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DiscretizationDiscretization: : the general ideathe general idea
 Since all analytic methods have failed so far to

provide an solution of QCD, even at large-N, we
are forced to try brute-force numerical methods.

 On a computer we have to replace the infinite
number of d.o.f. by a large but finite number of
them (common to other areas of physics..)

 In QFTs the number of d.o.f. is (infinity)2 :
1. space-time is infinitely large;
2. there are infinitely-many points even in a finite region.

 We have to work in a finite volume and discretize
space (-time). This is what lattice-QCD does
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If we replace the whole of space(-time) by a finite, periodic
grid, our generic field φ(x) of the continuum theory becomes
φ(n1,n2,n3,n4 (t)) with some identification: (n1 = n1 + N1 etc. )

Eucl. time ?

(n1,n2,n3) = (3,2,5)
The (hyper)cube is
actually a torus!

This size,
called the
lattice size, is
denoted by aa
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Discretization and symmetriesDiscretization and symmetries
 When we discretize space(-time) certain

symmetries of the continuum theory are
necessarily lost (continuous traslations, rotations,
Lorentz transformations)

 We should demand that they are recovered, to
better and better accuracy, in a suitably defined
«continuum limit»

 On the other hand, we should make sure that the
«sacred» local symmetries are not broken by the
discretization, otherwise we introduce spurious
d.o.f. that are very hard to eliminate even in the
continuum limit (= basic idea of K.Wilson, 1974)
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Hamiltonian Hamiltonian vs. vs. Lagrangian Lagrangian LGTLGT
 In the Hamiltonian approach only space is discretized:

time is kept continuous. One writes down a lattice-
Hamiltonian and tries to solve numerically for eigenvalues,
eigenvectors, time evolution etc.

 In the Lagrangian approach one first goes over to so-
called Euclidean time (t--> τ = -it) so that the metric
becomes Euclidean and the action purely imaginary
(S -->SE = i S). Next, one discretizes this 4D-space
(usually with different n’s in space and time directions)

 One then carries out Feynman’s path integral where each
path is weighted by exp(iS) => exp(-SE). For QCD SE is
positive semidefinite, making the integrals converge.

 Finally one reinterprets the results in Minkowskian time
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Links, plaquettes & Links, plaquettes & their their continuum analoguescontinuum analogues
In the continuum we have introduced the concept of a
covariant derivative

so that ψ and Dµψ have the same gauge transformation (Ta are
the generators in rep. of ψ). On the lattice derivatives become
finite differences: we need to make objects like ψ(x)ψ(y)
gauge invariant by using the gauge field. Same question can be
asked in the continuum where the solution is well known:

Cxy is a path from x to y, P denotes path ordering. Pictorially,
it’s like a string connecting a quark at y to an antiquark at x

where
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A discretized version of these U(Cxy;Aµ) can be defined on the
lattice. When x and y are nearest neighbours and one chooses
the shortest Cxy,  they are called link variables and can be
used to replace the gauge fields themselves (w/ µ=direction ij)

ji

Elementary
links: Uij
(Uji = Uij 

-1 )

ψ(y)

ψ(x)

Product of
links giving
analogue of
U(Cxy;A)

U(Cxy;A)

Under a gauge transformation G:
ψ(y) --> Gyψ(y), ψ(x) --> ψ(x)Gx

-1 
 U--> GxU Gy

-1 , ψ(x)Uψ(y) invariant 
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plaquettes

It is straightforward to construct gauge-invariant quantities
out of links. A product of links along a continuous path
transforms as a gauge transformation at one end and its
inverse at the other end. If the two ends coincide and we take
a trace, we get a gauge-invariant quantity called a Wilson loop.
The simplest example is the so-called plaquette, made of four
links on a plane: it can be used to construct a lattice analogue
of the gauge kinetic term (gauge action) of the continuum

planar Wilson
loop

UP = Tr[UijUjkUklUli]
i j 

l k 

P
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The The Wilson actionWilson action
Since the plaquette is the simplest gauge invariant operator
it is not surprising that, in the limit in which we send the
lattice spacing to zero, it reduces to something proportional to
the YM Lagrangian. More precisely, one finds (in SU(N)):

This is the celebrated Wilson action.

(no sum over µ,ν)

Thus:
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It contains a parameter, 1/g2 that appears like the inverse
temperature β in a stat. mech. system!

The choice of the action is not unique. Many other lattice
expressions go to the usual continuum action in the small-a
limit. The choice is only a matter of simplicity and/or
convenience (see below)
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GaugeGauge-invariant observables, Wilson -invariant observables, Wilson loopsloops
For any given gauge invariant operator On(U) the VEV will be
given by the Feynman path integral (now a real average!)

A complete set of such operators (in the absence of quarks) is
provided by the Wilson loops and products thereof:

<W(C)> = <Tr (U1 U2  .. Un )C>
< W(C1) > < W(C2) >.. + <W(C1) W(C2)>< .. >  +..+ < … >conn.

; <W(C1) W(C2).. W(Cm)>=

NB: division by Z removes
disconnected «vacuum»
diagrams
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r

t

Physical interpretation of the Wilson loop (when large)



21 mars 2006 G. Veneziano, Cours no. 6 13

Here V(r) corresponds to the static potential of two heavy
sources (e.g. two heavy quarks) in some given rep. of the gauge

group (the one appearing in the def. of W(C)). Two cases:

1. If V(r) --> 0 at large r, W(C) ~ exp(-c P), where P is the
length/perimeter of C. This is the case of no confinement
(believed to be realized in QED)

2. If V(r) ~ T r at large r, W(C) ~ exp(-TA) where A is the
area encircled by C and T is the so-called string tension.
Such a linearly rising potential obviously confines
(we would like to prove this to be the case for QCD)

<W(C)> gives exp(-V(r) t) = order parameter for confinement
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Similarly, the connected correlators of Wilson loops give
crucial information about «glueball» masses and interactions.
If colour is confined, there should be a non-perturbative mass
gap of order ΛQCD, while in perturbation theory the massless
gluons give a continuum of states extending all the way down
to E=0.

Example: <W(C1) W(C2)>conn ~ exp(-mgbt) @ large t

C1

C2

t
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Weak and strong coupling Weak and strong coupling expansionsexpansions
Starting from Wilson’s action we can consider two limits where

we can perform analytic expansions/calculations :
1. WeakWeak--coupling coupling expansionexpansion

Very similar to the loop expansion (perturbation theory)
of the continuum. Actually more complicated, since it does not
respect many of the continuum symmetries.  Its main use is
that it allows to connect the lattice parameters to those in
the continuum

2.2.  Strong coupling Strong coupling expansionexpansion
This has no continuum analogue. The surprise is that it
automatically leads to colour confinement (even for a U(1)
gauge symmetry!). It may contain lattice artefacts..
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The MonteCarlo methodThe MonteCarlo method
 The real thing is neither the strong-coupling nor the weak

coupling expansion. One would like to perform the actual
integrals. This can only be done numerically.

 However, since the integrals are over an enormous number
of variables, they cannot be done by standard numerical
integration techniques either

 The MonteCarlo (MC) method replaces more conventional
techniques by a sampling of the integrand (including the
exp(-S) factor) at some «randomly» chosen «points». If
the sample is well chosen one gets a good estimate of the
integral. There are techniques to accelerate convergence
(see L. Giusti’s seminars for more details). This is how
calculations are actually done.


