Covariant quantization of a relativistic string

Paolo Di Vecchia

Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm

College de France, 19.02.10



Plan of the talk

From Goto-Nambu to Polyakov

o I~

The bosonic string in the conformal gauge

a

Old covariant quantization

[~

The Polyakov path integral

Conformal invariance

&

BRST invariance

~ >

Physical states

Conclusions

Faddeev-Popov procedure

Conformal tensors

=y pry
—_ (=)

The ghost number current



From Goto-Nambu to Polyakov

» We have seen that a free string is described by the Nambu-Goto
action:

Sne(XH)=—T [ dr | doy/—det ((‘)(,,X/”(‘)QXVU [,/)
f

where % = (7,0) and 9, = pga-
» This Lagrangian is very non-linear and not easy to treat if we want
to quantize the string using the path integral formalism.

» On the other hand, there exists an alternative to the Nambu-Goto
action that was constructed by
[Brink, Deser, DV, Howe and Zumino] in 1976.

» It was then used by Polyakov in 1982 for quantizing the string with
the path integral formalism.

» For this reason it is called Polyakov action.
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» |t is given by:

S(Xﬂ,g@ﬁ) — _;/ dT/O d(T\/_ggaﬁauxﬂagxl”f]/“,

» x"(o,T) is the coordinate of the string ([,v =0,2,...d — 1]).

» T = 5 is adimensional (Energy per unit length) parameter

called the string tension.

» g°8(0, 1) is the two-dimensional world-sheet metric tensor with
g = det(gup)-

» n* = (—1,1...1,1) is the d-dimensional target space metric.

» Viewed as a two dimensional field theory, it describes the
interaction of a set of d massless fields with an external
gravitational field g,s.

» From this point of view the d-dimensional Lorentz index plays the
role of a flavour index.
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» It can be easily shown that the two actions are equivalent.

» We can immediately write the algebraic equation of motion for the
world-sheet metric:

:
Oap = DoX - IgX — égagg“*‘sawx 95x =0

where we have used

ov=9 _ 1. =5
(Sgaﬁ __2g045 g

» From it we get:

2
det (OuX - OpX) = % (go‘ﬁaax . 8ﬁx)

» Inserting it in the Polyakov action one gets the Nambu-Goto action
— the two actions are equivalent !!

Paolo Di Vecchia (NBI+NO) Covariant quantization _



The bosonic string in the conformal gauge
» Let us start from the Polyakov action:

S(X*, gup) = ;-/dT/O da\/fgg“ﬁﬁax“agx”nw

» It is invariant under an arbitrary reparametrization (¢ — &(§)) of
the world-sheet coordinates £ = (7, 0):

o d 18 , ,
WO =X . un(©) = 2 Xg o)

» The second equation implies:
d*¢y/=g = d*'V/~g
» For infinitesimal transformations ¢’ = ¢ — ¢ we get:

Xt = EG'(‘)(!X/L , (Sga;ﬁ =¢' &,gaﬂ + a(yew/g",ﬁ + aﬁewga"/
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» |t is also invariant under Weyl rescaling of the metric:

9ap(€) = N(€)Gap(€) i X*(€) — XH(€)

» From the string action we can derive the Euler-Lagrange
equations of motion:
2 0S
———= =0up
Ty=gog*r ™
for the two-dimensional world-sheet metric.

» This equation implies that the two-dimensional world-sheet
energy-momentum tensor is identically vanishing.

» The eq. of motion for the string coordinate is instead

Q&f@f%ﬂﬂzo

1 A
= O X - OpX — égagg"’(’&,x -0sx =0

» [t is still non-linear.
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» In order to solve the previous equations and find the most general
classical motion of a string it is convenient to choose a gauge
where the previous equation of motion linearizes.

» A convenient Lorentz covariant gauge is the conformal gauge
where the world-sheet metric tensor is taken to be of the form:

9o = /)(‘f)nuﬂ 1 = —Too = 1

» This gauge choice does not fix completely the gauge.

» We can still perform conformal transformations that leave the
metric in the same form, but with a rotated p.

» They are characterized by the following equation:

6]
%7 4 0P —nPe, =0

» Under the previous infinitesimal transformation we get:

9ap + 5go¢ﬁ = (p + a’y (E’Yp)) Tlag
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v

The conditions of the conformal gauge are more transparent if we
introduce light-cone coordinates:

0 1/ 0 3}
+ _ 0 4 1 +_ 0, 1 v _ (2 4 T
EFE=¢gYEE , € =e¢ *Le = 2(8§0i8£1)
» In terms of those variables, they reduce to
9 - 9 _ Flety - (e
9 ¢ T o€ =0=¢"(¢") ; € (&)
» In the conformal gauge the equation of motion becomes:

02 0?
(aae B 02) X(o,7) =0

Boundary conditions for open string

v

0
52X (7 ) om0s = O

Boundary condition for closed string:

v

xt(r,0) = xt(1,0 + )
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» The most general solution for open string:

g
xX(r,0) = g" + 2d/p'T + iV2a! Y &0 o= cosne
n#0 n
» and for closed string

P
X(7,0) = g + 207 + & Fz[ 1 g-2inro) 1. % g-2intr—o)
n#0

» Here oy and ap are just constant parameters.

» We must impose the vanishing of the two independent
components of the world-sheet energy-momentum tensor:

6% £ ¢°' Nl(kix’)zzo

\V)

X=0.x ; X =0,x
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Notations

» The operators «, and &, are related to the harmonic oscillators
and the center of mass variables by:

vna, if n>0
bt = \/Zaﬁ“ if n=0

]n]am| if n<0
for the open string,
» and by
vnay, if n>0 vna, if n>0
akh={ V2dB if n=0 ; ah= 20/8 if n=0
Inja* if n<0 injat* if n<0

|n| n|

for the closed string.
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» In the case of the open string they give the same condition,
namely:

Ln / do em(TiU)(X + x )2 Z Xn_m- - Om = 0

mzfoo

Ao’

» where ap = vV2d/p
» In the case of a closed string we get instead:

n(rto x+x 1 &
Ln = 47Ta + )( ZmZ_OOO[m an— m—o
~ X — X
Ln — 47Ta T U)( 2mz_:ooozm an m—O

ag:dg:v2o/ %
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Old covariant quantization

» The theory is quantized by imposing the following commutation
relations:

[, ap] = N onemo 5 (G, P] = i

for an open string.
» In the case of a closed string, one must also imposes the
commutation relations for the other infinite set of oscillators:

[dlr;a dlr{n] = nnwjéner;O
that commute with the oscillators of the previous set.

» In the quantum theory, the operators L, are defined with the
normal ordering:

that, however, regards only Ly = o/p? + 577, naj - an.
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» In the quantum theory, the vanishing of L, for all n is too
restrictive.

» One can only impose their vanishing between physical states.
» In other words one can define a physical subspace where:

(Phys., P|(Ln — cgdno)|Phys.,P) =0 ; —oco < n< +00

ap is a constant to be determined.
» They are satisfied if

(Lo — ag)|Phys., P) = Ln|Phys.,P) =0 ; n=1,2...

» Those conditions are exactly those obtained from the analysis of
the residues of the poles in the N-point dual amplitude.

» except that there and in the light-cone gauge ag = 1, while here
there is no obvious way to compute it.

Paolo Di Vecchia (NBI+NO) Covariant quantization _



» In the present covariant way of quantizing the string, we cannot
reproduce two properties of the string that we have obtained in the
light-cone gauge, namely

» the fact that the intercept of the Regge trajectory oy = 1

» and the critical dimension d = 26 that in the light-cone was
essential to have a Lorentz invariant theory.

» On the other hand, one expects that, quantizing the theory in two
different gauges, one would get the same result.

» Here conformal invariance is a gauge symmetry because it
comes from the invariance under reparametrizations.

» Therefore, we expect the energy momentum tensor to transform
as a two-index tensor without an anomaly term:

2

d
[Ln, Lm] = (n—m)Lnym + ﬁ”(” = 1)dn4m0

corresponding to the c-number of the Virasoro algebra.
» What is wrong in our present treatment of the conformal gauge?
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» Before this, let us consider shortly the case of the closed string.
» In this case we have two sets of Virasoro operators L, and L,
» The equations that characterize the on-shell physical states are:

(Lo —1)|Phys.) = (Lo —1)|Phys.) = 0
Ly|Phys.) = Ln|Phys.) =0 ; n=1,2...

» with
P\ |
Lo=a <2> +;na2'an cLg=d ( ) +Zna,, an
» The mass spectrum is given by (p° = —m?):

ZmZin(aT an+al - n>—2; Zna,, an_Znan a,

n=1
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» The lowest state is the ground state |0, P) with mass
—P?2=m? = —% = itis a tachyon.
» The state contributing to the next massless level is the following:

Tt
a;,ay, |0, P)

» The symmetric and traceless part corresponds to a massless spin
2 = graviton G,

» The trace part corresponds to a scalar particle called dilaton ¢.

» The antisymmetric part corresponds to a 2-index antisymmetric
tensor B,,,.

» In the open string we have a massless gauge boson, while in the
closed string we have a massless graviton together with a
massless dilaton and a massless B,,, .
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» The physical states are a subset of the previous states that satisfy
the conditions:

Ln|Phys.) = L,|Phys.) =0

» The analysis at this level proceeds as at the massless level of the
open string.

» In the reference frame where the momentum of the state is
P, = (P,..., P), after the elimination of the zero norm states, the
only physical states are:

a al |0,P) ; ij=1...(d-2)

» In conclusion, one gets W — 1 physical states for the

graviton, W physical states for the two-index
antisymmetrlc tensor and one state associated to the dilaton.

» The total number of physical states at this level is therefore
(d —2)2.
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The Polyakov path integral

» The most convenient way to find what is lacking in the old
covariant quantization is to compute the string partition function
using the string path integral formalism:

/ DX# Dg(\zﬁ eis(xu 7ga{j)

» The string action in Euclidean space is equal to

T n
S(X“7gaﬁ) = E / d2§\/§ gaﬁaax. 8ﬁX

» It is invariant under world-sheet reparametrizations that act on the
world-sheet metric and on the string coordinates as follows:

oE o 16 , ,
X = (VE) + 9ual®) = ez Sz hsl€)

» For infinitesimal transformations ((¢/* = £* — €*(£)) they become

IX' = €%0aX"; 69ap = €' 0vGap + Gary0g€” + 910a€’ = Vaeg + Vgeq
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» |t is also invariant under Weyl transformations (rescaling of the
metric):

XH(E) = X*(€) i Gap(€) — N(£)9as(€)

» These two invariances involve three arbitrary functions e*(§) with
a=1,2and A(§).

» The metric tensor has also three independent components.

» Locally, one can always choose a suitable reparametrization and a
Weyl transformation that lead to a flat metric or to the one in the
conformal gauge where

gaﬁ =0ap Qaﬁ = P(f)daﬂ

if reparametrization and Weyl invariances are mantained at the
quantum level.

» Because of these two local invariances, the path integral is ill
defined being the volume of the reparametrizations and Weyl
transformations infinite.
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» We can define the functional integral by dividing by the volume of
the reparametrizations and Weyl rescalings:

"_Dgap DX* _s(xg)
O I —
Vrep. X VWeyl

» In order to extract from Dg the two volumes, we perform the
Faddeev and Popov procedure that can be applied to any theory
with local gauge invariance.

» Starting from a fixed fiducial metric g.,5(¢) we can obtain the most
general metric by transforming it by a reparametrization and a
Weyl transformation:

o oY 9L ,
Gop(€) = > 3§,a aéﬁgw(f) (=)@ (©)
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» In order to extract the volume of the reparametrization and Weyl
transformations, we change integration variables from the original
J.s to the parameters of those transformations w(¢) and £(¢).

» The integral over the parameters of the reparametrization and
Weyl transformations gives the volume Vigp. x Ve that cancels
the volume in the denominator.

» One is left with the jacobian of the transformation from g, to the
parameters of the invariance group, called the determinant of
Faddeev-Popov.

» This procedure is explained in detail in a section at the end of this
lecture.

» Here we only give the final result:

/Dx“ App() e~ S:9)
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» The determinant of the Faddev-Popov can be expressed it terms
of a functional integral over the ghost fields b*? (traceless) and ¢
obtaining:

5 —/DXDbDCe_SX_Sgh

» where

sgh—/dzgfb sV Sy = — /dzf\/§ BOox - Dgx

» We call them ghosts because they anti-commute (they are
Grassmann variables), but not Dirac fermions.

» We have made x dimensionless by dividing it by v2«/.
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» In the conformal gauge and world-sheet light-cone coordinates
z=¢"4+i2and z = ¢' — i€? where

Gap = p(§)0ap = Gzz = 9z = g » 922=022=0

» the ghost action becomes:

1 = Ayl 1 , P
Soh = 5 / d26\/§ bapG V0" = o / 0P¢ |bzz056% + by0;?

» In the present derivation we have ignored the possibility of
anomalies.

» It can be shown that, in general, we can have a Weyl anomaly that
disappears, however, if the space-time dimension d = 26.
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» One can quantize the theory preserving reparametrization
invariance.

v

But then, in general, one cannot preserve Weyl invariance.

How does a quantum violation of Weyl invariance manifest itself?
On the fact that the functional integral over x*, b, ¢ will depend on
p = one does not get anymore the volume of the Weyl group.

It turns out that the contribution of the functional integral over

x* b, c gives:

v

v

v

1 d 1. Yo
o127 (§-13) [ d?€[ 30000 p+pPe?] o op=e?

v

The dependence on ¢ disappears only if d = 26.

v

Only for d = 26 one has a Weyl invariant quantum theory.
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Conformal invariance
» Introducing the simpler notation:

b=by ; b=bs ; €

¢, c=c?;0=0, ; 0=03

» the action becomes:

S= 1/d2§[;0x-5x+b50+5(‘)6]
T

» This action is conformal invariant if we assume that x, b, ¢
transform as conformal fields with dimension respectively equal to
0,2,—1, namely:

5X = €OX + E0X
ob=eOb+20eb ; 6c=edc— OccC
6b=edb+20é b ; dc=edc—dec
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» Each of the three pieces of the previous Lagrangian transforms as
a total derivative (it is a conformal tensor with dimension A = 1)
under the conformal transformations with parameters ¢ and e:

1 - 1 - ~ (1 =
) (§8X : 8x) =0 <e§ax : 8X) +0 (e§8x . 8x>
§ (bdc) = 0 (ebdc)
§ (boc) = 9 (boc)
» But now the energy-momentum tensor and the corresponding
operators L, get also a contribution from the ghosts!!

» In particular, one get:
Ly= Y{dz Z"T(2) = j{dz ZM (Tx(z) - Tgh(z))
0 0

» where
1 0x2
X — . . gh — op 'h -
T*(2) 5 82) sy T9(z)=:cb' +2c¢'b:
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» It can be shown that the new operators L, satisfy the following
algebra:

d—26
[Ln, L] = (n—m)Lnym + T(Snjtm;on(”2 —1)

» The c-number of the Virasoro algebra is vanishing at the critical
dimension D=26.

» as it must happen in any theory where the conformal symmetry is
a gauge symmetry obtained after a partial fixing of the
reparametrization invariance.

» This is the first sign that also in the covariant quantization we need
to have d = 26 as in the light-cone gauge.



Some details of the previous calculation
» Using the following contraction rules:

<X >= = log(z = Q) i < BR)e0) >=

» it can be shown that the transformation properties of a conformal
tensor with dimension A are completely equivalent to the following
singular terms in the OPE of the energy-momentum tensor with
the conformal field:

99
T ~ 5+ B

+...

» In fact, from it we get:
50 ~ L o(w)] = § o2z T(2)o(w)

= w2 A wrow)
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» In particular, we can compute the OPE between two
energy-momentum tensors (conformal fields with A = 2):

w1, T P

R s R P

» and from it we get:

d—26

[Ln, L] = (n—m)Lpym + T(swm;on(n2 —1)

» Remember:

Ly= %dz 2" T(2)
0



BRST invariance

» By fixing the gauge, we have lost the invariance under
reparametrizations and Weyl transformations.
But we are left with BRST invariance.

It is straightforward to show that, under the following
transformations:

v Vv

1
6x =Acdx dc=Acdc b= —E)\(é?x)Q + \[cdb + 20cb]

v

the gauge fixed Lagrangian transforms as a total derivative:

5L = d[xcl]

v

A is a constant Grassmann parameter.
It is generated by the following operator:

v

. ) ’ |
Q= %dz c(2)[T¥(2) + éT@fh(z)] :
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» Because of its Grassmann character, in the classical theory the
product of two BRST transformations is identically vanishing.

» In the quantum theory the square of the BRST charge is given by:
1 :
(@.0} = 75(d—26) § dcc"(0)o(0)
» The square of the BRST charge is vanishing only if d=26.

» This is another sign that our covariant quantization is consistent
only for the critical dimension d=26.
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Physical states
» In terms of the oscillators the BRST charge in given by:

Q=" [eal ,+ chLX] + col Ly + L] + Q@

n=1

where
. [ee] o0
Q=) mlchchbnym — cncmb} m] — 2bg > nclhcn+
n,m=1 n=1

+ Z (n+ 2m)[chcnmbl + Chy mCmbal

n,m=1
» The ghost fields have the following expansion in terms of the
harmonic oscillators:

b(z) = i bpz7 "2 ¢(z) = i cpz ™M1

n=—oo n=—oo
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» The oscillators satisfy the algebra:

{cn, bm} = Onimo {¢n,Cm} = {bn,bm} =0

» In the BRST quantization the physical states are defined as those
annihilated by the BRST charge:

Q|Phys.) = 0

» This is the residual invariance left from having fixed the gauge.

» The generators of this invariance must annihilate the physical
states.

» What are the states that satisfy this equation?

» In order to answer this question we have to introduce and discuss
the ghost number current.
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» The ghost Lagrangian is invariant under a U(1) current that acts
on the ghost fields as follows:

0b=iab dc=—iac

» The generator corresponding to this invariance can be
constructed in terms of the the ghost number density:

J(2) =: c(2)b(2) -

» The ghost number is given by

q = %dz!(z) = Z . Cnbfn .
0 n=—co
= Coby + Ctb_1 + C_1b1 + Y (C_nbn — b_nCn)

n=2
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» It turns out that the ghost number current is anomalous and
requires the following unconventional normal ordering for the
ghost oscillators:

_ | eab_p if n<A
: Cnb-n '_{ —b_ncy if n>2

» or equivalently
b_1,bg,b1,bo...Co,C5... are "annihilation operators"
b_o,b_3,b_4...C1,Cp,C_1... are "creation operators".

» In particular, a state that satisfies the following equations:

(... b2,by,bg,b_1)|g=0) =(...C3,C2)|g=0) =0

has ghost number zero.

» |t plays the role of the vacuum because it is annihilated by all
"annihilation operators".

» The state with g = 1 is what "one would normally call a vacuum:

lg=1)=cilq=0) =
(...bo,b1,bo)lg=1)=(...c3,C,C1)|g=1) =0
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» A detailed analysis shows that the on-shell physical states must
have the following form [Freeman and Olive, 1986]:

|Phys.) = |q = 1;%a)

where the state |1 5) is constructed only in terms of the oscillators
of the string coordinate x.
» Remembering the form of Q in terms of the oscillators we see that

Qlg=1)=0

» and the action of Q on the physical state is then given by:

o0

Qlg =1;%a) = [Z[anXn + ChLX]) + oLy + L3 | 1g = 15 ¢a)

n=1

- [ZcLL;+cO(Ls—1)] g =Ti1a) =0

n=1
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» We have used the two identities:
clg=1=0; n=1,2... ; Plg=1)=—|g=1)

» The second equation follows from the following expression for Lg:

L§= " n:b ncn:=>_ n(b_nCn+ C nbn)+ c_1by — Crb_
n=—o0 n=2

» In conclusion, we correctly reproduce the conditions for on
physical states:

L¥la) = (L — 1)la) = O

» The most general physical state has therefore the following form:
|Phys.) = |g=1,va) + Q|\)
where |)\) is an arbitrary state.
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Conclusions
» Quantizing correctly the bosonic string in a covariant gauge we
have obtained the same results as in the light-cone gauge !

» namely the correct values for the Regge intercept and the critical
dimensions:

ag = 1 d=26

» It turns out the equations characterizing the on-shell physical
states are precisely those obtained in 1970 from factorizing the
N-point amplitude without knowing that there was an underlying
string theory !!

» The new feature is the presence in the covariant gauge of the
reparametrization ghosts b and c.

» They are, however, in practice not relevant if we limit ourselves to
the computation of the spectrum and of tree diagrams.
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» They are, instead, essential for computing one-loop and especially
multiloop diagrams.

» If one computes loop diagrams in the light-cone gauge one has
only the physical transverse states circulating in the loop.

» In a covariant formulation one must keep all string oscillators and
not just the physical transverse ones.

» One has then too many states circulating in the loops.

» The ghost degrees of freedom that are fermions, are there to
cancel the contribution of the non-physical states kept in order to
have a manifest Lorentz invariant formulation of the string theory.



The material that follows is for helping those interested in
understanding some of the more technical details.
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Faddeev-Popov procedure

» We define the functional integral by dividing by the volume of the
reparametrizations and Weyl rescalings:

Dg Dx

I =7 —S(x9)
Vrep. X VWeyl

» In order to extract from Dg the two volumes, we perform the
Faddeev and Popov procedure that can be applied to any theory
with local gauge invariance.

» Starting from a fiducial metric g,3(¢) we can transform it by a
reparametrization and a Weyl transformation:

. , OET PEs
& 4(E) = e%@a;a;ﬁgw(«s) (= (ew)

» We define the Faddeev-Popov measure by
1= Arel) [ Det(g - &)
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» D( is the invariant measure of the reparametrizations plus Weyl
transformations.
» We can insert 1 in the functional integral, integrate over h and
rename the dummy variable x — x¢:
D¢ Dx¢ Ay —S(xC.5C
7A ¢ e S(X g )
Viep. % Viver FP(9°)

» Using the gauge invariance of the action, of the measure and of
Afrp One gets:

D¢ Dx

A A efS(ng)
. Vrep. X VWey/ e(0)

» Nothing depends on ¢ and therefore we can integrate on it
producing the volume of the invariance groups that cancels the
volume in the denominator:

/DX App(g) e 59)
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» Afrp can be computed for ¢ near the identity where:

Qaﬂ — @gﬁ ~ 25wgag = VQEﬁ = Vgea
= (250) = VWeV)gag = 2(P1 E)a/g
and

1
(P16)ag = E (Vaeg + Vgea — gagvva)

» Near the identity we can compute the Faddeev-Popov
determinant:

AZN(G) = /De Déw § (—2(5w —V-€)g + 2P e)
N /DE DéwD s 21 [ #6550 (~2(0w-V-)g+2Pre)
» The integration over jw forces 3*° to be traceless and one gets:
BAE) = [ DeDs et i i

» In this way we have computed the inverse determinant.
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» In order to obtain directly the Faddeev-Popov determinant we
have to replace any bosonic with a fermionic field:

ﬂaﬁ_)baﬁ : PN
obtaining
Arp(g / DcDb #mi | €v/ab* (Pre)ag

where b is traceless.

» We call them ghosts because they are Grassmann, but not Dirac
fermions.

» In conclusion, with a convenient normalization of the two ghost
fields we obtain the following gauge fixed partition functiion:

J) = /DxDbDCeSXSQ”

» where
/d%fbaﬁvacﬁ . Sy=— /dzgfg BoxX - DX
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Determinants in the numerator or in denominator
» If we have a gaussian integral with bosonic complex variables we

get:
5 1
20— 2 ZiMjzi

» Instead, if we have a gaussian integral involving fermionic
(Grassmann) complex variables we get:

/H d?pie” Ziy MY — det M
i

» Remember that Grassmann variables anticommute:

iy = —pbi Y= —dph = YE=0

» The determinant is computed using the following integration rules:

/d@b 0 ; /d¢¢_1
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We have made x dimensionless by dividing it by v2«/.

In the conformal gauge and world-sheet light-cone coordinates
z=¢"+ic2and z = €' — i¢? where

v

v

Gop = P(E)00p = Grz = G5, = g 0 922=02z=0

v

the ghost action becomes:

1 o says ] . o 2
Sgh — Z /d2€\/§ b(),ﬂguy ! vﬁ,/cﬂ - Z /d2€ |:bzz()2cz + bzz()ZCZ

v

In the present derivation we have ignored the possibility of
anomalies.

It can be shown that, in general, we can have a Weyl anomaly that
disappears, however, if the space-time dimension d = 26.

v
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Conformal tensors

» Consider string theory in the conformal gauge, characterized by
the following choice of the Euclidean world-sheet metric tensor:

9ap = p(€) dap : p= e#(®)

» We have seen that the conformal transformations leave in the
conformal gauge.
» It is convenient to work with light-cone coordinates:

Z:§1+i€2 ; 2251_152

» In these coordinates the invariant length is defined by:
(ds)2 = gapdeode? = g [dzdZ + dzdz]
» implying the following light-cone coordinates for the metric tensor:
9% =97=0:2=0:2=0
g% =9"=2/p Qzz=0z=p/2
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» In terms of the light-cone components of a vector:

, 5 . 1 . 1 ,
E=c4i® €=¢ —i e,= 5(61 —iex) €= 5(61 + ieo)

» one can define the scalar product between two vectors:
A“B, = [A?B, + A?B;] = [A?B; + A, B?] = A;B? + A;B?
where the indices are lowered and raised by means of the metric
tensor as follows:

A = g7 A; Az = 9oz A A = g7 A, Az = gz, A*

» The covariant derivatives are given by:
Vo = e’ + rg,ya . Vaeg = 0n€p — Fgﬁe7
where the Christoffel symbols are given in the conformal gauge
by:

76 lo
rlg = 97[(%%5 + 08905 — 05Gas] = aamﬂ + 9307, — 08,p %
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» Only two non-vanishing components:

2, =p""0:p , To=p"0p
» One gets:
Vze? = 0z¢° Vzez = p_132p62
VzGZ = 8262 Vet = p_182pez

» Raising the index of the covariant derivative with the metric tensor

one gets:

vZ
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» The action of the covariant derivative on a conformal tensor 7%
with rank n is given by:

ngZH-Z — aZTZmZ ngZZ — p—nazpnszz

2 -
V’27T2-~~z — ;(92 T2 V’z77-z-~~z _ 2p—1—nazpn7-zmz

» Under a general relativity transformation a vector transforms as
follows:
ar
Eﬂ(g) — 85”’6 (5/)

» In terms of light-cone coordinates one gets:

_ 0z 1 S, 0z - 1

2.2 = 5, = W’(z)ew “22) = 5ge = W’(Z)GW

» We have restricted us to conformal transformations for which:
ow _ oW _
0z 0z
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» A conformal tensor of rank n transforms as follows under a
conformal transformation:

1 w--w . ZZ (5 1
wep W T Eep

T7.2(2) = W) Tw.w(2) ; T5.3(2) = [W(2)]" Tt (W)

T7%(z) - T ()

» We have lowered the indices with the metric tensor and we have
used the transformation of p under a conformal transformation:

p(2.2) — W (2)W (2)p(w, )

» The covariant derivative V% applied to a conformal tensor of rank
n gives a conformal tensor of rank n+ 1:

VAT(2) = S0:Te () — W@ v T (w)
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» The covariant derivative V applied to a conformal tensor of rank
n gives a conformal tensor with rank n-1:

1
VITG%(2) = p~"(2)020"(2) TE%(2) — W/(2)] "V T (w)

» In conclusion, the action of the covariant derivative on a conformal
tensor of rank n gives the following tensors:

T(n) Y, Vi T(ﬂ+1) T(n)
7(n Y& F(n-1) VL (1)

» In terms of the covariant derivatives we can define the following
Laplacians:
A = -tz Al = vz V]
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» They satisfy the relation:
AP AP = 2R

where R is the scalar curvature:

R4 %
p 020z




The ghost number current

» The ghost Lagrangian is invariant under a U(1) current that acts
on the ghost fields as follows:

ob=iab dc=—iac

» The generator corresponding to this invariance can be
constructed in terms of the the ghost number density:

J(2) = c(2)b(2) :

» Using the b — ¢ contraction one can to compute the following
OPFE’s: ]

./(Z)/(C) - (Z _ C)g
T = Lo

20 (z=¢F (z-¢)
> j(z) is a conformal field with dimension A = 1, but there is an extra
term that makes the analysis more complicated.

Paolo Di Vecchia (NBI+NO) Covariant quantization _



» The ghost coordinates b(z) and c(z) are conformal fields with
conformal dimension A = 2 and -1 respectively.
» Their expansion in term of the harmonic oscillators is given by:

o0 (o)
= Z bpz="2  ¢(2) = Z ¢,z
— 0o — 0

» The oscillators satisfy the algebra:

{Cn, bm} = 0nymo : {Cn,Cm} = {bn,bm} =0

» Introduce the Fourier components of j(z) and T9(z)

n = ?{dZZj Z Cn—mbm :

Ly = 7{dzz”Jr1 T9(2) => (m+n): by mCn:
0

m
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» They satisfy the algebra:

.. . . 3
Unsjm] = Nonymo [L%Jm] = —Mjn+m — §n(n +1)0n+mo

26

L8, L8] = (n = M)y — T2

n(n® —1)dpmo
» It can be reproduced in terms of the oscillators only if the normal
ordering is defined in the following non-conventional way:
_ _Joeab—p it n<A
: Cnbon = { —b_pc, i n>2
» From the algebra it turns out that jfy is not anti-hermitian as j, for
n # 0, but it satisfies the more complicated relation:

fo+i§—3=0
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» Therefore if |g > is an eigenstate of the ghost number

Jolg >=qlq >

the previous equation implies that

< q1g>~dg3-q

» It can be checked that the state defined by
bhlg>=0 if n>q-2

cnlg>=0 if n>—-qg+2
is an eigenstate of the ghost number operator with ghost number
equal to q.
» |t satisfies also the equation:
1

Lolg >= 549(q—3)lq >
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» Among those eigenstates of jp the only one, that is annihilated by
the three generators of the projective group is [g = 0 >:

Lolq:0>: L1‘q:0>: L_1‘q:0>:0

|g = 0 > is therefore projective invariant.

» The non-anti-hermicity of j implies that, if we compute any matrix
element containing objects with a definite ghost number, we will
get zero unless the total ghost charge is equal to 3.

» In particular, in order to compute b — ¢ the contraction, we must
compute the following matrix element:

’
<q=3|b(z)c(()lg=0>= Z-¢
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