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Outline
Description of the hydrogen atom: from Bohr to QED
Free and bound electron g-2

* fine structure constant
* electron mass

Lamb shift and the Rydberg constant
Fine structure constant from other systems
Tests of QED with positronium: lifetime and spectrum
Outlook



QED vs. QCD: historical perspective

QCD: Asymptotic freedom recognized 
with the latest Nobel Prize in physics.

QED:
Experimental foundation:
Lamb shift and the anomalous magnetic moment “g-2”
Lamb and Kusch, Nobel 1955 (50 years ago)

Theoretical framework:
Tomonaga, Schwinger, Feynman, Nobel 1965 (40 years ago)



Hydrogen atom: early (quantum) history
From

 Encyclopaedia
Britannica

Theory with
Coulomb potential

Relativistic theory,
accounts for e- spin.
Spin-orbit partially 
lifts degeneracy:
fine structure

(Model)



Deviations from the Dirac equation predictions:
experiments by Lamb…

Degeneracy of 2S1/2 & 2P1/2: only if exact Coulomb potential

Lamb shift: 2S1/2 lies higher (less strongly bound).
Connection with the running coupling constant:
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Virtual pairs screen the proton charge;
near the proton attraction is stronger;
affects mainly the S-state: -27 MHz

Full theory: electron self-interaction
is crucial → Hans Bethe (+ 1000 MHz)



Deviations from the Dirac-equation predictions:
experiments by Kusch: anomalous magnetic moment

Interaction of the electron’s and nucleus’ magnetic moments:
hyperfine structure (spin-dependent)  

→ test of the electron magnetic moment.

Spinning charged particle: magnetic dipole
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For elementary fermions (electron, muon):
Dirac equation predicts 
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g-2: first results

e

( ) 2theory
2 2

0.00116

ga α
π

−
≡

=

Schwinger (1948)

( )exp 0.001188(22)aKusch & Foley (1948)



The general picture after discoveries 
of the Lamb shift and g-2
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First approximation for the hydrogen atom:
Schrödinger description.  
Corrections: expand the QED Lagrangian in v/c

Quantum effects: loops. 

Expansion parameter:  
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For low-Z systems:
very good convergence

Non-perturbative phenomena
may be important for Z >> 1



Determination of fundamental constants

Fine structure constant (alpha) from g-2
me from the bound-electron g-2
Rydberg constant
Other determinations of alpha



Free-electron g-2

(3.7 ppb)

Challenge: to estimate five-loop contribution “th5”



Bound-electron g-2: theory
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Note: Breit’s calculation predates Schwinger’s by 20 years



Bound-electron g-2: theory

Main remaining uncertainty

e e

From Jentschura and Evers



Bound-electron g-2: measurement

From Werth



Bound-electron g-2: result for me



Hydrogen spectrum: Rydberg constant
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Energy level: Dirac part; Lamb shift; Hyperfine structure

T. Hänsch et al.

F. Biraben
et al, ENS

Two orders of magnitude improvement
1989 -- 1999



Hydrogen spectrum: Lamb shift

Theory vs. experiment (Lamb shift of the ground state):
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Theoretical frontier: two-loops in external field
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Other determinations 
of the fine structure constant

Atom interferometry
Quantum Hall Effect
also: Helium fine structure

Josephson effect



The “kinematic” method of finding alpha

Rydberg constant is extremely well measured,
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We can find alpha if we measure the quotient  
of the Planck constant and the “electron” mass,
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In practice
heavier particles
are better: 
neutrons or atoms.



Atom interferometry

Consider an elastic photon-atom collision:
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Atom interferometry

Wicht, Hensley, Sarajlic, Chu
(Stanford)

1 / 137. 035 999 71 (60)    (4.4 ppb)Preliminary Cesium result:



Quantum Hall Effect
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Determinations of alpha: comparison

From Udem



Positronium and high-precision 
tests of QED

Lifetime

Hyperfine splitting



Positronium: the simplest atom

+e
Two spin states:

singlet (para-Ps)
triplet (ortho-Ps)
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Electron Compton wavelength

Bohr radius

Difficult theory; limited experiments



Positronium decays

ortho-Ps
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The decay rate is, in principle, calculable in QED, 
to any accuracy



History of positronium lifetime measurements:
early and intermediate

Large discrepancy
5-9 sigma (crisis!)



One possible explanation: exotic decay channels
From

 C. Regenfus



The positronium lifetime puzzle: theory
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Theory of positronium decay: refinements

Corrections O(α)

single hard photon loops

Corrections O(α2)

O(k2) corrections to M

Breit hamiltonian → correction to ψ(r=0)

Short-distance two-loop photon exchange

soft

hard

finite
together,
but give

1ln lnm
mα α

=

Para: AC, Melnikov, Yelkhovsky
Ortho: Adkins, Fell, Sapirstein

Is the result huge?  (Potential disaster for meson physics.)  



Theory of positronium decay: refinements

Corrections O(α)

single hard photon loops

Corrections O(α2)

O(k2) corrections to M

Breit hamiltonian → correction to ψ(r=0)

Short-distance two-loop photon exchange

soft

hard

finite
together,
but give

1ln lnm
mα α

=

Para: AC, Melnikov, Yelkhovsky
Ortho: Adkins, Fell, Sapirstein

Is the result huge?  (Potential disaster for meson physics.) No!



The problem was experimental…

T = 7.0404(10)(8) 

T = 7.0396(12)(11) 

From
 A

saiet al.

Asai et al, 2001

Vallery et al, 2003

History updated:



Summary

QED has been fantastically successful.

Description of quantum effects tested 
to 1 part in 108.

A model theory for developing QCD tools: 
effective field theories; 
description of bound states.



What about the rest of the Standard Model?
Muon g-2

Z

hadrons

Units: 10-11

QED 116 584 718 (1) hep-ph/0402206 
& updates

Hadronic
LO 6 934 (64) hep-ph/0308213 

& updates
NLO − 98 (1) hep-ph/0312250
LBL 120 (40) tentative, see 

hep-ph/0312226

Electroweak              154 (3) hep-ph/0212229

Total SM 116 591 828 (75)

Experiment − SM Theory = 252 (96)   (2.6σ deviation)

+SuSy?
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