace where:

$$
\left.\langle\text { Phys., } P|\left(L_{n}-\alpha_{0} \delta_{n 0}\right) \mid \text { Phys. }{ }^{\prime}, P\right\rangle=0 \quad ; \quad-\infty<n<+\infty
$$

α_{0} is a constant to be determined.

- They are satisfied if

$$
\left.\left.\left(L_{0}-\alpha_{0}\right) \mid \text { Phys., } P\right\rangle=L_{n} \mid \text { Phys., } P\right\rangle=0 \quad ; \quad n=1,2 \ldots
$$

- Those conditions are exactly those obtained from the analysis of the residues of the poles in the N-point dual amplitude.
- except that there and in the light-cone gauge $\alpha_{0}=1$, while here there is no obvious way to compute it.
- In the present covariant way of quantizing the string, we cannot reproduce two properties of the string that we have obtained in the light-cone gauge, namely
- the fact that the intercept of the Regge trajectory $\alpha_{0}=1$
- and the critical dimension $d=26$ that in the light-cone was essential to have a Lorentz invariant theory.
- On the other hand, one expects that, quantizing the theory in two different gauges, one would get the same result.
- Here conformal invariance is a gauge symmetry because it comes from the invariance under reparametrizations.
- Therefore, we expect the energy momentum tensor to transform as a two-index tensor without an anomaly term:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{d}{12} n\left(n^{2}-1\right) \delta_{n+m ; 0}
$$

corresponding to the c-number of the Virasoro algebra.

- What is wrong in our present treatment of the conformal gauge?
- Before this, let us consider shortly the case of the closed string.
- In this case we have two sets of Virasoro operators L_{n} and \tilde{L}_{n}.
- The equations that characterize the on-shell physical states are:

$$
\begin{aligned}
& \left.\left.\left(L_{0}-1\right) \mid \text { Phys. }\right\rangle=\left(\tilde{L}_{0}-1\right) \mid \text { Phys. }\right\rangle=0 \\
& \left.\left.L_{n} \mid \text { Phys. }\right\rangle=\tilde{L}_{n} \mid \text { Phys. }\right\rangle=0 ; n=1,2 \ldots
\end{aligned}
$$

- with

$$
L_{0}=\alpha^{\prime}\left(\frac{\hat{p}}{2}\right)^{2}+\sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n} ; \quad \tilde{L}_{0}=\alpha^{\prime}\left(\frac{\hat{p}}{2}\right)^{2}+\sum_{n=1}^{\infty} n \tilde{a}_{n}^{\dagger} \cdot \tilde{a}_{n}
$$

- The mass spectrum is given by $\left(\hat{p}^{2}=-m^{2}\right)$:

$$
\frac{\alpha^{\prime}}{2} m^{2}=\sum_{n=1}^{\infty} n\left(a_{n}^{\dagger} \cdot a_{n}+\tilde{a}_{n}^{\dagger} \cdot \tilde{a}_{n}\right)-2 ; \sum_{n=1}^{\infty} n a_{n}^{\dagger} \cdot a_{n}=\sum_{n=1}^{\infty} n \tilde{a}_{n}^{\dagger} \cdot \tilde{a}_{n}
$$

- The lowest state is the ground state $|0, P\rangle$ with mass $-P^{2}=m^{2}=-\frac{4}{\alpha^{\prime}} \Longrightarrow$ it is a tachyon.
- The state contributing to the next massless level is the following:

$$
a_{1 \mu}^{\dagger} \tilde{a}_{1 \nu}^{\dagger}|0, P\rangle
$$

- The symmetric and traceless part corresponds to a massless spin $2 \Longrightarrow$ graviton $G_{\mu \nu}$
- The trace part corresponds to a scalar particle called dilaton ϕ.
- The antisymmetric part corresponds to a 2-index antisymmetric tensor $B_{\mu \nu}$.
- In the open string we have a massless gauge boson, while in the closed string we have a massless graviton together with a massless dilaton and a massless $B_{\mu \nu}$.
- The physical states are a subset of the previous states that satisfy the conditions:

$$
\left.\left.L_{n} \mid \text { Phys. }\right\rangle=\tilde{L}_{n} \mid \text { Phys. }\right\rangle=0
$$

- The analysis at this level proceeds as at the massless level of the open string.
- In the reference frame where the momentum of the state is $P_{\mu}=(P, \ldots, P)$, after the elimination of the zero norm states, the only physical states are:

$$
a_{1, i}^{\dagger}, \tilde{a}_{1, j}^{\dagger}|0, P\rangle \quad ; \quad i, j=1 \ldots(d-2)
$$

- In conclusion, one gets $\frac{(d-2)(d-1)}{2}-1$ physical states for the graviton, $\frac{(d-2)(d-3)}{2}$ physical states for the two-index antisymmetric tensor and one state associated to the dilaton.
- The total number of physical states at this level is therefore $(d-2)^{2}$.

The Polyakov path integral

- The most convenient way to find what is lacking in the old covariant quantization is to compute the string partition function using the string path integral formalism:

$$
\int D x^{\mu} D g_{\alpha \beta} \mathrm{e}^{-S\left(x^{\mu}, g_{\alpha \beta}\right)}
$$

- The string action in Euclidean space is equal to

$$
S\left(x^{\mu}, g_{\alpha \beta}\right) \equiv \frac{T}{2} \int d^{2} \xi \sqrt{g} g^{\alpha \beta} \partial_{\alpha} x \cdot \partial_{\beta} x
$$

- It is invariant under world-sheet reparametrizations that act on the world-sheet metric and on the string coordinates as follows:

$$
x^{\mu}(\xi)=\left(x^{\prime}\right)^{\mu}\left(\xi^{\prime}\right) \quad ; \quad g_{\alpha \beta}(\xi)=\frac{\partial \xi^{\prime \gamma}}{\partial \xi^{\alpha}} \frac{\partial \xi^{\prime \delta}}{\partial \xi^{\beta}} g_{\alpha \beta}^{\prime}\left(\xi^{\prime}\right)
$$

- For infinitesimal transformations $\left(\left(\xi^{\prime \alpha}=\xi^{\alpha}-\epsilon^{\alpha}(\xi)\right)\right.$ they become

$$
\delta x^{\mu}=\epsilon^{\alpha} \partial_{\alpha} x^{\mu} ; \delta g_{\alpha \beta}=\epsilon^{\gamma} \partial_{\gamma} g_{\alpha \beta}+g_{\alpha \gamma} \partial_{\beta} \epsilon^{\gamma}+g_{\beta \gamma} \partial_{\alpha} \epsilon^{\gamma}=\nabla_{\alpha} \epsilon_{\beta}+\nabla_{\beta} \epsilon_{\alpha}
$$

- It is also invariant under Weyl transformations (rescaling of the metric):

$$
x^{\mu}(\xi) \rightarrow x^{\mu}(\xi) ; \quad g_{\alpha \beta}(\xi) \rightarrow \Lambda^{2}(\xi) g_{\alpha \beta}(\xi)
$$

- These two invariances involve three arbitrary functions $\epsilon^{\alpha}(\xi)$ with $\alpha=1,2$ and $\Lambda(\xi)$.
- The metric tensor has also three independent components.
- Locally, one can always choose a suitable reparametrization and a Weyl transformation that lead to a flat metric or to the one in the conformal gauge where

$$
\hat{g}_{\alpha \beta}=\delta_{\alpha \beta} \quad ; \quad \hat{g}_{\alpha \beta}=\rho(\xi) \delta_{\alpha \beta}
$$

if reparametrization and Weyl invariances are mantained at the quantum level.

- Because of these two local invariances, the path integral is ill defined being the volume of the reparametrizations and Weyl transformations infinite.
- We can define the functional integral by dividing by the volume of the reparametrizations and Weyl rescalings:

$$
\int \frac{D g_{\alpha \beta} D x^{\mu}}{V_{\text {rep. }} \times V_{W e y l}} \mathrm{e}^{-S(x, g)}
$$

- In order to extract from $D g$ the two volumes, we perform the Faddeev and Popov procedure that can be applied to any theory with local gauge invariance.
- Starting from a fixed fiducial metric $\hat{g}_{\alpha \beta}(\xi)$ we can obtain the most general metric by transforming it by a reparametrization and a Weyl transformation:

$$
\hat{g}_{\alpha \beta}^{\zeta}\left(\xi^{\prime}\right)=\mathrm{e}^{2 \omega(\xi)} \frac{\partial \xi^{\gamma}}{\partial \xi^{\prime \alpha}} \frac{\partial \xi^{\delta}}{\partial \xi^{\prime \beta}} \hat{g}_{\gamma \delta}(\xi) \quad ; \quad \zeta \equiv\left(\xi^{\prime}(\xi), \omega(\xi)\right)
$$

- In order to extract the volume of the reparametrization and Weyl transformations, we change integration variables from the original $g_{\alpha \beta}$ to the parameters of those transformations $\omega(\xi)$ and $\xi^{\prime \alpha}(\xi)$.
- The integral over the parameters of the reparametrization and Weyl transformations gives the volume $V_{\text {rep. }} \times V_{\text {Weyl }}$ that cancels the volume in the denominator.
- One is left with the jacobian of the transformation from $g_{\alpha \beta}$ to the parameters of the invariance group, called the determinant of Faddeev-Popov.
- This procedure is explained in detail in a section at the end of this lecture.
- Here we only give the final result:

$$
\int D x^{\mu} \Delta_{F P}(\hat{g}) \mathrm{e}^{-S(x, \hat{g})}
$$

- The determinant of the Faddev-Popov can be expressed it terms of a functional integral over the ghost fields $b^{\alpha \beta}$ (traceless) and c^{α} obtaining:

$$
Z(\hat{g})=\int D x D b D c \mathrm{e}^{-S_{x}-S_{g h}}
$$

- where

$$
S_{g h}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} b_{\alpha \beta} \hat{\nabla}^{\alpha} c^{\beta} ; S_{x}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} \hat{g}^{\alpha \beta} \partial_{\alpha} x \cdot \partial_{\beta} x
$$

- We call them ghosts because they anti-commute (they are Grassmann variables), but not Dirac fermions.
- We have made x dimensionless by dividing it by $\sqrt{2 \alpha^{\prime}}$.
- In the conformal gauge and world-sheet light-cone coordinates $z=\xi^{1}+i \xi^{2}$ and $\bar{z}=\xi^{1}-i \xi^{2}$ where

$$
g_{\alpha \beta}=\rho(\xi) \delta_{\alpha \beta} \Longrightarrow g_{z \bar{z}}=g_{\bar{z} z}=\frac{\rho}{2} ; g_{z z}=g_{\bar{z} \bar{z}}=0
$$

- the ghost action becomes:

$$
S_{g h}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} b_{\alpha \beta} \hat{g}^{\alpha \gamma} \hat{\nabla}_{\gamma} c^{\beta}=\frac{1}{2 \pi} \int d^{2} \xi\left[b_{z z} \partial_{\bar{z}} c^{z}+b_{\bar{z} \bar{z}} \partial_{z} c^{\hat{z}}\right]
$$

- In the present derivation we have ignored the possibility of anomalies.
- It can be shown that, in general, we can have a Weyl anomaly that disappears, however, if the space-time dimension $d=26$.
- One can quantize the theory preserving reparametrization invariance.
- But then, in general, one cannot preserve Weyl invariance.
- How does a quantum violation of Weyl invariance manifest itself?
- On the fact that the functional integral over x^{μ}, b, c will depend on $\rho \Longrightarrow$ one does not get anymore the volume of the Weyl group.
- It turns out that the contribution of the functional integral over x^{μ}, b, c gives:

$$
\mathrm{e}^{\frac{1}{12 \pi}\left(\frac{d}{2}-13\right) \int d^{2} \xi\left[\frac{1}{2} \partial_{\alpha} \varphi \partial^{\alpha} \varphi+\mu^{2} \mathrm{e}^{\varphi}\right]} ; \quad \rho \equiv \mathrm{e}^{\varphi}
$$

- The dependence on φ disappears only if $d=26$.
- Only for $d=26$ one has a Weyl invariant quantum theory.

Conformal invariance

- Introducing the simpler notation:

$$
b \equiv b_{z z} ; \bar{b} \equiv b_{\bar{z} \bar{z}} ; \bar{c} \equiv c^{\bar{z}} ; c \equiv c^{z} ; \partial \equiv \partial_{z} ; \bar{\partial} \equiv \partial_{\bar{z}}
$$

- the action becomes:

$$
S=\frac{1}{\pi} \int d^{2} \xi\left[\frac{1}{2} \partial x \cdot \bar{\partial} x+b \bar{\partial} c+\bar{b} \partial \bar{c}\right]
$$

- This action is conformal invariant if we assume that x, b, c transform as conformal fields with dimension respectively equal to $0,2,-1$, namely:

$$
\begin{aligned}
& \delta x=\epsilon \partial x+\bar{\epsilon} \bar{\partial} x \\
& \delta b=\epsilon \partial b+2 \partial \epsilon b ; \quad \delta c=\epsilon \partial c-\partial \epsilon c \\
& \delta \bar{b}=\bar{\epsilon} \bar{\partial} \bar{b}+2 \bar{\partial} \bar{\epsilon} \bar{b} ; \quad \delta \bar{c}=\bar{\epsilon} \bar{\partial} \bar{c}-\bar{\partial} \bar{\epsilon} \bar{c}
\end{aligned}
$$

- Each of the three pieces of the previous Lagrangian transforms as a total derivative (it is a conformal tensor with dimension $\Delta=1$) under the conformal transformations with parameters ϵ and $\bar{\epsilon}$:

$$
\begin{aligned}
& \delta\left(\frac{1}{2} \partial x \cdot \bar{\partial} x\right)=\partial\left(\epsilon \frac{1}{2} \partial x \cdot \bar{\partial} x\right)+\bar{\partial}\left(\bar{\epsilon} \frac{1}{2} \partial x \cdot \bar{\partial} x\right) \\
& \delta(b \bar{\partial} c)=\partial(\epsilon b \bar{\partial} c) \\
& \delta(\bar{b} \partial \bar{c})=\bar{\partial}(\bar{\epsilon} \bar{b} \partial \bar{c})
\end{aligned}
$$

- But now the energy-momentum tensor and the corresponding operators L_{n} get also a contribution from the ghosts!!
- In particular, one get:

$$
L_{n}=\oint_{0} d z z^{n+1} T(z)=\oint_{0} d z z^{n+1}\left(T^{x}(z)+T^{g h}(z)\right)
$$

- where

$$
T^{x}(z)=-\frac{1}{2}:\left(\frac{\partial x}{\partial z}\right)^{2}: ; \quad T^{g h}(z)=: c b^{\prime}+2 c^{\prime} b:
$$

- It can be shown that the new operators L_{n} satisfy the following algebra:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{d-26}{12} \delta_{n+m ; 0} n\left(n^{2}-1\right)
$$

- The c-number of the Virasoro algebra is vanishing at the critical dimension $\mathrm{D}=26$.
- as it must happen in any theory where the conformal symmetry is a gauge symmetry obtained after a partial fixing of the reparametrization invariance.
- This is the first sign that also in the covariant quantization we need to have $d=26$ as in the light-cone gauge.

Some details of the previous calculation

- Using the following contraction rules:

$$
\left\langle x^{\mu}(z) x^{\nu}(\zeta)\right\rangle=-\eta^{\mu \nu} \log (z-\zeta) ; \quad\langle b(z) c(\zeta)\rangle=\frac{1}{z-\zeta}
$$

- it can be shown that the transformation properties of a conformal tensor with dimension Δ are completely equivalent to the following singular terms in the OPE of the energy-momentum tensor with the conformal field:

$$
T(z) \phi(w) \sim \frac{\frac{\partial \phi}{\partial w}}{z-w}+\Delta \frac{\phi(w)}{(z-w)^{2}}+\ldots
$$

- In fact, from it we get:

$$
\begin{aligned}
& \delta \phi \sim\left[L_{n}, \phi(w)\right]=\oint_{w} d z z^{n+1} T(z) \phi(w) \\
& =w^{n+1} \frac{\partial \phi(w)}{\partial w}+\Delta(n+1) w^{n} \phi(w)
\end{aligned}
$$

- In particular, we can compute the OPE between two energy-momentum tensors (conformal fields with $\Delta=2$):

$$
T(z) T(\zeta)=\frac{\frac{\partial}{\partial \zeta} T(\zeta)}{(z-\zeta)}+2 \frac{T(\zeta)}{(z-\zeta)^{2}}+\frac{\frac{D-26}{2}}{(z-\zeta)^{4}}+\ldots
$$

- and from it we get:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{d-26}{12} \delta_{n+m ; 0} n\left(n^{2}-1\right)
$$

- Remember:

$$
L_{n}=\oint_{0} d z z^{n+1} T(z)
$$

BRST invariance

- By fixing the gauge, we have lost the invariance under reparametrizations and Weyl transformations.
- But we are left with BRST invariance.
- It is straightforward to show that, under the following transformations:

$$
\delta x=\lambda c \partial x \quad \delta c=\lambda c \partial c \quad \delta b=-\frac{1}{2} \lambda(\partial x)^{2}+\lambda[c \partial b+2 \partial c b]
$$

- the gauge fixed Lagrangian transforms as a total derivative:

$$
\delta L=\partial[\lambda c L]
$$

- λ is a constant Grassmann parameter.
- It is generated by the following operator:

$$
Q=\oint_{0} d z: c(z)\left[T^{x}(z)+\frac{1}{2} T^{g h}(z)\right]:
$$

- Because of its Grassmann character, in the classical theory the product of two BRST transformations is identically vanishing.
- In the quantum theory the square of the BRST charge is given by:

$$
\{Q, Q\}=\frac{1}{12}(d-26) \oint_{0} d \zeta c^{\prime \prime \prime}(\zeta) c(\zeta)
$$

- The square of the BRST charge is vanishing only if $d=26$.
- This is another sign that our covariant quantization is consistent only for the critical dimension $\mathrm{d}=26$.

Physical states

- In terms of the oscillators the BRST charge in given by:

$$
Q=\sum_{n=1}^{\infty}\left[c_{n} L_{-n}^{x}+c_{n}^{\dagger} L_{n}^{x}\right]+c_{0}\left[L_{0}^{x}+L_{0}^{g}\right]+\tilde{Q}
$$

where

$$
\begin{aligned}
\tilde{Q}= & \sum_{n, m=1}^{\infty} m\left[c_{n}^{\dagger} c_{m}^{\dagger} b_{n+m}-c_{n} c_{m} b_{n+m}^{\dagger}\right]-2 b_{0} \sum_{n=1}^{\infty} n c_{n}^{\dagger} c_{n}+ \\
& +\sum_{n, m=1}^{\infty}(n+2 m)\left[c_{m}^{\dagger} c_{n+m} b_{n}^{\dagger}+c_{n+m}^{\dagger} c_{m} b_{n}\right]
\end{aligned}
$$

- The ghost fields have the following expansion in terms of the harmonic oscillators:

$$
b(z)=\sum_{n=-\infty}^{\infty} b_{n} z^{-n-2} \quad c(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{-n+1}
$$

- The oscillators satisfy the algebra:

$$
\left\{c_{n}, b_{m}\right\}=\delta_{n+m, 0} \quad ; \quad\left\{c_{n}, c_{m}\right\}=\left\{b_{n}, b_{m}\right\}=0
$$

- In the BRST quantization the physical states are defined as those annihilated by the BRST charge:

$$
Q \mid \text { Phys. }\rangle=0
$$

- This is the residual invariance left from having fixed the gauge.
- The generators of this invariance must annihilate the physical states.
- What are the states that satisfy this equation?
- In order to answer this question we have to introduce and discuss the ghost number current.
- The ghost Lagrangian is invariant under a $U(1)$ current that acts on the ghost fields as follows:

$$
\delta b=i \alpha b \quad \delta c=-i \alpha c
$$

- The generator corresponding to this invariance can be constructed in terms of the the ghost number density:

$$
j(z)=: c(z) b(z):
$$

- The ghost number is given by

$$
\begin{aligned}
& q=\oint_{0} d z j(z)=\sum_{n=-\infty}^{\infty}: c_{n} b_{-n}: \\
& =c_{0} b_{0}+c_{1} b_{-1}+c_{-1} b_{1}+\sum_{n=2}^{\infty}\left(c_{-n} b_{n}-b_{-n} c_{n}\right)
\end{aligned}
$$

- It turns out that the ghost number current is anomalous and requires the following unconventional normal ordering for the ghost oscillators:

$$
: c_{n} b_{-n}:=\left\{\begin{array}{lll}
c_{n} b_{-n} & \text { if } & n \leq 1 \\
-b_{-n} c_{n} & \text { if } & n \geq 2
\end{array}\right.
$$

- or equivalently
$b_{-1}, b_{0}, b_{1}, b_{2} \ldots c_{2}, c_{3} \ldots$ are "annihilation operators" $b_{-2}, b_{-3}, b_{-4} \ldots c_{1}, c_{0}, c_{-1} \ldots$ are "creation operators".
- In particular, a state that satisfies the following equations:

$$
\left(\ldots b_{2}, b_{1}, b_{0}, b_{-1}\right)|q=0\rangle=\left(\ldots c_{3}, c_{2}\right)|q=0\rangle=0
$$

has ghost number zero.

- It plays the role of the vacuum because it is annihilated by all "annihilation operators".
- The state with $q=1$ is what "one would normally call a vacuum":

$$
\begin{aligned}
& |q=1\rangle \equiv c_{1}|q=0\rangle \Longrightarrow \\
& \left(\ldots b_{2}, b_{1}, b_{0}\right)|q=1\rangle=\left(\ldots c_{3}, c_{2}, c_{1}\right)|q=1\rangle=0
\end{aligned}
$$

- A detailed analysis shows that the on-shell physical states must have the following form [Freeman and Olive, 1986]:

$$
|P h y s .\rangle=\left|q=1 ; \psi_{a}\right\rangle
$$

where the state $\left|\psi_{a}\right\rangle$ is constructed only in terms of the oscillators of the string coordinate x.

- Remembering the form of Q in terms of the oscillators we see that

$$
\tilde{Q}|q=1\rangle=0
$$

- and the action of Q on the physical state is then given by:

$$
\begin{aligned}
& Q\left|q=1 ; \psi_{\mathrm{a}}\right\rangle=\left[\sum_{n=1}^{\infty}\left[c_{n} L_{-n}^{x}+c_{n}^{\dagger} L_{n}^{x}\right]+c_{0}\left[L_{0}^{x}+L_{0}^{g}\right]\right]\left|q=1 ; \psi_{a}\right\rangle \\
& =\left[\sum_{n=1}^{\infty} c_{n}^{\dagger} L_{n}^{x}+c_{0}\left(L_{0}^{x}-1\right)\right]\left|q=1 ; \psi_{a}\right\rangle=0
\end{aligned}
$$

- We have used the two identities:

$$
c_{n}|q=1\rangle=0 ; \quad n=1,2 \ldots ; \quad L_{0}^{g h}|q=1\rangle=-|q=1\rangle
$$

- The second equation follows from the following expression for L_{0}^{g} :

$$
L_{0}^{g}=\sum_{n=-\infty}^{\infty} n: b_{-n} c_{n}:=\sum_{n=2}^{\infty} n\left(b_{-n} c_{n}+c_{-n} b_{n}\right)+c_{-1} b_{1}-c_{1} b_{-1}
$$

- In conclusion, we correctly reproduce the conditions for on physical states:

$$
L_{n}^{x}\left|\psi_{a}\right\rangle=\left(L_{0}^{x}-1\right)\left|\psi_{a}\right\rangle=0
$$

- The most general physical state has therefore the following form:

$$
\mid \text { Phys. }\rangle=\left|q=1, \psi_{a}\right\rangle+Q|\lambda\rangle
$$

where $|\lambda\rangle$ is an arbitrary state.

Conclusions

- Quantizing correctly the bosonic string in a covariant gauge we have obtained the same results as in the light-cone gauge !
- namely the correct values for the Regge intercept and the critical dimensions:

$$
\alpha_{0}=1 \quad d=26
$$

- It turns out the equations characterizing the on-shell physical states are precisely those obtained in 1970 from factorizing the N-point amplitude without knowing that there was an underlying string theory !!
- The new feature is the presence in the covariant gauge of the reparametrization ghosts b and c.
- They are, however, in practice not relevant if we limit ourselves to the computation of the spectrum and of tree diagrams.
- They are, instead, essential for computing one-loop and especially multiloop diagrams.
- If one computes loop diagrams in the light-cone gauge one has only the physical transverse states circulating in the loop.
- In a covariant formulation one must keep all string oscillators and not just the physical transverse ones.
- One has then too many states circulating in the loops.
- The ghost degrees of freedom that are fermions, are there to cancel the contribution of the non-physical states kept in order to have a manifest Lorentz invariant formulation of the string theory.

The material that follows is for helping those interested in understanding some of the more technical details.

Faddeev-Popov procedure

- We define the functional integral by dividing by the volume of the reparametrizations and Weyl rescalings:

$$
\int \frac{D g D x}{V_{\text {rep. }} \times V_{W e y l}} \mathrm{e}^{-S(x, g)}
$$

- In order to extract from $D g$ the two volumes, we perform the Faddeev and Popov procedure that can be applied to any theory with local gauge invariance.
- Starting from a fiducial metric $\hat{g}_{\alpha \beta}(\xi)$ we can transform it by a reparametrization and a Weyl transformation:

$$
\hat{g}_{\alpha \beta}^{\zeta}\left(\xi^{\prime}\right)=\mathrm{e}^{2 \omega(\xi)} \frac{\partial \xi^{\gamma}}{\partial \xi^{\prime \alpha}} \frac{\partial \xi^{\delta}}{\partial \xi^{\prime \beta}} \hat{g}_{\gamma \delta}(\xi) \quad ; \quad \zeta \equiv(\epsilon, \omega)
$$

- We define the Faddeev-Popov measure by

$$
1=\Delta_{F P}(g) \int D \zeta \delta\left(g-\hat{g}^{\zeta}\right)
$$

- $D \zeta$ is the invariant measure of the reparametrizations plus Weyl transformations.
- We can insert 1 in the functional integral, integrate over h and rename the dummy variable $x \rightarrow x^{\zeta}$:

$$
\int \frac{D \zeta D x^{\zeta}}{V_{\text {rep. }} \times V_{\text {Weyl }}} \Delta_{F P}\left(\hat{g}^{\zeta}\right) \mathrm{e}^{-S\left(x^{\zeta}, \hat{g}^{\zeta}\right)}
$$

- Using the gauge invariance of the action, of the measure and of $\Delta_{F P}$ one gets:

$$
\int \frac{D \zeta D x}{V_{\text {rep. }} \times V_{\text {Weyl }}} \Delta_{F P}(\hat{g}) \mathrm{e}^{-S(x, \hat{g})}
$$

- Nothing depends on ζ and therefore we can integrate on it producing the volume of the invariance groups that cancels the volume in the denominator:

$$
\int D x \Delta_{F P}(\hat{g}) \mathrm{e}^{-S(x, \hat{g})}
$$

- $\Delta_{F P}$ can be computed for ζ near the identity where:

$$
\begin{aligned}
& \hat{g}_{\alpha \beta}-\hat{g}_{\alpha \beta}^{\zeta} \sim 2 \delta \omega g_{\alpha \beta}-\nabla_{\alpha} \epsilon_{\beta}-\nabla_{\beta} \epsilon_{\alpha} \\
& =\left(2 \delta \omega-\nabla_{\gamma} \epsilon^{\gamma}\right) g_{\alpha \beta}-2\left(P_{1} \epsilon\right)_{\alpha \beta}
\end{aligned}
$$

and

$$
\left(P_{1} \epsilon\right)_{\alpha \beta}=\frac{1}{2}\left(\nabla_{\alpha} \epsilon_{\beta}+\nabla_{\beta} \epsilon_{\alpha}-g_{\alpha \beta} \nabla{ }_{\gamma} \epsilon^{\gamma}\right)
$$

- Near the identity we can compute the Faddeev-Popov determinant:

$$
\begin{aligned}
& \Delta_{F P}^{-1}(\hat{g})=\int D \epsilon D \delta \omega \delta\left(-2(\delta \omega-\hat{\nabla} \cdot \epsilon) \hat{g}+2 \hat{P}_{1} \epsilon\right) \\
& =\int D \epsilon D \delta \omega D \beta \mathrm{e}^{2 \pi i \int d^{2} \xi \sqrt{\hat{g}} \beta^{\alpha \beta}\left(-2(\delta \omega-\hat{\nabla} \cdot \epsilon) \hat{g}+2 \hat{P}_{1} \epsilon\right)_{\alpha \beta}}
\end{aligned}
$$

- The integration over $\delta \omega$ forces $\beta^{\alpha \beta}$ to be traceless and one gets:

$$
\Delta_{F P}^{-1}(\hat{g})=\int D \epsilon D \beta \mathrm{e}^{4 \pi i \int d^{2} \xi \sqrt{\hat{g}} \beta^{\alpha \beta}\left(\hat{P}_{1} \epsilon\right)_{\alpha \beta}}
$$

- In this way we have computed the inverse determinant.
- In order to obtain directly the Faddeev-Popov determinant we have to replace any bosonic with a fermionic field:

$$
\beta^{\alpha \beta} \rightarrow b^{\alpha \beta} \quad ; \quad \epsilon^{\alpha} \rightarrow c^{\alpha}
$$

obtaining

$$
\Delta_{F P}(\hat{g})=\int D c D b \mathrm{e}^{4 \pi i \int d^{2} \xi \sqrt{\hat{g}} b^{\alpha \beta}\left(\hat{P}_{1} c\right)_{\alpha \beta}}
$$

where b is traceless.

- We call them ghosts because they are Grassmann, but not Dirac fermions.
- In conclusion, with a convenient normalization of the two ghost fields we obtain the following gauge fixed partition function:

$$
Z(\hat{g})=\int D x D b D c \mathrm{e}^{-S_{x}-S_{g h}}
$$

- where

$$
S_{g h}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} b_{\alpha \beta} \hat{\nabla}^{\alpha} c^{\beta} ; S_{x}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} \hat{g}^{\alpha \beta} \partial_{\alpha} x \cdot \partial_{\beta} x
$$

Determinants in the numerator or in denominator

- If we have a gaussian integral with bosonic complex variables we get:

$$
\int \prod_{i} d^{2} z_{i} \mathrm{e}^{-\sum_{i, j} \bar{z}_{i} M_{i j} z_{j}}=\frac{1}{\operatorname{det} M}
$$

- Instead, if we have a gaussian integral involving fermionic (Grassmann) complex variables we get:

$$
\int \prod_{i} d^{2} \psi_{i} \mathrm{e}^{-\sum_{i, j} \bar{\psi}_{i} M_{i j} \psi_{j}}=\operatorname{det} M
$$

- Remember that Grassmann variables anticommute:

$$
\psi_{i} \psi_{j}=-\psi_{j} \psi_{i} ; \quad \psi_{i} \bar{\psi}_{j}=-\bar{\psi}_{j} \psi_{i} \Longrightarrow \quad \psi_{i}^{2}=0
$$

- The determinant is computed using the following integration rules:

$$
\int d \psi=0 ; \quad \int d \psi \psi=1
$$

- We have made x dimensionless by dividing it by $\sqrt{2 \alpha^{\prime}}$.
- In the conformal gauge and world-sheet light-cone coordinates

$$
z=\xi^{1}+i \xi^{2} \text { and } \bar{z}=\xi^{1}-i \xi^{2} \text { where }
$$

$$
g_{\alpha \beta}=\rho(\xi) \delta_{\alpha \beta} \Longrightarrow g_{z \bar{z}}=g_{\bar{z} z}=\frac{\rho}{2} ; g_{z z}=g_{\bar{z} \bar{z}}=0
$$

- the ghost action becomes:

$$
S_{g h}=\frac{1}{2 \pi} \int d^{2} \xi \sqrt{\hat{g}} b_{\alpha \beta} \hat{g}^{\alpha \gamma} \hat{\nabla}_{\gamma} c^{\beta}=\frac{1}{2 \pi} \int d^{2} \xi\left[b_{z z} \partial_{\bar{z}} c^{z}+b_{\bar{z} \bar{z}} \partial_{z} c^{\hat{z}}\right]
$$

- In the present derivation we have ignored the possibility of anomalies.
- It can be shown that, in general, we can have a Weyl anomaly that disappears, however, if the space-time dimension $d=26$.

Conformal tensors

- Consider string theory in the conformal gauge, characterized by the following choice of the Euclidean world-sheet metric tensor:

$$
g_{\alpha \beta}=\rho(\xi) \delta_{\alpha \beta} ; \rho=e^{\varphi(\xi)}
$$

- We have seen that the conformal transformations leave in the conformal gauge.
- It is convenient to work with light-cone coordinates:

$$
z=\xi^{1}+i \xi^{2} \quad ; \quad \bar{z}=\xi^{1}-i \xi^{2}
$$

- In these coordinates the invariant length is defined by:

$$
(d s)^{2}=g_{\alpha \beta} d \xi^{\alpha} d \xi^{\beta}=\frac{\rho}{2}[d z d \bar{z}+d \bar{z} d z]
$$

- implying the following light-cone coordinates for the metric tensor:

$$
\begin{aligned}
& g^{z z}=g^{\bar{z} \bar{z}}=g_{z z}=g_{\bar{z} \bar{z}}=0 \\
& g^{z \bar{z}}=g^{\bar{z} \bar{z}}=2 / \rho \quad g_{z \bar{z}}=g_{\bar{z} z}=\rho / 2
\end{aligned}
$$

- In terms of the light-cone components of a vector:

$$
\epsilon^{z}=\epsilon^{1}+i \epsilon^{2} \quad \epsilon^{\bar{z}}=\epsilon^{1}-i \epsilon^{2} \quad \epsilon_{z}=\frac{1}{2}\left(\epsilon_{1}-i \epsilon_{2}\right) \quad \epsilon_{\bar{z}}=\frac{1}{2}\left(\epsilon_{1}+i \epsilon_{2}\right)
$$

- one can define the scalar product between two vectors:

$$
A^{\alpha} B_{\alpha}=\left[A^{z} B_{z}+A^{\bar{z}} B_{\bar{z}}\right]=\left[A^{z} B_{z}+A_{z} B^{z}\right]=A_{z} B^{z}+A_{\bar{z}} B^{\bar{z}}
$$

where the indices are lowered and raised by means of the metric tensor as follows:
$A^{z}=g^{z \bar{z}} A_{\bar{z}} \quad A_{z}=g_{z \bar{z}} A^{\bar{z}} \quad A^{\bar{z}}=g^{\bar{z} z} A_{z} \quad A_{\bar{z}}=g_{\bar{z} z} A^{z}$

- The covariant derivatives are given by:

$$
\nabla_{\alpha} \epsilon^{\beta}=\partial_{\alpha} \epsilon^{\beta}+\Gamma_{\alpha \gamma}^{\beta} \epsilon^{\gamma} \quad, \quad \nabla_{\alpha} \epsilon_{\beta}=\partial_{\alpha} \epsilon_{\beta}-\Gamma_{\alpha \beta}^{\gamma} \epsilon_{\gamma}
$$

where the Christoffel symbols are given in the conformal gauge by:

$$
\Gamma_{\alpha \beta}^{\gamma}=\frac{g^{\gamma \delta}}{2}\left[\partial_{\alpha} g_{\beta \delta}+\partial_{\beta} g_{\alpha \delta}-\partial_{\delta} g_{\alpha \beta}\right]=\left[\partial_{\alpha} \delta_{\beta}^{\gamma}+\partial_{\beta} \delta_{\alpha}^{\gamma}-\partial^{\gamma} \delta_{\alpha \beta}\right] \frac{\log \rho}{2}
$$

- Only two non-vanishing components:

$$
\Gamma_{z z}^{z}=\rho^{-1} \partial_{z} \rho \quad, \quad \Gamma_{\bar{z} \bar{z}}^{\bar{z}}=\rho^{-1} \partial_{\bar{z}} \rho
$$

- One gets:

$$
\begin{aligned}
& \nabla_{\bar{z}} \epsilon^{z}=\partial_{\bar{z}} \epsilon^{z} \quad ; \quad \nabla_{\bar{z}} \epsilon^{\bar{z}}=\rho^{-1} \partial_{\bar{z}} \rho \epsilon^{\bar{z}} \\
& \nabla_{z} \epsilon^{\bar{z}}=\partial_{z} \epsilon^{\bar{z}} \quad ; \quad \nabla_{z} \epsilon^{z}=\rho^{-1} \partial_{z} \rho \epsilon^{z}
\end{aligned}
$$

- Raising the index of the covariant derivative with the metric tensor one gets:

$$
\begin{array}{ll}
\nabla^{z} \epsilon^{z}=\frac{2}{\rho} \partial_{\bar{z}} \epsilon^{z} \quad ; \quad \nabla^{\bar{z}} \epsilon^{z}=\frac{2}{\rho^{2}} \partial_{z} \rho \epsilon^{z} \\
\nabla^{\bar{z}} \epsilon^{\bar{z}}=\frac{2}{\rho} \partial_{z} \epsilon^{\bar{z}} ; \quad \nabla^{z} \epsilon^{\bar{z}}=\frac{2}{\rho^{2}} \partial_{\bar{z}} \rho \epsilon^{\bar{z}}
\end{array}
$$

- The action of the covariant derivative on a conformal tensor $T^{z \cdots z}$ with rank n is given by:

$$
\begin{array}{ll}
\nabla_{\bar{z}}^{n} T^{z \cdots z}=\partial_{\bar{z}} T^{z \cdots z} & \nabla_{z}^{n} T^{z \cdots z}=\rho^{-n} \partial_{z} \rho^{n} T^{z \cdots z} \\
\nabla_{n}^{z} T^{z \cdots z}=\frac{2}{\rho} \partial_{\bar{z}} T^{z \cdots z} & \nabla_{n}^{\bar{z}} T^{z \cdots z}=2 \rho^{-1-n} \partial_{z} \rho^{n} T^{z \cdots z}
\end{array}
$$

- Under a general relativity transformation a vector transforms as follows:

$$
\epsilon^{\mu}(\xi) \rightarrow \frac{\partial \xi^{\mu}}{\partial \xi^{\prime \nu}} \epsilon^{\nu}\left(\xi^{\prime}\right)
$$

- In terms of light-cone coordinates one gets:

$$
\epsilon^{z}(z, \bar{z}) \rightarrow \frac{\partial z}{\partial w} \epsilon^{w}=\frac{1}{w^{\prime}(z)} \epsilon^{w} \quad \epsilon^{\bar{z}}(z, \bar{z}) \rightarrow \frac{\partial \bar{z}}{\partial \bar{w}} \epsilon^{\bar{w}}=\frac{1}{\bar{w}^{\prime}(\bar{z})} \epsilon^{\bar{w}}
$$

- We have restricted us to conformal transformations for which:

$$
\frac{\partial w}{\partial \bar{z}}=\frac{\partial \bar{w}}{\partial z}=0
$$

- A conformal tensor of rank n transforms as follows under a conformal transformation:

$$
\begin{aligned}
& T^{z \cdots z}(z) \rightarrow \frac{1}{\left[w^{\prime}(z)\right]^{n}} T^{w \cdots w}(w) ; T^{\bar{z} \cdots \bar{z}}(\bar{z}) \rightarrow \frac{1}{\left[\bar{w}^{\prime}(\bar{z})\right]^{n}} T^{\bar{w} \cdots \bar{w}}(\bar{w}) \\
& T_{z \cdots z}(z) \rightarrow\left[w^{\prime}(z)\right]^{n} T_{w \cdots w}(z) ; T_{\bar{z} \cdots \bar{z}(\bar{z}) \rightarrow\left[\bar{w}^{\prime}(\bar{z})\right]^{n} T_{\bar{w} \cdots \bar{w}}(\bar{w})}
\end{aligned}
$$

- We have lowered the indices with the metric tensor and we have used the transformation of ρ under a conformal transformation:

$$
\rho(z, \bar{z}) \rightarrow w^{\prime}(z) \bar{w}^{\prime}(\bar{z}) \rho(w, \bar{w})
$$

- The covariant derivative ∇_{n}^{z} applied to a conformal tensor of rank n gives a conformal tensor of rank $n+1$:

$$
\nabla_{n}^{z} T_{(n)}^{z \ldots . .}(z) \equiv \frac{2}{\rho} \partial_{\bar{z}} T_{(n)}^{z \ldots z}(z) \rightarrow\left[w^{\prime}(z)\right]^{-n-1} \nabla^{w} T_{(n)}^{w \ldots w}(w)
$$

- The covariant derivative ∇_{z}^{n} applied to a conformal tensor of rank n gives a conformal tensor with rank $\mathrm{n}-1$:

$$
\nabla_{z}^{n} T_{(n)}^{z . . z}(z) \equiv \rho^{-n}(z) \partial_{z} \rho^{n}(z) T_{(n)}^{z \ldots z}(z) \rightarrow\left[w^{\prime}(z)\right]^{1-n} \nabla_{w} T_{(n)}^{w \ldots w}(w)
$$

- In conclusion, the action of the covariant derivative on a conformal tensor of rank n gives the following tensors:

$$
\begin{aligned}
& T^{(n)} \xrightarrow{\nabla_{n}^{z}} T^{(n+1)} \xrightarrow{\nabla_{z}^{n+1}} T^{(n)} \\
& T^{(n)} \xrightarrow{\nabla_{z}^{n}} T^{(n-1)} \xrightarrow{\nabla_{n-1}^{z}} T^{(n)}
\end{aligned}
$$

- In terms of the covariant derivatives we can define the following Laplacians:

$$
\Delta_{n}^{(+)}=-\nabla_{z}^{n+1} \nabla_{n}^{z} \quad \Delta_{n}^{(-)}=-\nabla_{n-1}^{z} \nabla_{z}^{n}
$$

- They satisfy the relation:

$$
\Delta_{n}^{(+)}-\Delta_{n}^{(-)}=\frac{n}{2} R
$$

where R is the scalar curvature:

$$
R=\frac{4}{\rho} \frac{\partial^{2} \varphi}{\partial z \partial \bar{z}}
$$

The ghost number current

- The ghost Lagrangian is invariant under a $U(1)$ current that acts on the ghost fields as follows:

$$
\delta b=i \alpha b \quad \delta c=-i \alpha c
$$

- The generator corresponding to this invariance can be constructed in terms of the the ghost number density:

$$
j(z)=: c(z) b(z):
$$

- Using the $b-c$ contraction one can to compute the following OPE's:

$$
\begin{gathered}
j(z) j(\zeta)=\frac{1}{(z-\zeta)^{2}} \\
T^{g}(z) j(\zeta)=\frac{\frac{\partial j(\zeta)}{\partial \zeta}}{z-\zeta}+\frac{j(z)}{(z-\zeta)^{2}}-\frac{3}{(z-\zeta)^{3}}
\end{gathered}
$$

- $j(z)$ is a conformal field with dimension $\Delta=1$, but there is an extra term that makes the analysis more complicated.
- The ghost coordinates $b(z)$ and $c(z)$ are conformal fields with conformal dimension $\Delta=2$ and -1 respectively.
- Their expansion in term of the harmonic oscillators is given by:

$$
b(z)=\sum_{-\infty}^{\infty} b_{n} z^{-n-2} \quad c(z)=\sum_{-\infty}^{\infty} c_{n} z^{-n+1}
$$

- The oscillators satisfy the algebra:

$$
\left\{c_{n}, b_{m}\right\}=\delta_{n+m, 0} \quad ; \quad\left\{c_{n}, c_{m}\right\}=\left\{b_{n}, b_{m}\right\}=0
$$

- Introduce the Fourier components of $j(z)$ and $T^{g}(z)$

$$
\begin{aligned}
j_{n} & =\oint_{0} d z z^{n} j(z)=\sum_{m}: c_{n-m} b_{m}: \\
L_{n}^{g} & =\oint_{0} d z z^{n+1} T^{g}(z)=\sum_{m}(m+n): b_{n-m} c_{m}:
\end{aligned}
$$

- They satisfy the algebra:

$$
\begin{gathered}
{\left[j_{n}, j_{m}\right]=n \delta_{n+m, 0} \quad ; \quad\left[L_{n}^{g}, j_{m}\right]=-m j_{n+m}-\frac{3}{2} n(n+1) \delta_{n+m, 0}} \\
{\left[L_{n}^{g}, L_{m}^{g}\right]=(n-m) L_{n+m}^{g}-\frac{26}{12} n\left(n^{2}-1\right) \delta_{n+M, 0}}
\end{gathered}
$$

- It can be reproduced in terms of the oscillators only if the normal ordering is defined in the following non-conventional way:

$$
: c_{n} b_{-n}:=\left\{\begin{array}{lll}
c_{n} b_{-n} & \text { if } & n \leq 1 \\
-b_{-n} c_{n} & \text { if } & n \geq 2
\end{array}\right.
$$

- From the algebra it turns out that j_{0} is not anti-hermitian as j_{n} for $n \neq 0$, but it satisfies the more complicated relation:

$$
j_{0}+j_{0}^{\dagger}-3=0
$$

- Therefore if $\mid q>$ is an eigenstate of the ghost number

$$
j_{0}|q>=q| q>
$$

the previous equation implies that

$$
<q^{\prime} \mid q>\sim \delta_{q, 3-q^{\prime}}
$$

- It can be checked that the state defined by

$$
\begin{gathered}
b_{n} \mid q>=0 \quad \text { if } \quad n>q-2 \\
c_{n} \mid q>=0 \quad \text { if } \quad n \geq-q+2
\end{gathered}
$$

is an eigenstate of the ghost number operator with ghost number equal to q.

- It satisfies also the equation:

$$
L_{0}\left|q>=\frac{1}{2} q(q-3)\right| q>
$$

- Among those eigenstates of j_{0} the only one, that is annihilated by the three generators of the projective group is $\mid q=0>$:

$$
L_{0}\left|q=0>=L_{1}\right| q=0>=L_{-1} \mid q=0>=0
$$

$\mid q=0>$ is therefore projective invariant.

- The non-anti-hermicity of j_{0} implies that, if we compute any matrix element containing objects with a definite ghost number, we will get zero unless the total ghost charge is equal to 3 .
- In particular, in order to compute $b-c$ the contraction, we must compute the following matrix element:

$$
<q=3|b(z) c(\zeta)| q=0>=\frac{1}{z-\zeta}
$$

