Lattice QCD with Wilson fermions

Leonardo Giusti

CERN - Theory Group

-

Outline

- Spontaneous symmetry breaking in QCD
- Quark mass dependence of pion masses and decay constants
- Fermions on a lattice: the doubling problem
- Wilson fermions
- Chiral Ward identities and additive mass renormalization
- A new algorithm for full QCD simulations: SAP
- First dynamical simulations with light quarks
- Results for pion masses and decay constants

\square The Euclidean QCD Lagrangian inv. under SU(3) color gauge group (formal level)

$$S_{\rm QCD} = \int d^4x \left\{ -\frac{1}{2g^2} \operatorname{Tr} \left[F_{\mu\nu} F_{\mu\nu} \right] + i \frac{\theta}{16\pi^2} \operatorname{Tr} \left[F_{\mu\nu} \tilde{F}_{\mu\nu} \right] + \bar{\psi} \Big[D + M \Big] \psi \right\}$$

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}] \qquad \tilde{F}_{\mu\nu} \equiv \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F_{\rho\sigma} \qquad A_{\mu} = A^{a}_{\mu}\mathcal{T}^{a}$$

$$D = \gamma_{\mu} \{\partial_{\mu} + A_{\mu}\} \qquad \psi \equiv \{q_1, \dots, q_{N_{\mathrm{f}}}\} \qquad M \equiv \mathsf{diag}\{m_1, \dots, m_{N_{\mathrm{f}}}\}$$

• For M = 0 the action is invariant under the global group $U(N_{\rm f})_{\rm L} imes U(N_{\rm f})_{\rm R}$

$$\psi_L \to V_L \psi_L \qquad \bar{\psi}_L \to \bar{\psi}_L V_L^{\dagger} \qquad \psi_{L,R} = P_{\pm} \psi$$
$$\psi_R \to V_R \psi_R \qquad \bar{\psi}_R \to \bar{\psi}_R V_R^{\dagger} \qquad P_{\pm} = \frac{1 \pm \gamma_5}{2}$$

- \blacksquare When the theory is quantized the chiral anomaly breaks explicitly the subgroup $U(1)_A$
- **P** For the purpose of this lecture we can put $\theta = 0$
- For the rest of this lecture we will assume that heavy quarks have been integrated out and we will focus on the symmetry group $SU(3)_L \times SU(3)_R$

-

9	Octet compatible with SSB pattern	I I ₃ S	Mesc	on Quark	Mass
				Content	(MeV)
	$SU(3)_{\rm L} \times SU(3)_{\rm R} \to SU(3)_{\rm L+R}$	1 1 0	π^+	$u ar{d}$	140
		1 -1 0	π^{-}	$dar{u}$	140
	and soft explicit symmetry breaking	1 0 0	π^0	$(d\bar{d}-u\bar{u})/\sqrt{2}$	135
	$m_u, m_d \ll m_s < \Lambda_{\rm QCD}$	$\frac{1}{2}$ $\frac{1}{2}$ +1	K^+	$uar{s}$	494
		$\frac{1}{2} - \frac{1}{2} + 1$	K^{0}	$dar{s}$	498
		$\frac{1}{2} - \frac{1}{2} - 1$	K^{-}	$sar{u}$	494
		$\frac{1}{2}$ $\frac{1}{2}$ -1	$\overline{\mathrm{K}}^{0}$	$sar{d}$	498
9	$m_u, m_d \ll m_s \Longrightarrow m_\pi \ll m_{\rm K}$	0 0 0	η	$\cos\vartheta\eta_8 + \sin\vartheta\eta_0$	547
		0 0 0	η'	$-\sin\vartheta\eta_0+\cos\vartheta\eta_8$	958
9	A 9^{th} pseudoscalar with $m_{\eta'} \sim \mathcal{O}(\Lambda_{\mathrm{QCD}})$	η_8	=	$(d\bar{d} + u\bar{u} - 2s\bar{s})/\sqrt{6}$	
		η_0	=	$(d\bar{d} + u\bar{u} + s\bar{s})/\sqrt{3}$	
		artheta	\simeq	-11°	

■ By grouping the generators of the $SU(3)_L \times SU(3)_R$ group in the ones of the vector subgroup $SU(3)_{L+R}$ plus the remaining axial generators

$$\partial_{\mu} \left\langle V^{a}_{\mu}(x)\mathcal{O} \right\rangle = \left\langle \bar{\psi}(x) \left[T^{a}, M \right] \psi(x) \mathcal{O} \right\rangle - \left\langle \delta^{a}_{V,x}\mathcal{O} \right\rangle$$
$$\partial_{\mu} \left\langle A^{a}_{\mu}(x)\mathcal{O} \right\rangle = \left\langle \bar{\psi}(x) \left\{ T^{a}, M \right\} \gamma_{5}\psi(x) \mathcal{O} \right\rangle - \left\langle \delta^{a}_{A,x}\mathcal{O} \right\rangle$$

where currents and densities are defined to be

$$V^{a}_{\mu} \equiv \bar{\psi}\gamma_{\mu}T^{a}\psi \qquad \qquad A^{a}_{\mu} \equiv \bar{\psi}\gamma_{\mu}\gamma_{5}T^{a}\psi$$
$$S^{a} \equiv \bar{\psi}T^{a}\psi \qquad \qquad P^{a} \equiv \bar{\psi}\gamma_{5}T^{a}\psi$$

Ward identities encode symmetry properties of the theory, and they remain valid even in presence of spontaneous symmetry breaking Spontaneous chiral symmetry breaking in QCD

• By choosing the interpolating operator $\mathcal{O} = P^{a}(0)$ the AWI reads

$$\partial_{\mu} \left\langle A^{a}_{\mu}(x) P^{a}(0) \right\rangle = \left\langle \bar{\psi}(x) \left\{ T^{a}, M \right\} \gamma_{5} \psi(x) P^{a}(0) \right\rangle - \frac{1}{3} \delta(x) \left\langle \bar{\psi} \psi \right\rangle$$

In the chiral limit

$$\langle \partial_{\mu} A^{a}_{\mu}(x) P^{a}(0) \rangle = 0 \qquad x \neq 0$$

and by using Lorentz invariance and power counting

$$\langle A^a_\mu(x)P^a(0)\rangle = c\frac{x_\mu}{(x^2)^2} \qquad x \neq 0$$

 \checkmark Integrating by parts the AWI in a ball of radius r

$$\int_{|x|=r} ds_{\mu}(x) \langle A^{a}_{\mu}(x) P^{a}(0) \rangle = -\frac{3}{2} \langle \bar{\psi}\psi \rangle$$

which implies

$$\langle \partial_{\mu} A^{a}_{\mu}(x) P^{a}(0) \rangle = -\frac{3}{4\pi^{2}} \langle \bar{\psi}\psi \rangle \frac{x_{\mu}}{(x^{2})^{2}} \qquad x \neq 0$$

L. Giusti – Paris March 2005 – p.6/31

9 If $\langle \bar{\psi}\psi \rangle \neq 0$ the relation

$$\langle \partial_{\mu} A^{a}_{\mu}(x) P^{a}(0) \rangle = -\frac{3}{4\pi^{2}} \langle \bar{\psi}\psi \rangle \frac{x_{\mu}}{(x^{2})^{2}} \qquad x \neq 0$$

implies that the current-density correlation function is long-ranged

The energy spectrum does not have a gap and the correlation function has a particle pole at zero momentum (Goldstone theorem)

■ In the chiral limit $\langle \bar{\psi}\psi \rangle \neq 0$ implies the presence of 8 Goldstone bosons identified with the 8 pseudoscalar light mesons $[\pi, \ldots, K, \ldots, \eta]$

Previous relations lead to

$$\langle 0|A^a_{\mu}|P^a, p_{\mu}\rangle = p_{\mu} F$$

which in turn implies that interactions among peudoscalar mesons vanish for $p^2 = 0$

• When $M \neq 0$ (and for simplicity in the degenerate case M = m1)

$$2m \int \langle P^a_\mu(x) P^a(0) \rangle = \frac{1}{3} \langle \bar{\psi}\psi \rangle$$

and therefore for $m \rightarrow 0$

$$M_P^2 = M^2 = -2 m \frac{\langle \psi \psi \rangle}{3F^2}$$

- It is possible to build an effective theory of QCD with 8 light pseudoscalar mesons as fundamental degrees of freedom
- In particular for pions, it predicts the following functional forms for masses and decay constants at NLO

$$M_{\pi}^{2} = M^{2} \left\{ 1 + \frac{M^{2}}{32\pi^{2}F^{2}} \log(M^{2}/\mu_{\pi}^{2}) \right\}$$
$$F_{\pi} = F \left\{ 1 - \frac{M^{2}}{16\pi^{2}F^{2}} \log(M^{2}/\mu_{F}^{2}) \right\}$$

L. Giusti – Paris March 2005 – p.8/31

Lattice regularization of QCD

P The Wilson action for the SU(3) Yang–Mills theory is

$$S_{\rm YM} = \frac{6}{g^2} \sum_{x,\mu<\nu} \left\{ 1 - \frac{1}{6} \operatorname{Tr} \left[U_{\mu\nu}(x) + U^{\dagger}_{\mu\nu}(x) \right] \right\}$$
$$U_{\mu\nu}(x) = U_{\mu}(x) U_{\nu}(x+\mu) U^{\dagger}_{\mu}(x+\nu) U^{\dagger}_{\nu}(x)$$

For small gauge fields (perturbation theory) $U_{\mu}(x) \simeq 1 - aA_{\mu}(x)$

Correlation functions computed non-perturbatively via Monte Carlo techniques

$$\langle O_1(x)O_2(0)\rangle = \int \mathcal{D}U \, e^{-S_{\rm YM}(U)}O_1(U;x)O_2(U;0)$$

L. Giusti – Paris March 2005 – p.9/31

\square Given a generic massive Dirac operator D(x, y) and the corresponding action

$$S_{\rm F} = \sum_{x,y} \bar{\psi}(x) D(x,y) \psi(x) \qquad \psi \equiv \left\{ q_1, \dots, q_{{\rm N}_f} \right\}$$

the functional integral is defined to be

$$Z = \int \delta U \delta \psi \delta \bar{\psi} \exp \left\{ -S_{\rm YM} - S_{\rm F} \right\}$$

By integrating over the Grassman fields, a generic Euclidean corr. function is

$$\langle O_1(x_1)O_2(x_2)\rangle = \frac{1}{Z} \int \delta U \ e^{-S_{\rm YM}} \ \operatorname{Det} D \ [O_1(x_1)O_2(x_2)]_{\rm Wick}$$

For vector gauge theories and positive masses, Det D is real and positive

Correlation functions can be computed non-perturbatively via Monte Carlo techniques

The naive gauge invariant discretization of the Dirac operator is

$$D = \frac{1}{2} \gamma_{\mu} \left\{ \nabla_{\mu}^{*} + \nabla_{\mu} \right\} + m$$

where (a is the lattice spacing)

$$\nabla_{\mu}\psi(x) = \frac{1}{a} \Big[U_{\mu}(x)\psi(x+a\hat{\mu}) - \psi(x) \Big]$$

$$\nabla^{*}_{\mu}\psi(x) = \frac{1}{a} \Big[\psi(x) - U^{\dagger}_{\mu}(x-a\hat{\mu})\psi(x-a\hat{\mu}) \Big]$$

In the free case and in the Fourier basis $(\bar{p}_{\mu} = \sin(p_{\mu}a)/a)$

$$\tilde{D}^{-1}(p) = \frac{-i\gamma_{\mu}\bar{p}_{\mu} + m}{\bar{p}^2 + m^2}$$

there are 15 extra poles (doublers)!

The following properties cannot hold simultaneously for free fermions on the lattice:

- 1. $\tilde{D}(P)$ is an analytic periodic function of p_{μ} with period $2\pi/a$
- 2. For $p_{\mu} \ll \pi/a$ $\tilde{D}(P) = i\gamma_{\mu}p_{\mu} + \mathcal{O}(ap^2)$
- 3. $\tilde{D}(P)$ is invertible at all non-zero momenta (mod $2\pi/a$)
- 4. *D* anti-commute with γ_5 (for m = 0)

(1) is needed for locality, (2) and (3) ensures the correct continuum limit

- Chiral symmetry in the continuous form (4) must be broken on the lattice
- **Physics essence:** if action invariant under standard chiral sym. \implies no chiral anomaly

Wilson's proposal is to add an irrelevant operator to the action

$$D_W = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - a \nabla^*_\mu \nabla_\mu \right\} + m^0$$

which breaks chiral symmetry explicitly ($SU(3)_{L+R}$ vector symmetry preserved!)

● The Wilson term $a \nabla^*_{\mu} \nabla_{\mu}$ removes the doubler poles. In the free case

$$\tilde{D}^{-1}(p) = \frac{-i\gamma_{\mu}\bar{p}_{\mu} + m^{0}(p)}{\bar{p}^{2} + m^{0}(p)^{2}} \qquad m^{0}(p) \equiv m^{0} + \frac{a}{2}\hat{p}^{2}$$

where $\hat{p}_{\mu} = \frac{2}{a} \sin\left(\frac{p_{\mu}a}{2}\right)$

• At the classical level Wilson term is irrelevant, it gives vanishing contributions for $a \rightarrow 0$

By performing a non-singlet axial rotation in the functional integral

$$\partial_{\mu}\langle A^{a}_{\mu}(x)\mathcal{O}\rangle = \langle \bar{\psi}(x)\left\{T^{a}, M^{0}\right\}\gamma_{5}\psi(x)\mathcal{O}\rangle + \langle X^{a}(x)\mathcal{O}\rangle - \langle \delta^{a}_{x}\mathcal{O}\rangle$$

■ At the classical level the operator $X^a(x)$ vanishes for $a \to 0$. In the quantum theory the 1/a ultraviolet divergences make the insertion of this operator non-vanishing

$$\frac{1}{a}\mathcal{O}(a)\simeq\mathcal{O}(1)$$

The operator $X^a(x)$ can be made finite by subtracting all operators of lower dimensions with proper coefficients

$$\bar{X}^a = X^a + \bar{\psi} \Big\{ T^a, \bar{M} \Big\} \gamma_5 \psi + (Z_A - 1) \partial_\mu A^a_\mu$$

• By inserting \bar{X}^a in the AWI

$$Z_A \partial_\mu \langle A^a_\mu(x) \mathcal{O} \rangle = \langle \bar{\psi}(x) \left\{ T^a, M^0 - \bar{M} \right\} \gamma_5 \psi(x) \mathcal{O} \rangle + \langle \bar{X}^a(x) \mathcal{O} \rangle - \langle \delta^a_x \mathcal{O} \rangle$$

● If we define the renormalized pseudoscalar density to be $\hat{P}^a = Z_P P^a$, since it cannot mix with $\partial_\mu A^a_\mu$

$$\hat{A}^a_\mu = Z_A A^a_\mu \qquad \hat{M} = \frac{M^0 - M}{Z_P}$$

are finite and correspond to the proper definition of axial currents and quark masses, i.e. the ones that satisfy the AWI in the continuum limit

For degenerate quarks the "on-shell" non-perturbative definition of the quark mass is

$$\hat{m} = \frac{1}{2} \frac{Z_A \partial_\mu \langle A^a_\mu(x) P^a(0) \rangle}{\langle P^a(x) P^a(0) \rangle}$$

and if there is SSB the Goldstone bosons become massless when $\hat{m} = 0$

No conceptual problems for defining non-perturbatively a theory with a global chiral-symmetry

- Operators in different chiral representations get mixed: renormalization procedure complicated, but extra mixings fixed by WIs
- Additive quark-mass renormalization

• Spectrum and matrix elements have O(a) discretization effecs

D Lengthy but known procedure to remove them and remain with $\mathcal{O}(a^2)$

First-principle results when all systematic uncertainties quantified

Main sources of errors:

- 1. Statistical errors
- 2. Finite volume: $L = 1.5 \rightarrow 5 \text{ fm}$
- 3. Continuum limit: $a = 0.04 \rightarrow 0.1$ fm
- 4. Chiral extrapolation: $M_{\pi} = 200 \rightarrow 500 \text{ MeV}$

On the lattice they can be estimated and (eventually) removed without extra free parameters or dynamical assumptions (QFT,V, Alg., CPU) A generic Euclidean correlation function can be written as

$$\langle O_1(x_1)O_2(x_2)\rangle = \frac{1}{Z} \int \delta U \ e^{-S_{\rm YM}} \ {\rm Det} D_W \ [O_1(x_1)O_2(x_2)]_{\rm Wick}$$

\square For two degenerate flavors and positive mass, $Det D_W$ is real and positive.

● $L \sim 2$ fm and $a \sim 0.08$ fm $\implies dim[D_W] \sim 4 \cdot 10^6$: computing and diagonalizing the full matrix is not feasible

By introducing pseudo-fermion fields

$$\langle O_1(x_1)O_2(x_2)\rangle = \frac{1}{Z} \int \delta U \delta \phi \delta \phi^{\dagger} \ e^{-S_{\rm YM}} \sum \phi^{\dagger} D_W^{-1} \phi \ [O_1(x_1)O_2(x_2)]_{\rm Wick}$$

The determinant contribution can be taken into account by computing $\phi^{\dagger} D_W^{-1} \phi$ several times for each acceptance-rejection step

Fermion determinant replaced by its average value

$$\langle O \rangle = \int \mathcal{D}U e^{-S_{\rm G}} \left[\text{Det} D \right]^{N_{\rm f}} O$$

Quenching is not a systematic approximation

Quenched light hadron spectrum: $\sim 10\%$ discrepancy with experiment

For some quantities quenching is the only systematics not quantified

● Decomposition of the lattice into blocks with Dirichlet b.c. with $q \ge \pi/L > 1$ GeV

■ Asymptotic freedom: quarks are weakly interacting in the blocks \implies QCD easy (*cheaper*) to simulate

Block interactions are weak and are taken into account exactly

$$S(x,y) \sim \frac{1}{|x-y|^3}$$

0	0	0	0	0	0	0	0	0	0	0	0
0	•	٠	•	٠	0	0	٠	٠	٠	٠	0
0	•	٠	•	•	0	0	٠	٠	٠	٠	0
0	•	•	•	٠	0	0	٠	٠	٠	٠	0
0	٠	•	•	•	0	0	٠	٠	٠	٠	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	٠	٠	0	0	•	•	•	•	0
0	٠	•	٠	٠	0	0	•	•	•	•	0
0	٠	٠	•	٠	0	0	•	•	•	•	0
0	٠	•	٠	٠	0	0	•	•	٠	٠	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	٠	٠	٠	0
0	•	•	•	•	0	0	٠	٠	٠	٠	0
0	•	•	•	•	0	0	٠	٠	٠	٠	0
0	•	•	•	•	0	0	٠	٠	٠	٠	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	٠	٠	٠	0	0	•	•	•	•	0
0	٠	٠	٠	٠	0	0	•	•	٠	٠	0
0	٠	٠	٠	٠	0	0	•	•	•	•	0
0	٠	٠	٠	٠	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0

The Wilson–Dirac operator

$$D_W = \frac{1}{2} \left\{ \gamma_\mu (\nabla^*_\mu + \nabla_\mu) - \nabla^*_\mu \nabla_\mu \right\} + m_0$$

can be decomposed as

$$D_W = D_{\Omega^*} + D_{\Omega} + D_{\partial\Omega^*} + D_{\partial\Omega}$$

where

$$D_{\Omega^*} = \sum_{\text{white } \Lambda} D_{\Lambda} \qquad \qquad D_{\Omega} = \sum_{\text{black } \Lambda} D_{\Lambda}$$

 Ω^* , Ω are white and black blocks, $\partial\Omega$, $\partial\Omega^*$ are exterior boundaries

The determinant of the Dirac operator written as

$$\det D_W = \prod_{\text{all}\Lambda} \det \hat{D}_\Lambda \ \det R$$

with the block interaction

$$R = 1 - P_{\partial\Omega^*} D_{\Omega}^{-1} D_{\partial\Omega} D_{\Omega^*}^{-1} D_{\partial\Omega^*}$$

For two flavors can be written as integral over scalar fields

$$S_{\phi\chi} = \sum_{\text{all }\Lambda} ||\hat{D}_{\Lambda}^{-1}\phi_{\Lambda}||^2 + ||R^{-1}\chi||^2$$

where ϕ_{Λ} defined on Λ and χ on $\partial \Omega^{*}$

0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	٠	٠	٠	0
0	•	•	•	•	0	0	٠	٠	•	٠	0
0	•	•	•	•	0	0	٠	٠	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	٠	0	0	•	•	•	•	0
0	•	•	•	٠	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	٠	0	0	•	•	•	•	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	•	•	•	•	0	0	•	•	•	•	0
0	•	•	•	•	0	0	•	•	•	•	0
0											
	•	•	•	•	0	0	٠	٠	٠	٠	0
0	•	•	•	•	0	0	•	•	•	•	0 0
0 0	•	•	•	• • 0	0 0 0	0 0 0	• • 0	•	•	•	0 0 0
0 0	•	• • •	• • •	• • 0	0 0 0	0 0 0	• • 0	• • •	• • 0	• • •	0 0 0
0 0 0	• • • • •	• • •	• • •	• • •	0 0 0 0	0 0 0 0	• • •	• • •	• • •	•	0 0 0
0 0 0 0	• • •	• • • •	• • • •	• • • •	0 0 0 0 0	0 0 0 0 0	• • • •	• • •	• • •	• • • •	0 0 0 0
	• • • •	• • • • •	• • • • •	• • • • •	000000		• • • •	• • • •	• • • •	• • • •	
	• • • • •	• • • • •	• • • • •	• • • • •	0 0 0 0 0 0 0	0 0 0 0 0 0 0	• • • • •	• • • • •	• • • •	• • • •	

Schwarz-preconditioned Hybrid Monte Carlo (SAP) Lüscher 03 04

i.e. the most expensive force computed less often!

Do not give up first-principles: teach Physics to exact algorithms for being smarter (faster)!

$$\bigcirc C_{\rm ost} \propto N_{\rm conf} \ m_q^{-1} \ L^5 \ a^{-6} \end{pmatrix}$$

PC cluster with 32 Nodes (64 Xeon procs) (~160 Gflops sustained)

- Full statistics for small lattice: ~60 days @ 32 nodes
- All confs archived @ CERN
- First goal: verifying QCD SSB and make contact w. ChPT

We computed two-point correlation functions of bilinears

$$C_{AA}(t) = \sum_{\vec{x}} \langle A_0^a(x) A_0^a(0) \rangle$$

which for large times $t \to \infty$ (and for $T \to \infty$)

$$C_{AA}(t) \longrightarrow \frac{|\langle 0|A_0^a|\pi\rangle|^2}{M_P} e^{-\frac{M_PT}{2}} \cosh\left[M_P\left(\frac{T}{2}-t\right)\right]$$
$$\longrightarrow \frac{|\langle 0|A_0^a|\pi\rangle|^2}{2M_P} e^{-\frac{M_Pt}{2}}$$

Euclidean correlation functions of bare operators at finite volume and finite cut-off computed non-perturbatively with SAP

Algorithm stable over the relevant parameter ranges:

- 1. Quark mass: $m \sim m_s/6$ \checkmark
- 2. Lattice spacing: $a \sim 0.065$ fm \checkmark
- 3. Volume: $L \sim 2 \text{ fm } \checkmark$

Volume	a[fm]	am	am_{π}	aF_{π}
		0.0274(3)	0.274(2)	0.0648(8)
$24^3 \times 32$	\sim 0.080	0.0143(2)	0.197(2)	0.0544(9)
		0.0086(2)	0.155(3)	0.0500(17)
		0.0055(2)	0.121(4)	0.0461(23)

L. Giusti – Paris March 2005 – p.27/31

At the NLO in SU(2) ChPT [J. Gasser, H. Leutwyler '84]

$$M_{\pi}^{2} = M^{2} \left\{ 1 + \frac{M^{2}}{32\pi^{2}F^{2}} \log(M^{2}/\mu_{\pi}^{2}) \right\}$$

with $M^2 = 2B\hat{m}$

Data below $M_{\pi} \sim 500$ MeV are compatible (within errors) with NLO ChPT

Smaller lattice spacing confirms the picture

For comparison: from Nature

$$M_\pi^2/M^2 \sim \text{const} \sim 0.956(8)$$

in the range M = 200 - 500 MeV

NLO SU(2) ChPT gives [J. Gasser, H. Leutwyler '84]

$$F_{\pi} = F\left\{1 - \frac{M^2}{16\pi^2 F^2}\log(M^2/\mu_F^2)\right\}$$

• Fitting points below $M_{\pi} \sim 500$ MeV (Preliminary!)

$$F_{\pi} \sim 80(7) \mathrm{MeV}$$

with Z_A from 1-loop PT

Full analysis at small lattice spacing in progress

Also in this case data are compatible (within errors) with NLO ChPT

Wilson fermions are theoretically well founded

- No conceptual problems for defining non-perturbatively a (global) chiral-symmetric theory with a regularization which breaks chiral symmetry
- The continuum limit has to be taken after a proper renormalization procedure

- QCD spontaneous symmetry breaking can be studied with systematics under control
- First results with SAP: a breakthrough in full QCD simulations
- First goal: SSB observed in QCD and contact with ChPT established