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Introduction

I The bosonic string has no ghosts, but its lowest state is a tachyon.

I Furthermore, if it has to describe hadrons, we expect the lowest
state to be an almost massless pion (not a tachyon) and the next
state to be a spin 1 massive ρ-meson (not a massless photon).

I How can one shift the spectrum of the bosonic string to achieve
this?

I The most important result of these attempts was the so called
Lovelace-Shapiro amplitude for ππ scattering:

A(s, t) = β
Γ(1− αs)Γ(1− αt )

Γ(1− αt − αs)
; αs = α0 + α′s

I It contains three parameters: the intercept of the ρ Regge
trajectory α0, the Regge slope α′ and the overall constant β.
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I The ρ Regge trajectory must give the spin 1 of the ρ meson when
s = m2

ρ:

α(m2
ρ) = 1 = α0 + α′m2

ρ (1)

I Impose the Adler’s self-consistency condition, that requires the
vanishing of the amplitude when s = t = u = m2

π and one of the
pions is massless:

1− 2αm2
π

= 0 =⇒ 1− 2α0 − 2α′m2
π = 0 (2)

I Eqs. (1) and (2) give the following Regge trajectory for the
ρ-meson:

αs =
1
2

[
1 +

s −m2
π

m2
ρ −mπ2

]
= 0.48 + 0.885s

I The model predicts the masses and the couplings of the
resonances that decay in ππ in terms of a unique parameter β.
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I The values obtained were in reasonable agreement with the
experiments.

I Moreover one could compute the ππ scattering lengths:

a0 = 0.395β a2 = −0.103β

and one found that their ratio is within 10% of the current algebra
ratio given by a0/a2 = −7/2.

I At this point the obvious thing to do was to try to generalize the
Lovelace-Shapiro model to the scattering of many pions in order
to extract the spectrum of hadrons.

I But nobody has been able to do this with the intercept of the ρ
Regge trajectory α0 ∼ 1

2 .
I The generalization of the previous amplitude has been done by

Neveu and Schwarz, obtaining the Neveu-Schwarz model, but in
this case the intercept of the leading Regge trajectory is α0 = 1
and not α0 = 1

2 .
I Therefore a consistent extension of the LS model with α0 = 1

2 is
still lacking and may be impossible to realize.
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I From all the attempts to construct more realistic models the most
important result is the construction of the Neveu-Schwarz model
for bosons and of the Ramond model for fermions.

I Only later on, it was realized that they are part of the same model,
called today the Neveu-Schwarz-Ramond model (NSR).

I Both in the NS and R model, together with the string coordinate
xµ(τ, σ), one introduces a world-sheet Majorana fermion ψµ(τ, σ)
that is a vector as xµ in the target Minkowski space-time and is a
spinor in the two-dimensional world-sheet.

I Another important result of this period is the construction of
models with world-sheet fermions ψi(τ, σ) where i is an index of
an internal symmetry.

I In the conformal gauge they contain not only the Virasoro algebra,
but also an affine Kac-Moody Lie algebra
[Bardacki and Halpern, 1970].

I Strong connection with developments in mathematics.
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The Neveu-Schwarz-Ramond (NSR) model
I In the NSR model one introduces together with the bosonic

coordinate xµ(τ, σ) also a fermionic one ψµ(τ, σ).
I Both coordinates have a vector index µ of the d-dimensional target

Minkowski space-time.
I The coordinate xµ(τ, σ) is a world-sheet scalar.
I ψµ(τ, σ) is a world-sheet Majorana fermion describing spin

degrees of freedom along the string.
I In the previous lectures we have seen that the invariance under

reparametrization of the world-sheet coordinates was essential to
eliminate from the physical subspace the states with negative and
zero norm.

I Since here also the fermionic coordinate has a Lorentz vector
index, in order to cancel the negative norm states, we need an
additional fermionic symmetry.

I This fermionic symmetry has been called supersymmetry.
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I As in the case of the bosonic string, also the NSR model was fully
developed before its Lagrangian was constructed and even before
it was known that a string theory was its underlying theory.

I The Lagrangian describing the NSR model was constructed only
in 1976 just after the construction of the first supergravity.

I It is given by:

L = T
√
−g
[
−1

2
∂αx · ∂βx gαβ − i

2
ψ̄γα · ∂αψ +

i
2
χ̄αγ

β∂βx · γαψ

+
1
8

(χ̄αγ
βγαψ) · (χ̄βψ)

]
; gαβ = ea

αeb
βηab ; γα = γaeb

αηab

[Brink, DV, Howe and Deser and Zumino, 1976 ]
I Together with the bosonic and fermionic string coordinates xµ and
ψµ, it contains the world-sheet metric gαβ and the gravitino χα.

I If we want to include fermions in the Polyakov action we have to
work with the vierbein ea

α (or rather zweibein) that has a curved
index α and a flat index a rather than with the metric tensor gαβ.
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I The metric tensor is constructed from the vierbein that is also
necessary to transform the flat index of the Dirac γ matrices into a
curved index.

I L is invariant under an arbitrary reparametrization of the
world-sheet coordinates and under an arbitrary local world-sheet
supersymmetry transformation.

I As in the bosonic string one can choose a gauge, called
superconformal gauge:

gαβ = ρ(ξ)ηαβ ; χα = γαχ(ξ)

I In this gauge, the Lagrangian becomes that of free bosons and
fermions:

L = −T
2
[
∂αx · ∂αx + iψ̄ρα∂α · ψ

]
; {ρα, ρβ} = −2ηαβ

I To avoid confusion with the target space γ-matrices, we call ρα the
two-dimensional world-sheet γ-matrices.
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I It is invariant under the following world-sheet supersymmetry
transformations:

δXµ = ᾱψµ , δψµ = iρα∂αXµα , δψ̄ = −iᾱρα∂αXµ

if α satisfies the following equation:

ρβρα∂βα = 0 =⇒ α+(τ + σ) ; α−(τ − σ) ; α± =
1± ρ3

2
α

I The fermionic Noether current associated with this symmetry is
given by:

jα = ρβρα∂βx · ψ

I If the Eqs. of motion for xµ and ψµ are satisfied:

ηαβ∂α∂βx = 0 ; ρα∂αψ(τ, σ) = 0

the fermionic Nöther current is conserved:

∂αjα = 0
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I Then we can proceed as in the case of the bosonic string.
I In this covariant gauge the Eqs. of motion and the boundary

conditions for the bosonic coordinate are the same as before.
I The fermionic coordinate instead satisfies the two-dimensional

Dirac equation:

ρα∂αψ(τ, σ) = 0

I In the case of an open string, one gets two possible boundary
conditions:

ψ−(τ,0) = ψ+(τ,0) ; ψ−(τ, π) = ηψ+(τ, π)

where η = ±1 and ψ± = 1∓ρ3

2 ψ with ρ3 ≡ ρ0ρ1.
I The model has two sectors:

the NS sector for η = −1 and the R sector for η = +1.
I The NS sector contains space-time bosons, while the R sector

contains space-time fermions.
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I The inclusion of fermionic coordinates reduces the space-time
dimension from d = 26 to d = 10.

I The mass spectrum of the NS sector is given by:

α′m2 =
∞∑

n=1

na†n · an +
∞∑

r= 1
2

rψ†r · ψr −
1
2

I The oscillators satisfy the algebra:

[aµn ,a
†ν
m ] = δnmη

µν ; {ψµr , ψ
†ν
s } = δrsη

µν

I The physical states are defined as those satisfying the conditions:

Ln|Phys.〉 = Gr |Phys.〉 = 0 ; n = 1,2 . . . ; r =
1
2
,
3
2
. . .

I The lowest state is given by the oscillator vacuum and is again a
tachyon:

|0,P〉 ; −α′P2 = α′m2 = −1
2

I It is a physical state.Paolo Di Vecchia (NBI+NO) GSO projection Collège de France, 26.02.10 12 / 42



I The next state is a massless vector:

ψ†µ1
2
|0,P〉 ; k2 = 0

I We can proceed in the same way with the higher mass levels.
I In particular, the states with an odd number of world-sheet

fermions have an integer value of α′m2

I Those with an even number of world-sheet fermions have a half-
integer value of α′m2.

I One can define a world-sheet fermion number:

(−1)F where F =
∞∑

r=1/2

ψ−r · ψr − 1

I The states with an odd (even) number of world-sheet fermions are
even (odd) under the action of (−1)F .
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I In particular, the tachyon is odd under (−1)F , while the gauge
boson is even.

I Let us turn now to the R sector.
I In the R sector the fermionic oscillators ψµn have, unlike the NS

sector, an integer index n and satisfy the algebra:

{ψµn , ψ
†ν
m } = δnmη

µν

I In particular, there is a zero mode that satisfies the same
anti-commutation relations as the Dirac γ-matrices;

{ψµ0 , ψ
ν
0} = ηµν ⇔ {γµ, γν} = 2ηµν

apart from an overall normalization (factor 2).
I This means that the ground vacuum state |0,A > has a

ten-dimensional Dirac spinor index A.
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I Therefore, it is a space-time fermion.
I The mass spectrum in the R sector is given by:

α′m2 =
∞∑

n=1

a†n · an +
∞∑

n=1

nψ†n · ψn =⇒ L0|ψ〉 = 0

I The physical states must satisfy the conditions:

Ln|Phys.〉 = Fn|Phys.〉 = 0 ; n = 1,2 . . .

I They must also satisfy the additional on-shell condition:

F0|ψ〉 = 0 ; L0 = F 2
0

I It is the string extension of the Dirac equation.
I It is also the extension of the fact that the Klein-Gordon operator is

the square of the Dirac operator:

(γµ∂µ)2 = ηµν∂µ∂ν ; {γµ, γν} = 2ηµν
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I The lowest state of the R sector is a massless spinor given by:

|0,A > m2 = 0

I Both this state and all excited states are ten-dimensional spinors.
I But what kind of spinors: Dirac, Majorana or Weyl spinors?
I This question remained unanswered for some time and we will

come back to it.
I As in NS sector the spectrum consists of states that are even and

states that are odd under the action of the fermion number
operator.

I Also in the R sector one can introduce a fermion number operator
given by:

(−1)F = γ11(−1)FR where FR =
∞∑

n=1

ψ−n · ψn

γ11 ≡ 25ψ0
0ψ

1
0 . . . ψ

9
0 = γ0γ1 . . . γ9

where γ11 is the chirality operator in ten dimensions,
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Historical intermezzo
I After the construction of the NSR model it was clear that in this

model the conformal algebra of the dual resonance model was
extended with fermionic operators.

I Today this extension is called super-conformal algebra.
I This gave hope that also in this model the ghosts could be

eliminated from the physical spectrum.
I It became then clear that this invariance was the invariance of a

free theory involving a set of equal number of scalar and fermion
fields in two dimensions [Gervais and Sakita, 1971].

I This symmetry was generalized to a four-dimensional space-time
by Wess and Zumino in 1973.

I It was then extended to four-dimensional gauge theories by
Ferrara and Zumino in 1974.

I Supersymmetry has been advocated to solve the hierarchy
problem and a supersymmetric extension of the Standard model
has been constructed.
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I Supersymmetric particles may be observed at the Large Hadron
Collider (LHC) in Geneva.

I Supergravity that is a supersymmetric extension of Einstein’s
gravity was constructed in 1976 independently by Ferrara,
Friedman, Van Niewenhuizen and by Deser and Zumino.

I Immediately after, in 1976, the correspondent of the Polyakov
action for the NSR model was constructed.
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The Gliozzi-Scherk-Olive (GSO) projection

I At this stage the NSR model was better than the bosonic string
because included not only bosons but also space-time fermions.

I But it was not much more realistic than the bosonic string for
describing the hadrons.

I It still contained massless vectors and spinors that do not appear
in the hadronic spectrum.

I It contained also a tachyon as the bosonic string.
I It became more and more clear that string theory could not be the

theory for hadrons.
I It was proposed by Scherk and Schwarz in 1974 that it could be

instead a theory unifying all interactions.
I But in 1976 there was still a tachyon in the spectrum.
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I In 1976 GSO proposed (here in Paris) to truncate the spectrum of
the NSR model keeping only the states |ψ〉 that are even under
the action of the fermion number operator:

(−1)F |ψ〉 = |ψ〉

I This is called GSO projection.
I For counting the states it is convenient to work in the light-cone

gauge.
I In the NS sector, the spectrum is given the spectrum of physical

states is given by:

α′M2 =
8∑

i=1

 ∞∑
n=1

αi
−nα

i
n +

∞∑
r=1/2

r ψi
−rψ

i
r

− 1
2
≡ N − 1

2
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I The degeneracy of states at a certain mass level (after GSO
projection) can be obtained from the partition function:

Z GSO
NS = Tr (qN−1/2 1 + (−1)F

2
)

=
1
2

q−1/2

 ∞∏
n=1

(
1 + qn−1/2

1− qn

)8

−
∞∏

n=1

(
1− qn−1/2

1− qn

)8


=
∞∑

n=0

cnqn = 8 + c1q + c2q2 + . . .

I cn gives the degeneracy of states at the level with α′m2 = n.
I The GSO projection eliminates the states of the NS sector having

half-integer values of α′m2 keeping only those with integer values
of α′m2.

I In particular, the tachyon is odd under (−1)F and is therefore
eliminated by the GSO projection!!
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Computation of the partition function

I The bosonic part of the partition function is given by:

ZB(q) ≡
∞∏

n=1

8∏
i=1

Tr
(

qna†ni ani
)

=
∞∏

n=1

8∏
i=1

∞∑
m=0

〈m|qna†ni ani |m〉

I The state |m〉 is an eigenstate of the number operator with
eigenvalue equal to m:

a†niani |m〉 = m|m〉 ; 〈m|m〉 = 1

I Then we get:

ZB(q) =
∞∏

n=1

8∏
i=1

∞∑
m=0

〈m|qnm|m〉 =
∞∏

n=1

8∏
i=1

∞∑
m=0

qnm

=
∞∏

n=1

8∏
i=1

1
1− qn =

∞∏
n=1

1
(1− qn)8
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I The fermionic partition function is given by:

ZF (q) ≡
∞∏

n=1

8∏
i=1

Tr

(
q

(n− 1
2 )ψ†

n− 1
2 ,i
ψ

n− 1
2 ,i

)

=
∞∏

n=1

8∏
i=1

1∑
m=0

〈m|q(n− 1
2 )m|m〉 =

∞∏
n=1

8∏
i=1

(1 + qn− 1
2 )

=
∞∏

n=1

(1 + qn− 1
2 )8

I In this case |m〉 satisfies the eigenvalue equation:

ψ†
n− 1

2 ,i
ψn− 1

2 ,i
|m〉 = m|m〉
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I Let us now turn our attention to the R sector.
I The mass spectrum in the R sector in the light-cone gauge is

given by:

α′M2 =
8∑

i=1

( ∞∑
n=1

na†in ai
n +

∞∑
n=1

nψi
−nψ

i
n

)
≡ NR

I In this sector each state is a ten-dimensional spinor.
I Since the fermionic coordinate is real we expect the spinors to be

Majorana spinors.
I A Dirac spinor in ten dimensions has 25 = 32 physical degrees of

freedom, while a Majorana or a Weyl spinor have only 16 physical
components.

I In d = 10 it is possible to have Weyl-Majorana spinors that have
only 8 degrees of freedom.
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A detour on spinors

I A Dirac fermion in four dimensions has four complex components
corresponding to 8 real degrees of freedom.

I When we impose the Dirac equation we are left with 4 real
degrees of freedom.

I They are the physical degrees of freedom of a Dirac fermion.
I They correspond to the two states of electron and positron and

each of them can have helicity ±1
2 .

I In Dirac theory, it exists a charge conjugation operator that, acting
on a spinor ψ, gives its charge conjugate ψc :

ψc
D = Cψ̄T

D ; CγT
µC−1 = −γµ

T means the transposed matrix.
I C connects the field of an electron to that of a positron.
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I A Majorana spinor satisfies the property of self-conjugation:

ψc
M = ψM

I It has only half of the degrees of freedom of a Dirac spinor.
I It has only two on-shell degrees of freedom corresponding to the

two helicities ±1
2 .

I A left-handed Weyl spinor is obtained from a Dirac spinor by:

ψW =
1− γ5

2
ψD ; γ5 = iγ0γ1γ2γ3

I It has two on-shell degrees of freedom corresponding to the two
helicities ±1

2 .
I They can all be expressed in terms of two-dimensional Weyl

spinors:

ψD =

(
χα
ψ̄α̇

)
; ψM =

(
χα
χ̄α̇

)
; ψW =

(
χα
0

)
Paolo Di Vecchia (NBI+NO) GSO projection Collège de France, 26.02.10 26 / 42



I The previous considerations can be generalized to a
d-dimensional space-time with d even.

I An on-shell Dirac spinor has 2d/2 physical degrees of freedom.
I On-shell Majorana and a Weyl spinors have 2d/2

2 physical degrees
of freedom.

I There are certain dimensions where we can impose both the Weyl
and the Majorana conditions.

I This happens for d = 2,10,18 . . . .
I In particular, in ten dimensions we can have Weyl-Majorana

spinors that have only 8 on shell degrees of freedom.
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I If we perform also in the R sector the GSO projection keeping only
those states that are even under (−1)F , the lowest massless state
becomes a Weyl-Majorana spinor.

I Actually the two theories that one obtains choosing the ground
state to be a left- or a right-handed Weyl spinor are equivalent.

I Then the partition function in the R sector becomes:

Z GSO
R = Tr (qNR

1 + (−)F

2
) = 8

∞∏
m=1

(
1 + qm

1− qm

)8

where the term with (−1)F gives no contribution.
I It turns out that

Z GSO
NS = Z GSO

R
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I This follows from the "aequatio identica satis abstrusa" (Jacobi):

1
2

q−1/2

 ∞∏
m=1

(
1 + qm−1/2

1− qm

)8

−
∞∏

m=1

(
1− qm−1/2

1− qm

)8


= 8
∞∏

m=1

(
1 + qm

1− qm

)8

I Actually the proof of the previous relation is given as an exercise in
the book by Whittaker and Watson that the authors of GSO found
in the library of École Normale Supérieure in Rue Lhomond.

I It implies that, at each mass level, we have the same number of
bosonic and fermionic physical degrees of freedom.

I This is a necessary condition for supersymmetry.
I It can be shown that with the GSO projection the NSR model is

supersymmetric at the string level.
I For the first time one has a string model without a tachyon in the

physical spectrum!!

Paolo Di Vecchia (NBI+NO) GSO projection Collège de France, 26.02.10 29 / 42



Type IIA and IIB superstrings
I Up to now we have considered the GSO projection in the open

superstring theory that is also called type I superstring.
I In the following we want to discuss two closed string theories,

called type IIA and IIB.
I In the case of a closed string the equations of motion of the

fermionic coordinate are:

(∂τ + ∂σ)ψµ−(τ, σ) = 0 ; (∂τ − ∂σ)ψµ+(τ, σ) = 0

where

ψµ± =
1∓ ρ3

2
ψµ with ρ3 ≡ ρ0ρ1

I In a closed string the fermionic coordinates ψ± are independent
from each other.

I They can be either periodic or anti-periodic.
I This amounts to impose the following conditions:

ψµ−(0, τ) = η3ψ
µ
−(π, τ) ψµ+(0, τ) = η4ψ

µ
+(π, τ)
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I Therefore, we have four different sectors according to the two
values that η3 and η4 take

η3 = η4 = 1⇒ (R− R)
η3 = η4 = −1⇒ (NS− NS)
η3 = −η4 = 1⇒ (R− NS)
η3 = −η4 = −1⇒ (NS− R)

.

I The NS-NS and R-R sectors consist of space-time bosons, while
the R-NS and NS-R sectors contain fermions.

I The mass spectrum of these sectors is given by:

α′

2
m2 =

∞∑
n=1

α−n · αn +
∑
t>0

tψ−t · ψt − a0

+
∞∑

n=1

α̃−n · α̃n +
∑
t>0

tψ̃−t · ψ̃t − ã0

I where t is half-integer (integer) in the NS (R) sector and

a0 =
1
2

for the NS sector ; a0 = 0 for the R sector
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I We must also impose the level matching condition:( ∞∑
n=1

α−n · αn +
∑
t>0

tψ−t · ψt − a0

−
∞∑

n=1

α̃−n · α̃n +
∑
t>0

tψ̃−t · ψ̃t + ã0

)
|ψ〉 = 0

I In each of the sectors we perform the GSO projection as before.
I There is no tachyon in any NS sector and the ground state fermion

in any R sector is a Weyl-Majorana spinor with only 8 physical
degrees of freedom.

I The massless states of the NS-NS sectors are a graviton, a
two-index antisymmetric tensor Bµν and a scalar dilaton.

I This sector coincides with the closed string sector of the bosonic
string, apart from a different space-time dimension (d = 10
instead of d = 26)

I The massless states of the NS-R sector are a gravitino with spin 3
2

and a dilatino with spin 1
2 .
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I Also the massless states of the R-NS sector are a gravitino and a
dilatino.

I However the two gravitinos can have the same or opposite
chirality.

I This depends on if we impose in the two R sectors the same GSO
or opposite GSO projections.

I In the case of the same GSO projection we obtain a chiral theory
called type IIB superstring.

I With opposite projection we obtain a non-chiral theory called type
IIA superstring.

I Finally we have the R-R sector.
I In type IIB the R-R sector contains a scalar field C0, a two-index

antisymmetric potential C2 and a four-index antisymmetric
potential C4 with self-dual field strength F̃5 = F5.

I In type IIA we have a gauge vector C1 and a three-index
antisymmetric potential C3.
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The closed string sector of type I superstring
I In the previous section we have determined the massless

spectrum of two type II closed superstring theories.
I Previously, by means of the GSO projection on the NSR open

string model, we have obtained the massless spectrum of what is
called the open string sector of type I superstring.

I As we have seen already in the bosonic string, the non-planar
loop introduces in the open string a closed string sector.

I One can have a theory of only closed strings, but not a theory of
only open strings!

I Therefore, besides the open string sector, type I superstring has
also a closed string sector.

I It can be obtained from that of type IIB by what is called an
"orientifold" projection.

I This projection consists in truncating the spectrum of type IIB
eliminating some of the states.
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I I will not describe this truncation in detail here, but I will only give
the results.

I In particular, in the NS-NS sector the graviton and the dilaton are
kept, while the two-index antisymmetric tensor Bµν is eliminated.

I In the NS-R and R-NS we keep only one of the two gravitinos and
dilatinos.

I Finally in the R-R sector we keep the two-index antisymmetric
tensor C2, while C0 and C4 are projected out.
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A non-abelian gauge symmetry

I Let us go back to the open superstring and discuss how to
introduce a non-abelian gauge symmetry.

I It is introduced by requiring that the string states do not only have
the degrees of freedom corresponding to the harmonic oscillators
and the momentum

|α,P〉 =⇒ |α,P〉 λab̄

but also have two additional indices (a, b̄), one transforming as the
N and the other transforming as the N̄ fundamental
representations of U(N):

λab̄ →
N∑

c,c̄=1

Uacλcc̄U†
c̄b̄
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I λ transforms according to the adjoint representation of U(N).
I One index corresponds to the N degrees of freedom of a "quark"

and the other to the N̄ of the "anti-quark" located at the two
end-points of the string as represented in the duality diagram.

I λ is a hermitian matrix and therefore, it can always be written as a
linear combination of the generators of U(N) in the fundamental
representation:

λab̄ =
N2∑

A=1

cAT A
ab̄

I In particular, a massless gauge boson is now described by the
state:

cAT A
ab̄ ε

i
µ(ψ†1/2)µ|0,P〉

I εiµ describes the polarization, while cA describes the gauge
degrees of freedom.
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I Since the two end-points transform according to two different
representations of U(N), the open strings are oriented.

I Open strings with different orientations are two different string
states.

I It turns out that the type I is a theory of un-oriented open strings.
I This means that the two end-points must transform according to

the same representation of the gauge group.
I In the case of U(N) the product N × N does not contain the

adjoint representation.
I No good for describing gauge bosons.
I If we consider SO(N) or Sp(N), then the product N × N contains

the adjoint but also another representation.
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I On the other hand, if we remember that also in this case we have
to perform the "orientifold projection", we can see that we are left
only with the adjoint representation in both cases.

I Being type I a theory with chiral fermions one has potentially
gauge anomalies.

I in the next lecture we will see that only the case of the gauge
group SO(32) is anomaly free.
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Massless states in type II and type I

I Type IIB
NS-NS: Gµν , φ,Bµν ; R-R: C0,C2µν ,C4µνρσ
R-NS+NS-R: 2 gravitinos+2 dilatinos
Two gravitinos and dilatinos have the same chirality, but gravitinos
and dilatinos have opposite chirality: chiral theory.

I Type IIA
NS-NS: Gµν , φ,Bµν ; R-R: C1µ,C3µνρ
R-NS+NS-R: 2 gravitinos+2 dilatinos
Two gravitinos and dilatinos have opposite chirality: non-chiral
theory.

I Type I
Closed string sector: Gµν , φ,C2µν , 1 gravitino, 1 dilatino.
Open string sector: Gauge boson+ gaugino with gauge group
SO(32) : chiral theory.
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Conclusions
I In this seminar we have discussed the three superstring theories

that were constructed before 1985.
I Only after the first string revolution two other superstring theories

were constructed.
I They are called heterotic strings.
I They are closed string theories, but, unlike type II theories, they

contain a gauge theory.
I There exist two heterotic string theories, one with gauge group

SO(32) and the other with gauge group E8 × E8.
I Other choices of gauge symmetries will generated gauge and

gravitational anomalies.
I Those five superstring theories are all consistent string theories in

ten-dimensional Minkowski space-time.
I They are perturbatively inequivalent and supersymmetric in

d = 10.
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I This has generated a puzzle for many years: If string theory is a
theory of everything why do we have 5 theories instead of just 1?

I It turns out that they are actually part of a unique 11-dimensional
theory, called M-theory.

I But it is not easy to investigate this theory because an explicit
formulation of M theory is lacking.
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