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Cours VII: 26 février 2010

Généralisations de Neveu-Schwarz & Ramond 

• Classical vs. quantum strings
• Shortcomings of the bosonic string
• Adding world-sheet fermions: NS vs. R
• Intercepts and critical dimensions in the NSRM
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Classical vs. Quantum strings

• We have already seen that there are non-trivial 
constraints on the dimensionality of space-time in 
which a quantized string can consistently propagate.

• We have also seen that the spectrum of quantum 
strings is strongly constrained (α0=1).

• These are just examples of properties that 
distinguish classical from quantum strings. We will 
find several such properties later in the course but, 
for the moment, let’s focus on two crucial ones.
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Target-space scale invariance
• It is trivial to check that classical string theory 

is scale-invariant in Minkowski spacetime. 
• Given a solution of the equations of motions and 

constraints we can generate another solution by 
multiplying all the string coordinates by the same 
arbitrary factor k.

• The new solution is a string whose M (J) is k times 
(k2 times) larger. The ratio J/M2 remains the 
same.

• We can also trivially change T (SNG is rescaled)
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• It follows that, starting from any classical 
solution we can rescale it and make the string 
arbitrarily light while its angular momentum 
becomes arbitrarily small.

• Note that such a scale invariance is broken if the 
string moves in a non-trivial background that 
contains a length scale L (e.g. a Hubble or a 
Schwarzschild radius).

• In that case we can only rescale simultaneously 
the size of the string and L but their ratio is an 
essential dimensionless parameter: large and small 
strings (wrt L) behave very differently. 



1
!SNG = −T

! (Area swept) ≡ − 1
πl2s

(Area swept) ; l2s ≡ 2α′!
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• In the quantum theory the crucial quantity (Cf. 
quantization by Feynman’s path integral) is the 
dimensionless quantity S/h. Since:

quantization has introduced a fundamental length, ls. 
The ratio of a string’s size and ls is now a crucial 
dimensionless parameter (even in Minkowski: in curved 
spacetime there will be further relevant ratios...).

• This fundamental quantum length enters string theory 
in many ways. It is the characteristic size of a 
(minimal-mass) string (Cf. ground st. of h.o.).

• NB: In the string literature ls2 and 2α’ are usually not 
distinguished. In string units they are both set to 1.
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ls

Without QM strings become lighter and lighter as they shrink

With QM strings are lightest when their size is ls
 

increasing M

decreasing M

increasing M
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 Angular momentum bound
 A classical string cannot have angular momentum without 

having a finite length, hence a finite mass. The rigid-rod 
solution maximizes J/M2. A quantum string, instead, can 
have up to two units of angular momentum without gaining 
mass. The fact that this is a quantum effect is clear:

after consistent regularization

So far we have seen the examples of α0 =1 and 2 in the bosonic 
string. Later today we shall see the case of massless half-integer 
spin strings.
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The classical limit corresponds to taking strings that are 
large in ls  units. They correspond to large occupation 
numbers i.e. to heavy strings.This is indeed where the two 
graphs below agree with each other.
On the other hand for small, light strings the classical 
picture fails. Only quantum strings can be interesting for a 
unified description of fundamental forces and particles!

J

M2

J

M2

2 h
h

open
open

closed

closed

classical 
strings DRM

α’

1/2α’
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Shortcomings of the bosonic string 

1. Presence of a tachyon 
2. Absence of fermions
3. D ≠ 4
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Presence of a Tachyon
Tachyons are a problem but not necessarily a killer. In 
QFT a tachyon is a sign of instability of the (false) vacuum 
state around which we carry out quantization and 
perturbation theory.
The Higgs model for the SSB of SU(2)xU(1) is the most 
famous example of how we can use a tachyon to our own 
advantage.
Unfortunately is was (and still is) not at all clear how to 
change the vacuum in the DRM or in String Theory.
This is why people tried to find tachyon-free models with 
a nice perturbative expansion.
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D≠4

This was another big disappointment. People wanted to 
find out whether by adding different degrees of freedom 
one could get down to D=4.

Absence of fermions
This was a very obvious shortcoming of the bosonic DRM. 
After all one wanted to describe also protons and neutrons 
besides mesons!
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Encouraging early signs

For consistency (absence of ghosts) the bosonic DRM had 
to have the wrong intercept,α0= 1. On the other hand the 
Lovelace-Shapiro model for π π scattering was 
phenomenologically appealing.

It had no tachyon and several other virtues (see also 
today’s seminar) and raised great hopes at the beginning. 
A similar success came from the study of the Dalitz plot 
for ω--> 3π (s, t, u > 0 and s+t+u = mω2)



A(π1π2 → π3π4) = g2
∑

cyclic perm.

Tr[τiτjτkτl]
Γ (1− α(sij)) Γ (1− α(sjk))

Γ (1− α(sij)− α(sjk))

α(s) = αρ(s) ∼ 0.5 + α′s ; α′ ∼ 0.9 GeV−2

A(π+π− → π+π−) = g2 Γ (1− α(s)) Γ (1− α(t))
Γ (1− α(s)− α(t))
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π−
π+

u

d

π-
π+

d

u

Tr[τiτjτkτl] are called Chan-Paton factors. They will be 
very important for some properties of open string theory

example:
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Adding world-sheet fermions
Even before the string reinterpretation of the DRM Neveu 
& Schwarz and Ramond tried to generalize the operator 
formalism by adding to the bosonic field Q(z) a Grassmann 
(i.e. anticommuting) field ψ(z). Let us describe it in string 
theory language.
 The “Polyakov” action for the bosonic string can be 
generalized by adding to the string coordinate  Xμ(ξ)  a 
fermionic “coordinate” ψμa (ξ) which is a two-component 
spinor in 2-dimensions (a world-sheet spinor) but, like Xμ, 
a spacetime vector (in D dimensions). 

This very nice formulation (Brink-Di Vecchia-Howe; Deser 
and Zumino, 1976) came much later, after the discovery of 
supersymmetry and supergravity. The earliest (gauge-
fixed) formulation preceeded SUSY and actually led to its 
discovery in the West (see seminar).



gαβ = ρ ηαβ ; χα = γα χ

S = Sb + Sf ; Sb = −T

2

∫
d2ξ
√
−g gαβ ∂αXµ · ∂βXµ

Sf = −T

2

∫
d2ξ
√
−g

[
iψ̄µγα · ∂αψµ − iχ̄αγβ∂βXµ · γαψµ

− 1/4(χ̄αγβγαψµ) · (χ̄βψµ)
]
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On top of 2-D reparametrization invariance, this action has a 
a local form of supersymmetry (it’s a supergravity in D=2). 
This leads to additional fermionic constraints and allows to 
choose an extension of the ON (also called conformal) gauge, 
called the superconformal gauge, in which S simplifies 
drastically. This gauge is defined by:

The extra fermionic constraints are of course welcome since, 
a priori, there are now more ghosts to be killed, those 
related to the time-components of the WS fermions. In this 
gauge only the first term in Sf survives and we get:



∂α∂αXµ = ∂+∂−Xµ = 0
γα · ∂αψµ = ∂+ψµ

− = ∂−ψµ
+ = 0

ψµ
a = (ψµ

−, ψµ
+)

Xµ(σ, τ) = Fµ(τ − σ) + Gµ(τ + σ)
ψµ
−(σ, τ) = ψµ

−(τ − σ) ; ψµ
+(σ, τ) = ψµ

+(τ + σ)

SSCG = −T

2

∫
d2ξ

[
∂αXµ · ∂αXµ + iψ̄µγα · ∂αψµ

]

= T

∫
d2ξ

[
2∂+Xµ · ∂−Xµ + ψµ

−∂+ψ−µ + ψµ
+∂−ψ+µ

]
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leading to very simple decoupled e.o.m.

To these we have to add, like in the bosonic case, 
constraints and boundary conditions

solved by



SSCG,f = T

∫
d2ξ

[
ψµ
−∂+ψ−µ + ψµ

+∂−ψ+µ

]

[
ψµ

+δψµ
+ − ψµ

−δψµ
−

]
(σ = 0)− [. . . ] (σ = π) = 0

[X ′µ δXµ](σ = 0) = [X ′µ δXµ](σ = π)
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Boundary conditions
For the bosons the boundary conditions are unchanged:

For the fermions the boundary terms one gets from 
varying the action:

They lead to Xμ(0,τ) = Xμ(π,τ) for closed strings and to 
either X’ (NBC) or δX =0 (DBC) for the open strings.

lead to:



[
ψµ

+δψµ
+ − ψµ

−δψµ
−

]
(σ = 0) =

[
ψµ

+δψµ
+ − ψµ

−δψµ
−

]
(σ = π)

ψµ
+(σ = 0) = ±ψµ

−(σ = 0)
ψµ

+(σ = π) = ±ψµ
−(σ = π)

ψµ
+(σ = 0) = +ψµ

−(σ = 0) and ψµ
+(σ = π) = +ψµ

−(σ = π)

ψµ
+(σ = 0) = +ψµ

−(σ = 0) and ψµ
+(σ = π) = −ψµ

−(σ = π)
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Once more we have to distinguish open and closed strings:

The four possible cases are pairwise equivalent leading to 2 
physically distinct cases: Ramond (R) and Neveu-Schwarz (NS)

R:

For open strings we have to set to zero each side on the 
equation since the variations are independent. This still 
leaves two possibilities (at each end): 

NS:



[
ψµ

+δψµ
+ − ψµ

−δψµ
−

]
(σ = 0) =

[
ψµ

+δψµ
+ − ψµ

−δψµ
−

]
(σ = π)

ψµ
+(σ) = ±ψµ

+(σ + π)
ψµ
−(σ) = ±ψµ

−(σ + π)

ψµ
+(σ) = −ψµ

+(σ + π) , ψµ
−(σ) = −ψµ

−(σ + π)

ψµ
+(σ) = −ψµ

+(σ + π) , ψµ
−(σ) = +ψµ

−(σ + π)

ψµ
+(σ) = +ψµ

+(σ + π) , ψµ
−(σ) = −ψµ

−(σ + π)

ψµ
+(σ) = +ψµ

+(σ + π) , ψµ
−(σ) = +ψµ

−(σ + π)

26 février 2010 G. Veneziano Cours VII 19

Physical states must contain both left and right-movers. We 
thus get four kinds of states:

R-NS:

For closed strings we identify as usual σ= 0 and σ= π. 
However, we can still choose either periodic or antiperiodic 
b.c. independently for the two components of 

NS-NS:

NS-R:

R-R:



ψµ
±(σ, τ) =

√
α′

∑

n∈Z

dµ
ne−in(τ±σ)

ψµ
±(σ, τ) =

√
α′

∑

n∈Z+1/2

bµ
r e−ir(τ±σ)

ψµ
±(σ, τ) =

√
2α′

∑

n∈Z

dµ
±,ne−2in(τ±σ)

ψµ
±(σ, τ) =

√
2α′

∑

n∈Z+1/2

bµ
±,re

−2ir(τ±σ)
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Mode expansions
For open strings we get the mode expansions:

for Ramond

for Neveu-Schwarz

For closed strings we get instead: 

for Ramond

for Neveu-Schwarz



T++ = ∂+Xµ∂+Xµ +
i

2
ψµ

+∂+ψ+µ = 0 ; T−− = ∂−Xµ∂−Xµ +
i

2
ψµ
−∂−ψ−µ = 0

J+ = ψµ
+∂+Xµ = 0 ; J− = ψµ

−∂−Xµ = 0

[L, L] = L , [L, G] = G , [L, F ] = F , {G, G} = L , {F, F} = L
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Constraints
Because of its larger local symmetry the NG-NSR action 
leads to an enlarged set of constraints. The old bosonic 
constraints get an additional piece: 

To these we have to add new “fermionic” constraints

The Fourier modes (in σ) of T give the usual Ln while 
those of J give fermionic operators (called Fn for R and Gr 
for NS). Classically the constraints satisfy a superalgebra

Skematically:



{bµ
r , bν

s} = ηµνδr+s ; {dµ
n, dν

m} = ηµνδn+m

aµ
n|0〉 = bµ

r |0〉 = dµ
n|0〉 = 0 ; n, r > 0

dµ
0 |0〉 = 0

{dµ
0 , dν

0} = ηµν
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Quantization
The canonical (anti)commutation relations for  Xμ(ξ)  and 
ψμa (ξ) lead to the usual commutation relations for the a 
and a oscillators while for the fermionic ones we get:

The lowest state satisfies the obvious conditions:

but, in the R sector, it cannot satisfy:
since

Modulo a factor 2 this is just the algebra of Dirac’s γμ-matrices!



α′M2 = N − α0 ; N = Na + Nb for NS ; N = Na + Nd for R

Na =
∞∑

n=1

na†nan , Nb =
∞∑

r=1/2

rb−rbr , Nd =
∞∑

n=1

nd−ndn

(L0 − α0)|Phys.〉 = Ln|Phys.〉 = Gr|Phys.〉 = Fn|Phys.〉 = 0 ; n, r > 0
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The vacuum must be a representation of this algebra. The 
smallest such representation is a spinor in D-dimensions. 
Thus in the R sector the vacuum state carries a spinor 
index and is, indeed, a fermion. Since the other states of 
the R sector are obtained by applying spacetime vector 
creation operators, all the states of the R-sector are 
fermions (with arbitrarily high half-integer spin)
The mass of a generic state is given again by:

Physical on-shell states must satisfy the equations: 
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The normal ordering constant α0 has to be fixed, as usual, 

by some consistency requirement (Lorentz inv. , QBRST2 = 
0, ...). It turns out that α0=1/2 for the NS sector, α0=0 in 

the R sector. This is related to the central charges that 
enter the previous Ln, Gr, Fn commutation relations after 
quantization. On top, the dimension of spacetime has now to 
be 10. We will discuss below how to get these results in l.c.q.

α′M2 = N − α0 ; N = Na + Nb for NS ; N = Na + Nd for R

Na =
∞∑

n=1

na†nan , Nb =
∞∑

r=1/2

rb−rbr , Nd =
∞∑

n=1

nd−ndn

(L0 − α0)|Phys.〉 = Ln|Phys.〉 = Gr|Phys.〉 = Fn|Phys.〉 = 0 ; n, r > 0



α′M2 = −1/2 +
∞∑

n=1

na†µn anµ +
∞∑

r=1/2

rb−rµbµ
r
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The open string spectrum (NS sector)
In this (bosonic) sector the mass formula reads:

The lowest state |0> is 
physical but it’s (again!) a 
tachyon! We can excite 
this state by applying to 
it either a+1μ or b-1μ In 
both cases we get a 
vector. In the first case 
it has α‘M2 = +1/2, in the 
latter it has M=0 (like in 
the bosonic string!). Not 
much improvement?

J

1
1/2

even number of b’s

odd number of b’s

α‘M21/2-1/2

2

1



α′M2 =
∞∑

n=1

na†µn anµ +
∞∑

n=1

nd−nµdµ
n
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The open string spectrum (R sector)
In this (fermionic) sector the mass formula is:

The lowest state |0> is 
physical and massless. It 
provides a representation 
of the Dirac algebra in 
D=10. We can excite it by 
applying to it either a+1μ 
or d-1μ In both cases we 
get a spin 3/2 state with 
α‘M2 = +1. This sector is 
tachyon free!  

J

α‘M2

3/2

1/2

1



∂±X · ∂±X +
i

2
ψ · ∂±ψ = 0

ψ · ∂±X = 0

X+(σ, τ) = 2α′p+τ ; X±(σ, τ) ≡ X0 ±XD−1

√
2

ψ+(σ, τ) = 0 ; ψ±(σ, τ) ≡ ψ0 ± ψD−1

√
2

= 0
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Light-cone quantization 
The residual gauge freedom to perform superconformal 
transformations allows us to fix one bosonic and one fermionic 
coordinate. The light-cone gauge corresponds to choosing:

The constraints (do not confuse ± for WS and target space!)

can be solved for X- and ψ- in terms of the transverse 
operators (they become bilinear in the latter)



[M+i, M+j ] ∝
∞∑

n=1

[
n2

(
D − 2

8
− 1

)
−

(
D − 2

8
− 2α0

)] (
a†in aj

n − a†jn ai
n

)
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 We can then construct the generators of the Lorentz group 
and check their algebra. This can be done for arbitrary D and 
n.o. constant α0. The tricky commutators is again [M+i, M+j] = 

0. For general D, a, one finds (for NS case): 

Thus the Lorentz algebra has an anomaly unless D=10 and α0 

= 1/2. A similar calculation for the R sector gives again D= 10 
but α0 = 0. These results are again confirmed by the 

covariant (BRST) quantization procedure (now with BRST 
ghosts and superghosts).
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Conclusions on NSR open string 

J

1
1/2

even number of b’s

odd number of b’s

α‘M21/2-1/2

2

1

J

α‘M2

3/2

1/2

1

With respect to the bosonic string the NSR model is much 
richer: it has also fermions (with no tachyon) and a bosonic 
trajectory with intercept 1/2 (with a tachyon on it). It 
also has an amusing (though only partial) degeneracy 
between the bosonic and fermionic spectra. This last point 
will be a central theme of the seminar...

NS R


