Particules Élémentaires, Gravitation et Cosmologie Année 2004-2005
Interactions fortes et chromodynamique quantique I: Aspects perturbatifs

Cours IV: 22 mars 2005

1. Summary of previous lecture
2. Inclusive cross sections in $e^{+} e^{-}-->$hadrons
3. Deep-inelastic lepton-hadron scattering
4. The QCD parton model

1. Short summary of lecture no. 3

- Renormalization of $S_{\text {eff }}$ via introduction of an arbitrary scale μ. UV-finiteness \& μ independence of $S_{\text {eff }} \Rightarrow>C S-R G$ equations
Predictive power of AF strongly limited by the possible appearence of IR\&CO-singularities => classication of hard QCD processes: ICS, IS and unsafe
Examples of ICS quantities in $e^{+} e^{--->}$hadrons:

$$
\begin{aligned}
& \sigma_{T}, \sigma_{2 \text { jets }}(\varepsilon, \delta), \sigma_{3 j e t s}(\varepsilon, \delta) \sim \sigma_{T}-\sigma_{2 \text { jets }}(\varepsilon, \delta) \\
& \sigma_{T} \sim \sigma_{\text {tree }}\left(e^{+} e^{--->} q q^{\star}\right) \text { but not } \sim \sigma\left(e^{+} e^{--->} q q^{\star}\right)
\end{aligned}
$$

2. Inclusive cross sections in $e^{+} e^{--->}$hadrons

- The reason why $\sigma\left(e^{+} e^{--->} q q^{*}\right)$ suffers from both IR and $C O$ divergences is clear: any emission, whether soft or collinear, takes us out of the specific channel we are considering! This is instead not the case for σ_{T} or for $\sigma_{2 j e t s}$
- In the early 70s, Feynman introduced in HEP the concept of inclusive cross-sections something lying midway between the total x-section and an «exclusive» one, where a single channel is picked up. The simplest example is the so-called one-particle inclusive cross-section, defined as:

$$
\frac{d \sigma(i \rightarrow a)}{d^{3} p_{a} / E_{a}}=\sum_{X} \frac{d \sigma\left(i \rightarrow a\left(\vec{p}_{a}\right)+X\right)}{d^{3} p_{a} / E_{a}}
$$

In pictures:

Lot of work done in the 70s on inclusive x-sections in soft \dagger hadronic physics via Regge-Mueller theory. Here we want to consider the same object but in a hard process e.g.

Q\&A

Q: Can we compute such an object in PQCD?
A: Obviously not! PQCD does not even know what h is! We cannot even start the calculation...
Q: Can we compute instead in PQCD an inclusive x-section at the parton level e.g. $\frac{d \sigma\left(e^{+} e^{-} \rightarrow q+X\right)}{d^{3} k_{q} / E_{q}}$
A: Better not, otherwise we would conclude that quarks can be produced in $e^{+} e^{-}$collisions! But let's not give up and try after having fixed the fraction ($x / 2$) of the initial c.m. energy carried by the outgoing quark (rather than its 3-momentum)
At lowest order the answer is clear since $\sigma_{T}=\sigma_{q q^{*}}$
$\frac{d \sigma}{d x}=\delta(x-1) \sigma_{T}$
(Note: this has to be multiplied by 2 if we add q and q^{\star}. In general, integral of inclusive does not give σ_{T})

Let us consider now the first non-trivial (one loop) correction. We get two kinds of contributions (when taking the $|. .|^{2}$)

1. A virtual one corresponding to interference diagrams:

2. A real one corresponding to the emission of a gluon

The first diagram gives again a contribution proportional to $\delta(x-1)$, and negative, while the second is positive and gives a less trivial x-dependence

Separately, both diagrams are IR-divergent. However, if we measure x, such a quantity (unlike p-itself) is not affected, at high E, by the emission of a soft gluon (one with momentum $\ll E)$. Hence we expect our cross section to be free of IRproblems. On the other hand, the emission of a collinear hard gluon (i.e. carrying itself a fraction z of E) does affect x. Thus, our x-section should belong to the 2nd class in our classification: IR- but not CO-safe. The explicit calculation confirms this by giving, for tree + one-loop,

where the « parton splitting » function $P(z)$ is:

$$
\begin{gathered}
\mathrm{P}(\mathrm{z})=\mathrm{P}_{\mathrm{r}}(\mathrm{z})+\mathrm{P}_{\mathrm{v}}(\mathrm{z}) \text { with } \\
P_{r}(z)=C_{F} \frac{1+z^{2}}{1-z}, C_{F}=\frac{N^{2}-1}{2 N} \rightarrow \frac{4}{3} \\
\text { and } \\
P_{v}(z)=-\delta(z-1) \int_{0}^{1} d z^{\prime} P_{r}\left(z^{\prime}\right) \Rightarrow \int P(z) f(z)=\int P_{r}(z)[f(z)-f(1)] \\
\text { Note that: } \int P(z) z^{n} \leq 0(n \geq 0)
\end{gathered}
$$

Note: to describe a more general situation we shall need a matrix $P_{j}(z)(i, j=q, g)$ of splitting functions (see below). Here $i=j=q$ in order to make things as simple as possible...

The above structure generalizes to higher orders following the picture:
N.B. Both k_{i}^{2} and x_{i} decrease as we go from γ^{*} to final quark
and the equation:

$$
\begin{aligned}
\frac{1}{\sigma_{T}} \frac{d \sigma}{d x} & =\delta(x-1)+\sum_{n=1}^{\infty} \int_{\mu^{2}}^{Q^{2}} \frac{d k_{1}^{2}}{k_{1}^{2}} \frac{\alpha\left(k_{1}^{2}\right)}{2 \pi} \int_{0}^{1} d z_{1} P\left(z_{1}\right) \int_{\mu^{2}}^{k_{1}^{2}} \frac{d k_{2}^{2}}{k_{2}^{2}} \frac{\alpha\left(k_{2}^{2}\right)}{2 \pi} \int_{0}^{1} d z_{2} P\left(z_{2}\right) \ldots \\
& \ldots \int_{\mu^{2}}^{k_{n-1}^{2}} \frac{d k_{n}^{2}}{k_{n}^{2}} \frac{\alpha\left(k_{n}^{2}\right)}{2 \pi} \int_{0}^{1} d z_{n} P\left(z_{n}\right) \delta\left(x-\Pi_{1}^{n} z_{i}\right)
\end{aligned}
$$

A few comments:

1. We cannot let $\mu^{2} \rightarrow 0$ without generating infinities (this means that the quark x-section per se is not calculable). We have to keep the quark « off-shell»
2. We can differentiate the single quark distribution $\rho_{q}\left(x, Q^{2}, \mu^{2}\right)=\sigma_{T}^{-1} d \sigma / d x$ w.r.t. $\log Q^{2}$ and obtain the evolution equation:

$$
Q^{2} \frac{\partial}{\partial Q^{2}} \rho\left(x, Q^{2}, \mu^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} d z \frac{P(z)}{z} \rho\left(x / z, Q^{2}, \mu^{2}\right)
$$

3. This equation becomes an ODE for the «moments» of ρ_{q}

$$
\rho_{n}\left(Q^{2}, \mu^{2}\right)=\int_{0}^{1} d x x^{n-1} \rho\left(x, Q^{2}, \mu^{2}\right)
$$

$$
\begin{gathered}
Q^{2} \frac{\partial}{\partial Q^{2}} \rho_{n}\left(Q^{2}, \mu^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} P_{n} \rho_{n}\left(Q^{2}, \mu^{2}\right) \quad \text { where } \\
P_{n}=\int_{0}^{1} d z z^{n-1} P(z) \quad \text { The solution is simply: } \\
\rho_{n}\left(Q^{2}, \mu^{2}\right)=\exp \left(\int_{\mu^{2}}^{Q^{2}} \frac{d k^{2}}{k^{2}} \gamma_{n}\left(k^{2}\right)\right) \quad \gamma_{n}\left(k^{2}\right)=\frac{\alpha\left(k^{2}\right)}{2 \pi} P_{n}
\end{gathered}
$$

Note that, in general, violations of scaling are logarithmic since the above integrals grow as $\left(P_{n} / 2 \pi \beta_{0}\right) \log \left(\log \left(Q^{2}\right)\right)$... Since $P_{1}=0$ we find immediately that $\rho_{1}=1$ corresponding to conservation of the «parent quark». On the other hand, we saw that $P_{n}<0$ for $n>1$, corresponding to softening of spectrum for increasing Q^{2}.

- Finally, we have to discuss how to go from inclusive (offshell) quark distributions to (on-shell) hadron distributions.
- For this we need a «mild» assumption, i.e. that a quark w/ some $x=x_{q}$ and off-shellness μ^{2} produces a hadron h with its $x=x_{h}$ with some (uncalculable since non-perturbative) probability:
This gives:

$$
D_{q}^{h}\left(x_{q}, x_{h} ; \mu^{2}\right)=D_{q}^{h}\left(x_{h} / x_{q} ; \mu^{2}\right)
$$

$\rho_{h}\left(x_{h}, Q^{2}\right) \equiv \frac{1}{\sigma_{T}} \frac{d \sigma}{d x_{h}}\left(x_{h}, Q^{2}\right)=\int_{x_{h}}^{1} d x_{q} \rho_{q}\left(x_{q}, Q^{2}, \mu^{2}\right) D_{q}^{h}\left(x_{h} / x_{q} ; \mu^{2}\right)$
where we have «factorized» the experimental x-section into a calculable Q-dependent part and a non-perturbative but Q-independent one. The μ^{2}-dependence cancels between them! It follows from here that $\rho_{h}\left(x, Q^{2}\right)$ obeys exactly the same evolution equation as $\rho_{q}\left(x, Q^{2}, \mu^{2}\right)$ (same for their moments)
$Q^{2} \frac{\partial}{\partial Q^{2}} \rho_{h}\left(x, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} d z \frac{P(z)}{z} \rho_{h}\left(x / z, Q^{2}\right)$
This is the so-called DGLAP equation (for fragmentation f.ns) whose basis is the factorization of short and long-distance physics

- Above procedure can be generalized to multiparticle distributions via the so-called jet calculus. These rules, once
 improved to take coherence effects into account, form the staring point of QCD-based MC simulations of jet branching and hadronization

3. Deep-inelastic lepton-hadron scattering

- It is relatively easy, at this point, to turn a few lines around and consider, instead of $e^{+} e^{--->}$hadrons, deep-inelastic lepton-hadron scattering e.g. $e^{-} p \rightarrow e^{-}+X$ (going agains \dagger historical order...)

Unfortunately we do not have the DIS analog of $\sigma_{\mathrm{T}}\left(e^{+} e^{--->}\right.$hadrons $)$: we would have to sum over the targets!

This process too has only coll. singularities and is given by very similar diagrams (restricting to « valence» quarks)

The evolution equation for F looks very similar to that of the fragmentation function D

$$
Q^{2} \frac{\partial}{\partial Q^{2}} F\left(x, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} d z \frac{P(z)}{z} F\left(x / z, Q^{2}\right)
$$

i.e. once more the DGLAP equation

We may again consider moments and obtain:

$$
F_{n}\left(Q^{2}\right)=\int_{0}^{1} x^{n-1} F\left(x, Q^{2}\right)
$$

$$
\begin{aligned}
Q^{2} \frac{\partial}{\partial Q^{2}} F_{n}\left(Q^{2}\right) & =\frac{\alpha\left(Q^{2}\right)}{2 \pi} P_{n} F_{n}\left(Q^{2}\right) \equiv \gamma_{n}\left(Q^{2}\right) F_{n}\left(Q^{2}\right) \\
F_{n}\left(Q^{2}\right) & =\exp \left(\int_{\mu^{2}}^{Q^{2}} \frac{d k^{2}}{k^{2}} \gamma_{n}\left(k^{2}\right)\right) F_{n}\left(\mu^{2}\right)
\end{aligned}
$$

4. The QCD parton model

4.1 Generalization to parton-splitting matrix
$P_{q \rightarrow q}(z)=\frac{4}{3}\left(\frac{1+z^{2}}{1-z}\right)_{+} P_{q \rightarrow g}(z)=\frac{4}{3} \frac{1+(1-z)^{2}}{z}$
$P_{g \rightarrow q}(z)=\frac{N_{f}}{2}\left[z^{2}+(1-z)^{2}\right] \begin{aligned} & \text { N.B. Singularities at } \mathrm{z}=0 \\ & \text { are not regularized, but... }\end{aligned}$
$P_{g \rightarrow g}(z)=6\left[\frac{1-z}{z}+\left(\frac{z}{1-z}\right)_{+}+z(1-z)\right]+2 \pi \beta_{0} \delta(1-z)$
where the index + indicates subtraction of a virtual term prop. to $\delta(z-1)$. The evolution equation now takes the matrix form:
$Q^{2} \frac{\partial}{\partial Q^{2}} F_{h}^{i}\left(x, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} d z \frac{P_{j \rightarrow i}(z)}{z} F_{h}^{j}\left(x / z, Q^{2}\right)$
$Q^{2} \frac{\partial}{\partial Q^{2}} F_{h}^{i}\left(x, Q^{2}\right)=\frac{\alpha\left(Q^{2}\right)}{2 \pi} \sum_{j} \int_{x}^{1} d z \frac{P_{j \rightarrow i}(z)}{z} F_{h}^{j}\left(x / z, Q^{2}\right)$

Using the explicit expressions for the P_{i-j}, one can prove that the $n=2$ moment of $\Sigma_{i} F_{h}{ }^{i}$ is Q-independent <=> momentum conservation

4.2 Generalization to other processes

At this point it is quite easy to guess the general description of a hard IR-safe process. A « typical» example:

Summarizing about the QCD parton model

As a result of factorization a very wide class of hard processes can be fully described in terms of two kinds of ingredients:

1. Structure functions ($F_{h}{ }^{i}$ also called PDF's) and fragmentation functions $\left(D_{i}^{h}\right)$ which are:

- uncalculable in PQCD (but whose scale-dependence is calculable: DGLAP equations)
- process independent

2. Hard parton-level cross-sections which are

- process-dependent
- calculable (as a series expansion in $\alpha\left(Q^{2}\right)$)

In Gavin Salam's seminar we shall see how much about PDFs can be extracted from real data using the above properties

