Particules Élémentaires, Gravitation et Cosmologie
Année 2004-2005

Interactions fortes et chromodynamique quantique I : Aspects perturbatifs

$$
\text { Cours VI: } 5 \text { avril } 2005
$$

1. Summary of previous lecture
2. Polarized DIS: an instructive OPE exercise
3. Small-x physics vs. soft physics
4. Double-scaling limit and $\mathcal{B F} \mathcal{L}$: an introduction

1. Summary of lecture no. 5

- OPE in a generic (renormalizable) QFT:

$$
O_{i}(x) O_{j}(y) \cdots \Sigma_{k} C_{i j}^{k}(z) O_{k}(x) ; z=x-y, x=(x+y) / 2
$$

- Need to renormalize composite operators =>anomalous dimensions, $\mathcal{R G E}$, power violations of naive scaling become logarithmic in $\mathfrak{A F}$ theories ($Q \subset \mathcal{D}$)
- OPE in $e^{+} e^{-. .}>$hadrons (only one operator for leading power of Q^{2})
- OPE in DIS (whole towers of operators @ leading order)
$O_{f}^{(n)}=S\left[\bar{\Psi}_{f \gamma_{\mu}} D_{\left.\mu_{2} \ldots D_{\mu_{n}} \Psi_{f}\right], f=1,2 \ldots N_{f}}\right.$
$\underset{n=2,3, .}{n=1,2 . .} O_{g}^{(n)}=S\left[F_{\alpha \mu_{1}} D_{\mu_{3}} \ldots D_{\mu_{n}} F_{\mu_{2}}^{\alpha}\right]$
=>nth moment of (unpolarized) quark and gluon distribution:
$\mathcal{D G} \mathcal{A} \mathcal{P}$ evolution \Leftrightarrow anomalous dimension (matrix)
- He avy-quarks and the ir (non)-de coupling in (EWT)-QCD
Gavril 2005

2. Polarized DIS: an instructive OPE exercise

Consider the combinations
$\sigma^{ \pm}=\sigma^{\uparrow}(e N \rightarrow e X) \pm \sigma^{\uparrow \uparrow}(e N \rightarrow e X) \equiv \sigma\left(e^{\uparrow} N^{\downarrow} \rightarrow e X\right) \pm \sigma\left(e^{\uparrow} N^{\uparrow} \rightarrow e X\right)$
$\sigma^{(+)}$is the unpolarized x-section discussed in previous lectures. It is described in terms of unpolarized $\mathcal{P D F}: q_{f}\left(x, Q^{2}\right), g\left(x, Q^{2}\right)$ $\sigma^{(-)}$is the polarized x-section described by the polarized $\mathbb{P D F}$:
$\Delta q_{f}\left(x, Q^{2}\right), \Delta g\left(x, Q^{2}\right)$ i.e. $\quad \sigma^{(-)} \sim \frac{1}{2}\left[\frac{4}{9} \Delta u+\frac{1}{9}(\Delta d+\Delta s)\right]$
$\mathcal{N} \mathcal{B}: q$ and q^{*} contribute with same sign
5 avril 2005
G. Veneziano, Cours no. 6

What can OPE say about $\sigma^{(-)}$? Re call:
$J_{\mu}^{(e l)}=\sum_{f} e_{f} \bar{\Psi}_{f} \gamma_{\mu} \Psi_{f} \equiv \sum_{f} e_{f} J_{\mu}^{(f)}$
Last time we discussed the term of minimal d_{k}

$$
\begin{equation*}
J_{\mu}^{(e l)}(x) J_{v}^{(e l)}(\mathrm{O}) \sim \sum_{f} e_{f}^{2} \sigma_{\mu \lambda v}^{\rho} \frac{x^{\lambda}}{\left(x^{2}-i \varepsilon\right)^{2}} J_{\rho}^{(f)} \tag{0}
\end{equation*}
$$

where $\quad \sigma_{\mu \lambda \nu \rho}=\eta_{\mu \lambda} \eta_{\nu \rho}+\eta_{\mu \rho} \eta_{\nu \lambda}-\eta_{\mu \nu} \eta_{\lambda \rho}$
Does not contribute to $\sigma^{(-)}$(actually not even to $\sigma^{(+)}$, one needs $\boldsymbol{v} \mathcal{N}$ scattering). For $\sigma^{(\cdot)}$ the term of minimal d_{κ} is
$J_{\mu}^{(e l)}(x) J_{v}^{(e l)}(0) \sim \sum_{f} e_{f}^{2} \varepsilon_{\mu \nu \lambda}^{\rho} \frac{x^{\lambda}}{\left(x^{2}-i \varepsilon\right)^{2}} J_{5 \rho}^{(f)}(0) ; J_{5 \rho}^{(f)} \equiv \bar{\Psi}_{f} \gamma_{\mu} \gamma_{5} \Psi_{f}$
where $\varepsilon_{\mu \lambda v \rho}$ is the completely antisymmetric tensor These are the only relevant operators of dimension 3: they control the $n=1$ moments ($=$ totalnumber) of pol. PDF's. How?
($\mathcal{N}(\mathcal{B}$: absence of operator associated with $n=1$ moment of $\Delta g!)$

Let us denote the $n=1$ moments of $\Delta q_{f}\left(x, Q^{2}\right), \Delta g\left(x, Q^{2}\right)$ by the same symbols $\Delta q_{f}\left(Q^{2}\right), \Delta g\left(Q^{2}\right)$. One finds the following simple relations between partonic distributions and axial currents ($\mathcal{N} S=$ non-single $t, \mathcal{S}=$ singlet, $\quad s_{\mu}=\bar{N} \gamma_{\mu} \gamma_{5} N$)

$$
2 C_{N S}\left(Q^{2}\right)\langle N| \bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d|N\rangle=(\Delta u-\Delta d) s_{\mu}
$$

$$
2 C_{N S}\left(Q^{2}\right)\langle N| \bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d-2 \bar{s} \gamma_{\mu} \gamma_{5} s|N\rangle=(\Delta u+\Delta d-2 \Delta s) s_{\mu}
$$

$$
2 C_{S}\left(Q^{2}\right)\langle N| \bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d+\bar{s} \gamma_{\mu} \gamma_{5} s|N\rangle_{Q}=(\Delta u+\Delta d+\Delta s)_{Q} s_{\mu}
$$

$C_{X S} \in C_{S} \sim 1$, can be computed as a series expansion in $\alpha\left(Q^{2}\right)<4$. For the $\mathcal{N S}$ currents we need not specify a ren. scale (they have no an. dim.), while for the third we do (it is Q), since the non-conserved (anomalous) singlet current does have a γ ! What can we do with these results?
$\mathcal{A f t e r}$ all we only measure the combination $4 \Delta u+\Delta d+\Delta s$!

A: We can do a lot of interesting physics!
First of all, as we have seen in GS's talk for the unpolarized case, we can combine proton and neutron (deuteron) data and, using is ospin symmetry (which can be fully justified in $Q(\mathcal{D})$, extract the $(\Delta u-\Delta d)$ combination.
\mathcal{N} ot only: we cancheck this against a theoretical prediction since, for once, we do know the matrix element from the neutron beta decay (using is ospin again). This fighly non. trivialcheck is called the Bjorken sum rule and has been verified with quite good accuracy.

$$
\text { One finds }(\Delta u-\Delta d) \sim 1.257
$$

For the second combination things are more difficult. We cannot measure it from experimentally accessible x sections. \mathcal{B} ut we can predict it (à la $\mathcal{B j S} \mathcal{R}$) in terms of fyperon (Σ, Λ) decays provided we use $\mathcal{S L}(3)_{\mathcal{F}}$ (which is reasonably good though not as good as is ospin)

$$
\text { One finds }(\Delta u+\Delta d=2 \Delta s) \sim 0.58
$$

At this point, if we also use the "proton"combination $(4 \Delta u+\Delta d+\Delta s)$, we get a result for the «singlet» combination $(\Delta u+\Delta d+\Delta s)$ and cancheckit against theoretical expectations (prejudices). Here are the two most popular:

1. $\Delta u+\Delta d+\Delta s=\mathcal{I}_{\text {tot }}=1 / 2$ (the «spin-crisis» people)
2. $\Delta u+\Delta d+\Delta s=\Delta u+\Delta d-2 \Delta s \sim 0.58$ (Ellis - I affe, 1974)

The data give instead $\quad(\Delta u+\Delta d+\Delta s)_{10 G e} V^{n} 2<0.3$ (although one needs some extrapolation for small χ).
..the famous "spincrisis"!
Many papers suggested that the situation is similar to the one of the momentum sum rule that lead to the conclusion that about half of the momentum is carried bygluons. Here also (at least) half of the "spin»is missing and people suggested that it is carried by gluons..

A spincrisis?

1. There is a solid momentum sum rule but no spin sum rule!
2. There was no gluonic-spin operator...
3. How can sometfing scale-de pendent be related to $\mathcal{I}=1 / 2$ or to a scale-independent quantity?
The solution to the puzzle is probably much more prosaic and related to a similar problem in hadron spectroscopy.
There are three ne utral pseduscalar mesons, π, η and η '.
The first two are much lighter than the 3 rd.
Their quark content is that of our three currents.
This is the well-known $\mathcal{U l}(1)$ problem whose solution is now clear: it has to do with the fact that the S-axialcurrent is not conserved at the quantum level(" $\mathcal{A B g}$ anomaly + instantons")
The smallness of $\Delta u+\Delta d+\Delta s$ thus gets related to the small nucle on matrix element of QCD's "topologicalcharge».. Moral: hard processes as a window into non perturbative QCD!

3. Small-x vs. soft $Q C D$

$3.1 \mathrm{Small}-x$ DIS \& soft high energy hadron scattering Remember Kinematics, $x=Q^{2} / 2 p Q \sim Q^{2} / s(\gamma * \mathcal{N})$. Limiting case is Q^{2} fixed and $O\left(\Lambda^{2}\right)$ Fence $x \sim \Lambda^{2} / s=>$ Vector-mesondominance

$\mathcal{N} . \mathcal{B} . S$ mall x means Q^{2} going to infinity while Keeping $Q^{2} /$ s fixed and very small: one cannot usually interchange limits!! \mathcal{N} vertheless, Q^{2} can be fixed and large $=>\alpha$ is small... The process $(\rho, \omega, \phi) \mathcal{N} \cdots(\rho, \omega, \phi) \mathcal{N}$ at figf $c . m$. energy s and small t (here $t=0$) can be studied using Regge (et al.'s) theory.

3.2 Regge theory in a nutskell

Analyticity and crossing (two very general principles) tell us that one and the same analytic function $\mathcal{A}(s, t)$ describes various processes $\left(s=\left(p_{a}+p_{b}\right)^{2}, t=\left(p_{a}-p_{c}\right)^{2}\right)$ e.g. (neglecting $\left.m\right)$

Let us start from the $2 n d$ case and perform a partial wave analysis of the scattering amplitude:

$$
A\left(t, \theta_{t}\right)=\sum_{J=0}^{\infty} A_{J}(t) P_{J}\left(\cos \theta_{t}\right) \text { Remember: } \cos \theta_{t}=1+2 s / t
$$

A particle of sping exchanged in the t-clannelgives a pole in t in $\mathcal{A}_{g}(t)$ at $t=m_{g}{ }^{2}$. In 1959 T. Regge discovered that, at le ast in \mathfrak{N} R potential scattering, $\mathcal{A}_{g}(t)$ is an analytic function of g with poles at $g=\alpha(t)$, the so-called Regge trajectory

This expansion converges for small cos θ_{t}.
$Q: c a n$ we use it also for large s, fixed t where it diverges? $\mathcal{A}($ Chew \& Maldelstam): yes, provided we perform an analytic continuation (Sommerfeld-Watson transform). Basic idea:

$$
A(t, s) \sim \int_{C} d J \frac{e^{-i \pi J}}{\sin \pi J} A(J, t) P_{J}(1+2 s / t)
$$

If there are various trajectories the highest one wins! The Regge trajectory finds a ne welcome use at $t \varangle$!

In the case of relevance to $\mathcal{D I S}, t=0$ (opticaltheorem) and the leading trajectories that contribute are of two types:

1. Those that carry the q.n. of $a q q^{*}$ system and have

$$
\alpha(0) \sim 0.5: \mathcal{A}(s, t=0) \sim\left(s / s_{0}\right)^{0.5}
$$

2. Those that carry the q.n. of a gluonic system, i.e. the vacuum q.n. from the point of view of flavour ($\mathcal{N} \mathcal{B}$. all these trajectories correspond to fadrons, i.e. to colour single ts) and have $\alpha(0) \sim 1.0: \mathcal{A}(s, t=0) \sim\left(s / s_{0}\right)^{1.0}$.
3. The latter does not contribute to differences such as (p-n)

It is thus very natural to associate the first kind of $\mathcal{R P}$ to valence quark distributions and the second to gluon or "sea" distributions. This can also be illustrated through so-called duality diagrams.

$$
\mathcal{N} \cdot \mathcal{B} . \mathcal{A} \text { famous bound }(\mathcal{F r o i s s a r t}) \text {, imposes: } \mathcal{A}(s, t=0)<s(\log s)^{2}
$$

Duality diagrams

Regge be haviour in string theory (but trajectories are wrong)

4. Double-scaling limit er BFXL: an introduction

Let us go now a little bit more into the kinematics of DIS. It is most convenient to use a log-log plot with Q^{2} / Λ^{2} on one axis and $1 / x$ on the other

We have
discussed at length $\mathcal{D G L A P}$ and very shortly Regge. What about the regimes in between?

Most naive guess: since, for fixed $Q^{2}, \chi \sim 1 / s$:

$$
\left(s / s_{0}\right)^{\alpha(0)}<->x^{-\alpha(0)}
$$

This would imply $q_{V}(x) \sim x^{-0.5}, q_{S}(x) \sim g(x) \sim x^{-1.0}$
We can ask whether such a small-x befaviour, when imposed at some "initial" $Q_{0}{ }^{2}$ is preserved by $\mathcal{D G} \mathcal{L A P}$ evolution

$$
Q^{2} \frac{\partial}{\partial Q^{2}} F_{h}^{i}\left(x, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} d z \frac{P_{j \rightarrow i}(z)}{z} F_{h}^{j}\left(x / z, Q^{2}\right)
$$

Remember that the parton-splitting functions can be singular at $z=0 \quad(z=1$ regularized by virtual effects). The le ading small- x beflaviour originates from such singularities.
$\mathcal{A} t$ le ading-order $q->g$ and $g->g$ splitting functions have c^{2} / z singularity. If we keep just those we get a very simple equation for (a suitable combination of) $f\left(x, Q^{2}\right)=\chi \mathcal{F}\left(x, Q^{2}\right)$
$Q^{2} \frac{\partial}{\partial Q^{2}} f\left(Y, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \int_{0}^{Y} d Y^{\prime} c^{2} f\left(Y^{\prime}, Q^{2}\right), Y \equiv \log (1 / x)$
\mathcal{Y} is the so-called rapidity.
Let us also introduce a «time» $T=\int_{Q_{0}^{2}}^{Q^{2}} d q^{2} \frac{\alpha\left(q^{2}\right)}{2 \pi q^{2}} \sim \log \frac{\log Q^{2} / \lambda^{2}}{\log Q_{0}^{2} / \lambda^{2}}$ variable \mathcal{T} by
$==>\quad \frac{\partial}{\partial T} f(Y, T)=c^{2} \int_{0}^{Y} d Y^{\prime} f\left(Y^{\prime}, T\right)^{\text {i.e } .}$

$$
\frac{\partial^{2}}{\partial T \partial Y} f(Y, T)=c^{2} f(Y, T) \quad \text { which is easily solved by }
$$

$$
f(Y, T)=\int_{-i \infty}^{+i \infty} d j e^{j Y+\frac{c^{2}}{j} T} \phi(j) \sim \exp (2 c \sqrt{T Y})
$$

where we have used a saddle point approx. Going back to \mathcal{F} :
$x F\left(x, Q^{2}\right)=\exp \left(2 \tilde{c} \sqrt{\log (1 / x) \log \frac{\log Q^{2} / \Lambda^{2}}{\log Q_{0}^{2} / \Lambda^{2}}}\right) ; \tilde{c} \equiv \frac{c}{\sqrt{2 \pi \beta_{0}}}$

$$
F\left(x, Q^{2}\right)=\frac{1}{x} \exp \left(2 \widetilde{c} \sqrt{\log (1 / x) \log \frac{\log Q^{2} / \Lambda^{2}}{\log Q_{0}^{2} / \Lambda^{2}}}\right)
$$

This is the so-called $\mathcal{D L \mathcal { A }}$ (double-leading-log-approximation)
formula showing that, ingeneral, a $1 / \chi$ befiaviour gets modified by the evolution. In fact this formula, taken literally, gives a small-x befaviour that is more singular than $1 / x(\log x)^{n}$ but less than $(1 / x)^{1+\varepsilon}$ It is not clear up to where in our log-log plane this result should be trusted, in particular one should worry about higher order corrections to the splitting functions:
One finds that, to $(n+1)$ order in $\alpha, z \mathcal{P}(z) \sim(\alpha \log (1 / z))^{n}$
Therefore we cannot stop at leading order if $\alpha\left(Q^{2}\right) \log (1 / x) \sim 1$,
i.e. $\log \left(s / Q^{2}\right) \sim K \log \left(Q^{2} / \Lambda^{2}\right)$. We need Q^{2} to grow as some
(possibly small) power of s. Here the DLLA result looks compatible with the data ("double asymptotic scaling ")

When $\alpha\left(Q^{2}\right) \log (1 / \chi)=O(1)$ one would guess that a better approximation is to resum all terms of the type $(\alpha \log (1 / z))^{n}$

This is the newapproximation that leads to the $\mathcal{B F}$ KL (Balitsky-Fadin-Kuraev-Lipatov) equation and to its solution, an even more singular befaviour in x,
$(1 / \chi)^{1+\varepsilon}$ with a rather large ε and thus even more incompatible with the Froissart Gound.
$Q_{1}: \mathcal{H a v e}$ we been too bold in pushing $p Q C D$?
$Q_{2}:$ Or simply are there new perturbative phenomena that come into play as we move towards smaller and smaller χ ?

Today's seminar may provide some answer to these crucial questions which are at the edge of our present understanding of $p Q C D$!

