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The Standard Model

Three replicas of a family composed 
of two weak isospin doublets, one 
of leptons and one of quarks

The three families are roughly 
ordered with increasing mass. 
Because of this, of course, we 
started discovering them from the 
first (the common matter 
constituents, electrons, protons and 
neutrons) onwards.

In QCD, however, ``heavy quark’’ 
has a very specific meaning, which 
we shall detail later on.

In particular, we shall concentrate on 
the charm, bottom and top quarks



Murray Gell-Mann

“Three quarks for Muster Mark ”
J. Joyce, Finnegan’s Wake

In the beginning, it was just SU(3)flavour: Gell-Mann and the `Eightfold way’

3⊗ 3̄= 8⊕1

Only three almost-degenerate light quarks, 
forming the observed mesons and baryons

3⊗3⊗3= 10⊕8⊕8⊕1

No need for further (heavier) quarks at this point: the three light 
ones were properly accounting for the observed hadron spectra



Enter GIM, and electroweak interactions
In 1970 Glashow, Iliopoulos and Maiani postulated he existence of a fourth quark, 
slightly heavier than the light ones, and called it charm

Purpose: suppress unobserved strangeness-violating Flavour Changing Neutral 
Currents (FCNCs) and restore lepton-hadron symmetry

to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635

Three quarks: 
neutral current

with dC = d cos!C + ssin!C

This generates the strangeness-changing term

d̄CdC = d̄d cos
2 !C + s̄ssin

2 !C + d̄ssin!C cos!C + s̄d sin!C cos!C

which is not observed:

BR(K0L → µ+µ−)# 7×10−9

BR(K+ → µ+!µ)# .635
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Estimate: mass ~ 2 GeV

Four quarks and lepton-hadron symmetry imply

with 

(
dC
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)
=
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d
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)
The symmetry eliminates the strangeness-
changing terms bit. However, experimental 
data show that, while heavily suppressed, they 
are still present.

Hence, the symmetry cannot be exact. 
The charm must be slightly heavier than u,d,s
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The discovery, and the surprise

to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635

In November 1974 a HUGE resonance with EXTREMELY NARROW WIDTH
was simultaneously observed  in      collisions at BNL and           at SLAC
[Phys. Rev. Lett. 33 , 1406 (1974),    Phys. Rev. Lett. 33 , 1404 (1974)]

M ! 3.1 GeV !h ! 70 keV !l ! 3 keV

[Appelquist, Politzer, PRL 34]

[De Rujula, Glashow PRL 34]

This was soon interpreted as a charm-anticharm 
bound state, a strong-interaction analogue of an 
ortho-positronium state

The `November revolution’

pp̄ e
+
e
−

The particle will then take the modern name of J/ψ



Why a surprise

to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635

Hadronic resonances are normally LARGE, since they decay by strong interaction 
and have therefore very short lifetime:
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!" ! 150 MeV !" ! 8.5 MeV !" ! 4.3 MeV
How could the new resonance have a width a factor of 100/1000 smaller, and yet 
be a strongly interacting particle?

R≡ !(e+e− → hadrons)
!(e+e− → µ+µ−)

!J/" ! 0.1 MeV

Recall Heisenberg principle:
Γ corresponds to the 
uncertainty on the mass 
(hence energy) of the particle



Asymptotic Freedom

to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635
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d lnµ2

= "(!S)

!("S) =−b0(1+b1"S+b2"
2

S+ · · ·)

b0 =
33−2n f
12!

> 0 for n f < 16

The solution of the Renormalization 
Group Equation gives (leading order):

!S(µ2) =
!S(µ20)

1+b0!S(µ20) log(µ2/µ
2
0)

which can also be rewritten as

!S(µ2) =
1

b0 log(µ2/"2)
where "! 200 MeV



to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635
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The J/ψ width
If J/ψ is produced in the interaction of an electron and a positron via a photon it must 

therefore have the same quantum numbers as the photon: JP = 1-

If we assume that its decay into hadrons 
goes via gluons, the Landau-Yang theorem 
(a vector particle cannot decay into two 
vector states) implies there must be at least 
three of them in the final state

J/ψ }hadrons

We write the decay width as:

Probability of finding the 
two quarks at the same point

annihilation probability at rest

We now need the tools to perform the calculations of the two terms.
We shall use a Coulomb approximation for the first term and the QCD Feynman rules 
for the second 

!(3S1→ 3 gluons) = |R(0)|2|M(qq̄→ 3 gluons)|2



to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635
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The J/ψ width

Coulomb potential:

Solving the Schroedinger equation we find

The QCD probability for annihilation 
into 3 gluons will also be proportional to 
the cube of the strong coupling:

V (r)∼−4
3

!S

r

|R(0)|2 =
4

(Bohr radius)3
= 4

(
4

3
!S

)3(
m

2

)3

|M(qq̄→ 3 gluons)|2 =
!3S
m2

(
5

18

)
4("2−9)
9"

Colour factors

Finally: !(3S1→ 3 gluons) " #6
S

The strong coupling runs with the scale. At what scale should I take it?

!(Q,g,µ) = !(Q, ḡ(Q),Q)

!(3S1→ 3 gluons) " [#S(4m2)]6so that

In 1974, however, we had no measurement for the strong coupling at a scale around 3 GeV. 
We did not even know if such a perturbative coupling existed!

The renormalization group fixes it:



to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635
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The J/ψ width
Two options for checking the consistency of the picture

1. - Try to rescale a lower energy decay width

!("→ 3#)" 600 keV
Asymptotic freedom scales this to 

From one can extract !S((1 GeV)2)! 0.53
!S((3 GeV)2)! 0.29

!(J/"→ hadrons) =
3

2

MJ/"

M#

(
$S(M2

J/")

$S(M2

#)

)6

!(#→ 3%)" 73 keV

2. - Use leptonic width to eliminate wavefunction and extract value of strong coupling

From !(J/"→ leptons) = |R(0)|2|M(qq̄→ e+e−)|2 =
1

m2

(
2

3
#em

)2
|R(0)|2 # 3 keV

and 

we get 

!(J/"→ leptons)
!(J/"→ hadrons)

=
18#$2em

5(#2−9)$3
S

# 0.04

!S((3 GeV)2)! 0.26

Good consistency between strong coupling values. Good estimate of hadronic width.

OK!

OK!



Heavy Quarkonium Numerology

to BR(K0L→ µ+µ−)# 7×10−9BR(K+ → µ+
µ )# .635
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Is charmonium really a Coulomb bound state? 
How can a hadronic system not be (much) sensitive to long distance effects?

Obvious answer: it’s a small system!
NB. Proton radius ~ 1 fm ~ 1/(200 MeV) ~ 1/Λ

Two masses m orbiting each other + 
Heisenberg uncertainty principle:

r ∼ 1

2p
∼ 1

2

1

(m/2)v
=

1

mv

To estimate v, consider the Virial Theorem

〈T 〉 = −1
2
〈V 〉

and the energy of the first level E1 =−1
2

m

2

(
4

3
!S

)2
(
m

2

)
v
2 = 2〈T 〉 = −2E1 =

m

2

(
4

3
!S

)2
==>

==> v! 4

3
!S((1/mv)2) ==> v! 0.5c

and consequently

r ! 1

750 MeV
! 1

3!
! 0.3 fm

QCD potential: Coulomb + linear
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Figure 3: Comparison of VC(r)+C r corresponding to the cases (a),(b),(c) (solid lines) and the lattice
data [20]: Takahashi et al. (!), Necco/Sommer (•), and JLQCD (!).

where γ(x, τ) ≡ ∫ τ
0 dt tx−1 e−t represents the incomplete gamma function; Λ1-loop

MS
and Λ2-loop

MS

denote the Lambda parameters in the MS scheme; δ = β1/β2
0 . In the case (c), C can be

expressed in terms of confluent hypergeometric functions except for the coefficient of a2, while
the coefficient of a2 can be expressed in terms of generalized confluent hypergeometic functions.
Since, however, the expression is lengthy and not very illuminating, we do not present it here.

The asymptotic behaviors of VC(r) for r → 0 are same as those of VQCD(r) in the respective
cases, as determined by RG equations. The asymptotic behaviors of VC(r) for r → ∞ are given
by −4πCF /(β0r) [the first term of eq. (24)] in all the cases.

As for B(N) and D(r, N), we have not obtained simple expressions in the cases (b),(c),
since analytic treatments are more difficult than in the case (a): we have not separated the
divergent parts as N → ∞ nor obtained the asymptotic forms for r → 0, r → ∞. Based on
some analytic examinations, together with numerical examinations for N ≤ 30, we conjecture
that B(N) and D(r, N) in the cases (b),(c) have behaviors similar to those in the case (a).

Let us compare the “Coulomb–plus–linear” potential, VC(r) + C r, for the three cases when
the number of quark flavors is zero. We also compare them with lattice calculations of the
QCD potential in the quenched approximation. See Fig. 3. We take the input parameter
for VC(r) + C r as αS(Q) = 0.2, which corresponds to Λ1-loop

MS
/Q = 0.057, Λ2-loop

MS
/Q = 0.13,

Λ3-loop
MS

/Q = 0.12.‡ Then, the scale for each lattice data set is fixed using the central value of the

relation [18] Λ3-loop
MS

r0 = 0.602(48), where r0 is the Sommer scale. An arbitrary r-independent
constant has been added to each potential and each lattice data set to facilitate the comparison.
We see that VC(r) + C r for (a),(b),(c) agree well at small distances, whereas at large distances
the potential becomes steeper as αS(q) accelerates in the IR region, i.e. C(a) < C(b) < C(c). This
feature is in accordance with the qualitative understanding within perturbative QCD [10,2,3].

‡As well-known, when the strong coupling constant at some large scale, e.g. αS(mb), is fixed, the values of

Λ1-loop
MS

, Λ2-loop
MS

, and Λ3-loop
MS

differ substantially. As a result, if we take a common value of ΛMS as the input

parameter, VC(r) + C r for (a),(b),(c) differ significantly at small distances, where the predictions are supposed
to be more accurate.

8

J/ψ

V (r)∼−4
3

!S(1/r2)
r

+Kr

NB. Tight bound system below 
threshold for DDbar decay 
(on the contrary, phi -> KKbar)
=> further explanation for small width



The third family
In 1977 a system of resonances similar to the charmonium was observed at M ~ 10 GeV.
This was quickly interpreted as a bound state of bottom-antibottom, a fifth quark with a 
mass ~ 5 GeV and charge -1/3

Electroweak now requires a sixth quark to complete the third family, the top quark.
Shall we see a toponium and, in general, hadrons composed of a top and a light quark?

Not necessarily: hadronization takes a certain time, namely the time for gluons to 
propagate the distance of a typical hadron radius R ~ 1 fm:

thadr ∼ R/c∼ 1/!∼ 10−24 s
On the other hand, as member of a weak isospin doublet, a heavy top can decay weakly:

t→ bW
+ tdecay =

1

!bW
! 1/

(
GFm

3
t

8"
√
2

)
∼ 1/(GFm

3
t )∼

M
2
W

m
3
t

=
1

#

M
2
W
#

m
3
t

so that 
NB. Neglected pretty 
big numerical factors. 
Real limit larger.

A heavy top quark  with mass larger than the W boson will therefore decay before hadronizing

tdecay < thadr if mt > (M2
W!)1/3 ! 10 GeV



Heavy quarks are different
The time a coloured particle takes to hadronize is that taken by the colour field to travel
a distance of the order of the typical hadron size: t’ ~ R ~ 1/Λ. 

Consider now ‘shaking’ (i.e. accelerating) a quark. The regeneration time of a gluon field 
of momentum k around it is given by

tregeng (k) =
k‖
k2⊥

For gluons such that k⊥ ∼ !, k‖ ∼ E we have tregeng (k)! thadrq

A heavy quark will therefore 
behave like a light one only if

thadrQ > tregeng (k)⇔ E

m

1

!
>
k‖
k2⊥
$ 1

"

1

!
⇔">

m

E
≡"0

Gluon transverse momenta leading to longer regeneration times will instead be suppressed
(as the heavy quark is not there any more!!)

is called the ‘dead cone’ (no radiation from the heavy
quark in a collinear region close to the quark)!<!0

thadrq = t ′!= R
E

"
= ER2 =

E

"2
light quarks

thadrQ = t ′!= R
E

m
heavy quarks

Boosting to the lab frame we find



The ‘Dead Cone’ in perturbative QCD
Consider gluon emission off a heavy quark using perturbation theory:

D
real(x,k2⊥,m2) =

CF!S

2"

[
1+ x

2

1− x
1

k2⊥+(1− x)2m2 − x(1− x) 2m
2

(k2⊥+(1− x)2m2)2
]

The presence of the heavy quark mass suppresses 
instead the radiation at small transverse momenta 
and allows the integration down to zero

In the massless case (m=0) we have a non-integrable 
collinear singularity:Z

0

D(x,k2⊥)dk2⊥ =
1+ x

2

1− x
Z
0

dk
2

⊥
k
2

⊥
= !

=> We can calculate in pQCD heavy quark total cross sections and momentum distributions



 Total cross sections

A case study: heavy quark 
production in pp collisions

_
Parton distribution functions

Leading Order diagrams,
proportional to !2S

Next-to-Leading Order diagrams, 
proportional to      , starts 
compensating scale dep. of PDFs

!3
S

Virtual 
corrections

Real 
corrections



A glimpse of the LO result

NB: no heavy quarks among the initial state partons. 
They are only produced by QCD dynamics via gluon splitting



Theoretical uncertainties in a NLO (or higher order) QCD prediction can come from:

1. Imperfect knowledge of needed external inputs (i.e. Parton Distribution Functions, strong 
coupling value, heavy quark mass..)

2. Internal shortcomings, i.e. necessarily approximated PERTURBATIVE calculation. This is 
reflected in the dependence of the PHYSICAL cross section on the UNPHYSICAL 
renormalization and factorization scales

Would compensate exactly only 
in a FULL calculation

Theoretical uncertainties



“Typical” behaviour of a cross-section w.r.t. scale variations:

NLO

LO

µ/mtop

! (pb)

}
“Reasonable” scale variation

}} Uncertainty

=> we want to go to N....LO to decrease the theoretical uncertainties



Selected phenomenological results:
top production 

m ~ 175 GeV

!pp̄(
√
S" 2 TeV)" 6 pb

+0.71
6.70 -0.88 pb



The prediction of the top mass

Sudden improvement in accuracy and central value after direct discovery perhaps a little 
suspicious, but large mass (m > 100 GeV) well predicted from one-loop analysis of 
electroweak LEP data



Momentum distributions

Consider the simplest case of single particle inclusive distribution

e+ + e− →V (Q)→ h(p)+X

x= xE =
Eh

Ebeam

to 1
!
d!
dx

= "(1−x)+ (Q2)
2#

{
CF+CF

[
ln

Q2

m2

(
1+x2
1−x

)
+

+2 1+x
2

1−x logx−
(
ln(1−x)
1−x

)
+

(1+x2)+ 1
2 ( 1

1−x )+(x2−6x−2)+ ( 23#2− 5
2 )"(1−x)]}+ O

(
m
Q

)

If the quark is heavy this observable is collinear safe: I can calculate it in pQCD
1

!

d!

dx
= "(1− x)+

(Q2)
2#

{
CF +CF

[
ln
Q2

m2

(
1+ x2

1− x
)

+
+2

1+ x2

1− x logx−
(
ln(1− x)
1− x

)
+
(1+ x2)+

1

2

(
1

1− x
)

+
(x2−6x−2)+

(
2

3
#2− 5

2

)
"(1− x)

]}
+ O

(
m

Q

)

Finite, but hardly accurate 
description of nature!

B mesons at LEP

Two issues:

1. Large logarithms spoil converge of pQCD
2. Non-perturbative corrections: we observe hadrons, 
    not quarks



Resummation

Perturbative techniques can take care of resumming large logarithmic terms which appear in 
perturbative expansion:

log
Q2

m2(
1

1− x
)

+
soft gluon logs -> Sudakov resummation

Improved result is however still not up 
to the task:

collinear logs -> DGLAP evolution eqs. (same as for PDFs)

Still missing are the 
non-perturbative contributions



Non-perturbative contributions

We calculate quarks, but we observe hadrons.
The transition from the former to the latter cannot be calculated from first principles in QCD, 
but it can of course be modeled (and QCD can still give information on its behaviour)

In a very simple model, hadronization causes a degradation of the quark momentum:

Heavy quark momentum:

Light quark momentum:

P= mvQ

q= mvq

For the binding we need 

This leads to P= zP+q mv= zmv+!v

vQ ∼ vq ≡ v

and therefore 〈z〉 # 1− !

m

Hence, hadronization effects scale linearly with the heavy quark mass.
This power correction is also predicted by more refined analyses in QCD

NB. This is a parametrically small correction: a heavy quark is not easily slowed down when dragging a light one out of the 
vacuum. Still, its consequences are evidently clearly measurable.



Test of non-perturbative scaling

LEP B meson data translated to Mellin space:

fN ≡
Z
1

0

xN−1 f (x) dx= 〈xN−1〉

In this space convolutions become products

Hence

〈x〉expt = 〈x〉pQCD〈x〉np

From the measurements at LEP: 

From resummed pQCD:

Their ratio:

〈x〉pQCD # 0.76
〈x〉expt # 0.71

〈x〉expt
〈x〉pQCD = 0.93∼ 1− !

m



Summary

- Heavy quarks (charm, bottom, top) are special because m > Λ

- Three issues facilitate the calculation of heavy quark-related processes in QCD:

- The large mass parameter can be used to construct effective theories which 
  facilitate the calculations. Examples (not mentioned in the seminar) are

- (Almost) predictive power at the few per cent level in a (in principle) strongly
  coupled theory. Not bad as a challenge/achievement

  - Heavy Quark Effective Theory (HQET), expansion in 1/m
  - Non Relativistic QCD (NRQCD), expansion in the small velocity v

  - the coupling is small at larger scales
  - collinear divergences are screened by the large quark mass
  - non-perturbative corrections are power suppressed


