Hard Processes and Partons

Yuri L. Dokshitzer

LPTHE, Universities of Paris VI and VIl and CNRS

Paris, March 2005



Hard Processes,
Singularities
and

Probabilistic Parton Behaviour



seminar 8.03 (3/19)

L Introduction Quarks — jets of hadrons

Aleph Higgs event:

o Claim: it corresponds to
ZH — qgbb.

@ But actually just bunches (‘jets’)
of hadrons.




seminar 8.03 (3/19)

L Introduction Quarks — jets of hadrons

Aleph Higgs event:

o Claim: it corresponds to
ZH — qgbb.

@ But actually just bunches (‘jets’)
of hadrons.

@ Can they be related?
And How?




seminar 8.03 (3/19)
Introduction

Quarks — jets of hadrons

Aleph Higgs event:

o Claim: it corresponds to
ZH — qgbb.

@ But actually just bunches (‘jets’)
of hadrons.

@ Can they be related?
And How?

Need understanding of QCD ‘
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o ) . .
Eymptotlc Freedom Runn|ng cou pllng

Running coupling

The strong coupling, ag, runs:

023?5; =Bas),  Blas) = —ad(bo + bras + byal + ..,

11N.—2n¢ 17N2 —5N.ns—3Cgn¢ N2_1

= ) by = ; (CF - 2CN )
127 2472 c

Note sign: Asymptotic Freedom, due to gluon to self-interaction

@ At high scales @, coupling is weak

[J quarks and gluons are almost free, their interactions stay under the
perturbation theory control

bo

@ At low scales, coupling becomes (catastrophically) large

[J quarks and gluons interact strongly — they are confined into hadrons.
Perturbation theory should fail.
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L Asymptotic Freedom Asymptotic Freedom : WHY'?

Running coupling

@ |t seems natural to expect the effective interaction strength to decrease
at large distances.

@ Moreover, it was long thought to be inevitable as corresponding to the
physics of ‘screening’.

@ The fact that the vacuum fluctuations have to screen the external
charge, in QFT follows from the first principles: unitarity and crossing
symmetry (= Lorentz invariance + causality) as was understood by
Landau and Pomeranchuk in mid 50's, after Landau & Co have made a
sign mistake in calculating the running electromagnetic coupling (and
thus, for a couple of weeks, were happy about having discovered
‘asymptotic freedom’ in QED)...

So, why does this most general argument fail in non-Abelian QFT ?
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L Asymptotic Freedom Autopsy of Asymptotic Freedom

Running coupling

To address questions starting from what or why we better talk physical
degrees of freedom; use the Hamiltonian language. Then, we have gluons
of two sorts: ‘physical’ transverse gluons and the Coulomb gluon field —
mediator of the instantaneous interaction between colour charges.
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L Asymptotic Freedom Autopsy of Asymptotic Freedom

Running coupling

Consider Coulomb interaction between two (colour) charges :

Instantaneous Coulomb interaction

e \\Q
%Jgi"ﬁg#’&% = —NC* l —Ng* g
R 3 f'3

N
N

Transverse gluons (and quarks)

A

1
screening
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L Asymptotic Freedom Autopsy of Asymptotic Freedom

Running coupling

Consider Coulomb interaction between two (colour) charges :

ANTI screening

V

| nstantaneous Coulomb inter action

P
oﬁoﬂ%

%¢Ammmm _
Wy = +N_* 4

J.gV t

Vacuum fluctuations of transver se fields
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L Asymptotic Freedom Autopsy of Asymptotic Freedom

Running coupling

Consider Coulomb interaction between two (colour) charges :

Inst/a}ntaneous Coulomb interaction . i p .
N Combine into the QCD p—function:

VT

| o o 0] _ 1 2 d
PEET VI Y Bles) = g el (@)
T;z;f\fsverse gluons (and quarks) _ |:4 . 1:| N /V 2 « g
A . 3 3
, Khriplovich (1969)
ANTI screening Gribov (1976)

v

Instantaneous Coulomb interaction
o7
00 0
\/V\/-\/\/\/.\/V\J = +NC* 4

R

Vacuum fluctuations of transverse fields
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L Asymptotic Freedom Autopsy of Asymptotic Freedom

Running coupling

Consider Coulomb interaction between two (colour) charges :

Instantaneous Coulomb interaction
iy

N Combine into the QCD [S—function:
VT

1.0 a4 0} =N+l —n«2 d —1/2
1‘«@"\\'\\\{ N 3 ¥ 3 Blas) = din 02 Q247T045 (Q9)
Transverse gluons (and quarks) S /R N —Z4n
A |: 3:| c 3 f
i Khriplovich (1969)
ANTI screening Gribov (1976) The origin of antiscreening —
' deepening of the ground state under
Vv the 2nd order perturbation in NQM:
Instantaneous Coulomb interaction
Pt
oo of | 0|5V’
Loamsnagand =+N _*4 =
T c AEy = Z £ <°

Vacuum fluctuations of transverse fields
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I—Running coupling Runnlng Coupllng (Cont)

foJe!
Solve Q== = —bga?

0Q?
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Eymptotic Freedom Runnlng COUpllng (Cont)
Running coupling
2
o o 1

1— boas(@3)In &,

2
& b
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L Asymptotc Freedom Running coupling (cont.)
Running coupling
Oa as(Q3) 1
Solve Q°—= = —b0a2 = as(Q?) = 0 =
0Q2 s (@) 1 — boas(Q3) In 8—; bg In 5\‘)—22

oA (aka /\QCD) —
the fundamental QCD scale,
at which coupling blows up.
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L Asymptotc Freedom Running coupling (cont.)
Running coupling
Oa as(Q3) 1
Solve Q°—= = —boa2 = as(Q?) = 0 =
0Q2 s (@) 1 — boas(Q3) In 8—; bg In f\‘)—;

oA (aka /\QCD) —
the fundamental QCD scale,
at which coupling blows up.

@ Perturbative calculations valid
for large scales Q@ > A.

@ Not an obvious statement: we
deal with hadrons in nature,
while applying QCD to quarks
and gluons . ..
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Asymptotic Freedom

Running coupling (cont.)
I—Running coupling
oo as(Q? 1
Solve Q28 52 = —boai = as(Q2) = s 02) o = >
Q l—boas(QO)an—g bolnﬁ
o /\ (aka /\QCD) — 0.5 April 2004
the fundamental QCD scale, | Theoy | o 8 2)
. . i Data g & =
at WhICh Coupllng b|OWS Up. GS(Q) \ \" Deep Inelastic Scattering = f =
. . . X e*¢ Annihilatio o e
@ Perturbative calculations valid 0.4 0\ Hadron Collisions & 1
W\ Heavy Quarkonia " ®
for large scales Q@ > A. W <
. N ( A a(Mz))
@ Not an obvious statement: we (245 MeV - 0.1209
. . 0.3 (Q('E 210 MeV 0.1182 | 7
deal with hadrons in nature, @2 | 150 Mev — —o0.155)
while applying QCD to quarks
and gluons ... 0.2t
@ “Animalistic” ldeology : some
observables are more equal ol
than the other )
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L Asymptotc Freedom Running coupling (cont.)

Running coupling

2
oo as(Q 1
Solve QZ 52 — _boai = as(Q2) — 5( 02) QQ = Q
aQ 1—b0a5(QO)|n—2 boln—2
Q5 A
o A (aka Aqcp) —
the fundamental QCD scale, oG
. . DIS [GLS-SR] — b
at which coupling blows up. tdecays [LEP) +
xF; [V -DIS] ——
@ Perturbative calculations valid Bs T “”‘?‘. -3
for large scales Q@ > A. Ji
@ Not an obvious statement: we J(w . A
ete [jets & shapes 14 GeV] . -

deal with hadrons in nature, pAs ““"””L o

while applying QCD to quarks srhamnen B
and gluons ... FB_ ity o 2

& e

@ “Animalistic” ldeology : some el W
observables are more equal e
than the other Sy
>—‘LO—<

=

==
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L Hard Processes Hard QCD interactions

Large momentum transfer

‘Hit hard to see what is it there inside‘ (a childish but productive idea)
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L Hard Processes Hard QCD interactions

Large momentum transfer

|Hit hard to see what is it there inside]

Heat the Vacuum

@ ee annihilation into hadrons : ete™ — gg — hadrons.
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L trd Proceses Hard QCD interactions

Large momentum transfer

|Hit hard to see what is it there inside]

Hit the proton (with an electromagnetic/electroweak probe)

@ eTe™ annihilation into hadrons : ete™ — g — hadrons.

@ Deep Inelastic lepton-hadron Scattering (DIS) : e p — e~ + X.
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L trd Proceses Hard QCD interactions

Large momentum transfer

|Hit hard to see what is it there inside]

Make two hadrons hit each other hard

@ eTe™ annihilation into hadrons : ete™ — g — hadrons.
@ Deep Inelastic lepton-hadron Scattering (DIS) : e p — e~ + X.
@ Hadron—hadron collisions : production of

@ massive “sterile” objects :

O lepton pairs (i 1™, the Drell-Yan process),
[ electroweak vector bosons (Z°, W¥),
[0 Higgs boson(s)

@ hadrons/photons with large transverse momenta wrt to the collision axis.

| Momentum transfer = measure of “hardness’ |
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L Hard Processes Deep Inelastic lepton-proton Scattering

Lpis
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i Proceses Deep Inelastic lepton-proton Scattering
DI
P P Bit of kinematics: invariant mass of final hadrons

N eq WP=ME = (P+q)—Mp

P - _ B —q? _ (1—x
@ = 2(Pa) (1~ 55 ) =2(P0)- (1)
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i proceses Deep Inelastic lepton-proton Scattering
P P Bit of kinematics: invariant mass of final hadrons
o\ g W2— M2 = (P4 q)%>— M3
& = 2(pq) (1- 5755 ) =2(Pg) (1)
2(Pg)
Measure of inelasticity — Bjorken variable | x = —%P:) (0<x<1)

dOelastic ( do > 2
= Fe astic
dq2 dq2 point lasti ( )

dCinelastic ( do > 2 2
= : Finelas ic(q 7X) - dx
dq2 dq2 point '
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i Proceses Deep Inelastic lepton-proton Scattering
P P Bit of kinematics: invariant mass of final hadrons
e W2 ME = (P+g)P - Mp
B 2
P —q
= 2(Pq (1— >E2Pq-1—x
@ (Po) (1- 3005 ) = 2(Pa)- (1)
Measure of inelasticity — Bjorken variable | x = —%;q) (0<x<1)
doelasti do
%;UC = (d—qz> - Felastlc( 2)
poin
dOinelasti do
%astlc = (d—qz> ’ ,:iaelastic(q2ax) - dx
point

What to expect for elastic and inelastic proton Form Factors F 2(q2) ?
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L Hard Processes Free q ua I’kS

Lpis

Two plausible and one crazy scenarios for the |g%| — oo (Bjorken) limit

1). Smooth electric charge distribution: (classical picture)

F2

elastlc( ) Flielastlc(q2) <1

— external probe penetrates the proton as knife thru butter.

2). Tightly bound point charges inside the proton: (quarks?)
2) ~ 1 F-2

inelastic

() < 1

— excitation of one quark gets redistributed inside the proton via the confinement

Felastlc(

“springs" that bind quarks together and don't let them fly away.
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Two plausible and one crazy scenarios for the |g%| — oo (Bjorken) limit
1). Smooth electric charge distribution: (classical picture)

2 2 2 2
Felastic(q ) ~ Finelastic(q ) <1
— external probe penetrates the proton as knife thru butter.

2). Tightly bound point charges inside the proton: (quarks?)
Fezlastic(qz) ~ 1 Fiielastic(qz) <1

— excitation of one quark gets redistributed inside the proton via the confinement
“springs’ that bind quarks together and don't let them fly away.

3). Now look at this: (Mother Nature)

Fezlastic(qz) < 1; Fi%lelastic(qz) ~ 1
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l_ art rocesses
Hrd P Free quarks

DIS

Two plausible and one crazy scenarios for the |g%| — oo (Bjorken) limit

1). Smooth electric charge distribution: (classical picture)

Fe2|astic(q2) ~ Fiielastic(q2) <1

— external probe penetrates the proton as knife thru butter.
2). Tightly bound point charges inside the proton: (quarks?)
Fezlastic(qz) ~ 1; Fiielastic(qz) <1

— excitation of one quark gets redistributed inside the proton via the confinement
“springs’ that bind quarks together and don't let them fly away.

3). Now look at this: (Mother Nature)
Fezlastic(qz) <L Fi%lelastic(qz) ~ 1

— there are points (quarks) inside proton, but the hit quark behaves as a free
particle that flies away without caring about confinement.
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L Hard Processes Bjorken Scaling: Partons

Lpis

Conclusion: Proton is a loosely bound system (of 3 quarks + glue + ---)
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+/K Let the parton carry a finite fraction of the

ar proton momentum k ~ z- P (k? ~0)

k
(K) = (P +qp
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DIS selects a quark with momentum x - P

Bjorken x has the meaning of parton momentum fraction; Fiielastic

becomes the probability of finding a parton with given momentum.
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L Hard Processes Bjorken scaling: Partons

Lpis

Conclusion: Proton is a loosely bound system

p P

+/ Let the parton carry a finite fraction of the
ar K proton momentum k ~ z- P (k? ~0)

‘ (K = (zP+a)

P ~ 2(Pq)-(z—x) ~ 0.
DIS selects a quark with momentum x - P
Bjorken x has the meaning of parton momentum fraction; FInelastlc

becomes the probability of finding a parton with given momentum.
Existence of the /imiting distribution

Fmelast|c( X) = Dg(X), ‘q2‘ — 00, X = const

constitutes the Bjorken scaling hypothesis.
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L-qcD Partons Violation of scaling is inevitable in QFT

L Collinear (‘mass’) Singularities

Particle virtualities/transverse momenta in
QFT are not limited. In particular, in a DIS

p p’ ‘i "
= 7 process, “partons’ (quarks and gluons) may

an k have transverse momenta up to

k2 < Q*=|q°|.
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Such — “collinear” — enhancement is typical for QFTs with dimensionless
coupling — “logarithmic’ Field Theories. (Gribov & Lipatov, 1970)
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L-QcD Partons Violation of scaling is inevitable in QFT

L Collinear (‘mass’) Singularities

Particle virtualities/transverse momenta in
QFT are not limited. In particular, in a DIS
process, “partons” (quarks and gluons) may
have transverse momenta up to

kK < Q%*=1q%.

As a result, the number of particles turns out
to be large in spite of small coupling :

Q? dk2
/dwoc/ B %In(f:(’)(l).

2
T ki

Such — “collinear’ — enhancement is typical for QFTs with dimensionless
coupling — “logarithmic’ Field Theories.

Physically, a QFT particle is surrounded by a virtual coat; its visible

content depends on the resolution power of the probe \ = % = A
—-q

N
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I—QCD Partons PartonS |n QFT?

Parton cascades

Thus we learned that in QCD the probability to find a parton g inside the
target h must depend on the resolution, Q?

D = D](x, In Q%).
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LQcD Partons Partons in QFT?

Parton cascades

Thus we learned that in QCD the probability to find a parton g inside the
target h must depend on the resolution,

D] = D](x, In Q%).

the Feynman—Bjorken picture of partons employed
Moreover, the classical (probabilistic) language:
op=0q® D}
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Kinematics of the parton splitting A — B+ C
kBZZkA, kc’i(l—z)kA

kgl _ KAl | kE k%
—Z =1 Ti=z T
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Parton cascades

Kinematics of the parton splitting A — B+ C
kBZZkA, kc’i(l—z)kA

kgl _ kAl | k¢ ki
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Probability of the splitting process :

. dk2 K3 . dk?
o Ty X R
k2 k2 k2 %
@zil>>ﬁ as well as —&— ).
z z(1-z) 1 1-z

This inequality has a transparent physical meaning:

EB_ Z-EA EA

tp=—m = —t &
k3| k3| A

ta

strongly ordered lifetimes of successive parton fluctuations!
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Parton cascades

So long as probability of one extra parton
emission is large, one has to consider and
treat arbitrary number of parton splittings
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Parton cascades

quark—gluon cascades

P P
F>>t1>>t2>>t3>>t4>>t5>>—

Four basic splitting processes :

g —g(z)+g

14 (1-2z)?

QZ

z = k3/ko

i

. [22 _1_2(1_2)2} ,
1 + 24+ (1-2)*




seminar 8.03 (15/19)

L-QcD Partons quark—gluon cascades

Parton cascades

Pk <G < k3 < k2 <k < Q

Four basic splitting processes :

‘ “Hamiltonian” for parton cascades‘

1+ 22
o)) = .
q(Z) CF 1_2 Y )
1+(1—z
0%(z) = G- U2

PY(z) =Tr-[2° —1—2(1—2)2} ,
1+z4+(1-2)*
z(1-2z)

¢§(Z) =N~

e S dk?
Logarithmic “evolution time d§ = 527~
1
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L ifrared (‘soft’) Singularities

We spoke about the Collinear enhancement in 1 — 2 parton splittings.
Radiation of gluons is enhanced even stronger :
2(1

0-z2) O(z)

dw[A — A+ g(2)] x Cs-dz .

We are facing an additional Soft (infra-red) enhancement which is
characteristic for small-energy vector fields (photons, gluons), z < 1.

Divergence of the total emission probability at z — 0 is known (from the
good old QED times) under the catchy name of “Infra-Red catastrophe”.

Ain't any “catastrophe” but a simple consequence of the fact that any
charged particle is always surrounded by a long-range Coulomb field which
gets shaken off when the charge is accelerated.

As a result,

« e
wa ~ Ca— In? Q2. [ parton multiplicities, form factors, etc. ]
T
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Radiation of gluons is enhanced even stronger :
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z

We are facing an additional Soft (infra-red) enhancement which is
characteristic for small-energy vector fields (photons, gluons), z < 1.

Divergence of the total emission probability at z — 0 is known (from the
good old QED times) under the catchy name of “Infra-Red catastrophe”.

An important remark :
soft gluon radiation has a classical nature (celebrated F.Low theorem).
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I—QCD Partons SOft glUOﬂS

L ifrared (‘soft’) Singularities

We spoke about the Collinear enhancement in 1 — 2 parton splittings.
Radiation of gluons is enhanced even stronger :
2(1

0-z2) O(z)

dw[A — A+ g(2)] x Cs-dz .

We are facing an additional Soft (infra-red) enhancement which is
characteristic for small-energy vector fields (photons, gluons), z < 1.

Divergence of the total emission probability at z — 0 is known (from the
good old QED times) under the catchy name of “Infra-Red catastrophe”.

An important remark :
soft gluon radiation has a classical nature.

This statement has rather dramatic consequences which still remain to be
properly digested by the theoretical community ...
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Parton dynamics

Nowadays we cannot predict, from the first principles, parton content (B)
of a hadron (h). However, perturbative QCD tells us how it changes with
the resolution of the DIS process — momentum transfer Q2.
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Nowadays we cannot predict, from the first principles, parton content (B)
of a hadron (h). However, perturbative QCD tells us how it changes with
the resolution of the DIS process — momentum transfer Q2. Evolution of
parton distribution reminds the Schrodinger equation:
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2 X
O S S S L ERAD
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- QCD Partons
Parton dynamics

Nowadays we cannot predict, from the first principles, parton content (B)
of a hadron (h). However, perturbative QCD tells us how it changes with
the resolution of the DIS process — momentum transfer Q2. Evolution of
parton distribution reminds the Schrodinger equation:

2 X
CDb @) = 4 5 [ Fogi) pp o)
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L-qcD Partons Relating parton splittings

Parton dynamics

Nowadays we cannot predict, from the first principles, parton content (B)
of a hadron (h). However, perturbative QCD tells us how it changes with
the resolution of the DIS process — momentum transfer Q2. Evolution of
parton distribution reminds the Schrodinger equation:

d Qz
DB @) = D) 5 [ o) b )

A=q,3.6 "

Parton Dynamics turned out to be extremely simple.

Have a deeper look at parton splitting probabilities
— our evolution Hamiltonian —
to fully appreciate the power of the probabilistic
interpretation of parton cascades
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LQcD Partons Apparent and Hidden symmetries

Parton dynamics

Z z
1- 1+ 22 14+ (1-2)?
1—=z z
z
z
1 4 1—z7)*
— Tx [22—1—(1—2)2] — N, + 2"+ (1-2)

Four “parton splitting functions”

P, Mo @ e
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Parton dynamics

Z z
1- 1+ 22 1+ (1—2)2
11—~ z
Z
Z
14+ 24+ (1—2)*
= Tr- [+ (1-2)?] SVl )

z(1—2z)

@ Exchange the decay products : z -1 — z

SORACN B
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@ Exchange the decay products : z - 1 — z

@ Exchange the parent and the offspring : z — 1/z

B - 7“0 IR
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LQcD Partons Apparent and Hidden symmetries

Parton dynamics

Z z
1- 1+ 22 14 (1—2)2
Z:CF’ +Z :CF.M
11—~ z
Z
Z
14+ 24+ (1—2)*
= Tr- [+ (1-2)?] SVl )

@ Exchange the decay products : z -1 —z

@ Exchange the parent and the offspring : z — 1/z

Three (QED) "kernels” are inter-related; gluon self-interaction stays put :

@), Y0, Fo e e
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Parton dynamics

Z z
1- 1+ 22 1+ (1—2)2
11—~ z
Z
Z
14+ 24+ (1—2)*
= Tr- [+ (1-2)?] PV G

@ Exchange the decay products : z -1 —z
@ Exchange the parent and the offspring : z — 1/z

@ The story continues, however :

All four are related!

wo(z) = | P2)+82) = 92 +|8@)]| = wel2)
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Parton dynamics

z 4
1- 1+ 22 1+ (1-2)?
1-=z z
z
z
1+z4+ (1-2)*
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@ Exchange the decay products : z -1 —z
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LQcD Partons Apparent and Hidden symmetries

Parton dynamics

z 4
1- 1+ 22 1+ (1-2)?
1-=z z
z
z
1+z4+ (1-2)*
=Tgr- [22+ (1—2)? =N, -
R[22+ (1-2)7] N z(1—2z)
@ Exchange the decay products : z -1 —z
@ Exchange the parent and the offspring : z — 1/z
@ The story continues, however : ‘Super—Symmetry‘
All four are related! (over-constrained system [+ conformal symm. etc])

wo(z) = | P2)+82) = 92 +|8@)]| = wel2)
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“Unfortunately, even at high E, life is not that easy ..." (G.V.)

True. Collinear (mass) and soft (infrared) singularities make multi-parton
configurations probable, in spite of the smallness of the coupling constant
as, thus forcing us to analyze internal structure of small-distance Hard
QCD Processes in all orders in perturbation theory.

Feynman-Bjorken Partons QCD Partons

Quarks inside proton. YES.

They are point-like. NO. They interact, radiate gluons,
acquire (double logarithmic) form factors.

Bjorken scaling. NO. (D= D(In Q2))

Probabilistic picture. YES. And a rich one in that.

“Life ain't that easy but it's beautiful”  néanmoins
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