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Gravitation et Cosmologie: le Modèle Standard
Cours 6: 30 janvier 2009

Dynamique de l’expansion

• Explicit solutions with K=0, w = constant
• Solutions with K≠0 and different sources
• Luminosity distance and deceleration parameter
• Generalized Hubble law and evidence for cosmic 

acceleration
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Solutions with K=0 and w=p/ρ = const.

 Equations become

which also imply:

 Energy cons. eqn. gives

 Defining  the H constraint gives:

 hence the explicit (+) solution:
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 Note that a(t*)=x(t*)=0, with

Redefining the origin of time by t* =0 we can rewrite sln as:

 for w ≠-1, 
while for w=-1

Except in this last case the geometry becomes singular (e.g. 
R diverges) at a finite proper time in our past: the Big Bang! 
Easy to check that some invariants diverge for t-->0:
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Solutions with K≠0 and several sources

 Recall

ρ(cr) ≡ 3H2
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 Identifying t=0 with a =0 (z= infinity) this gives:
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Note that this integral converges at x=0 (unless there 
is nothing but a cosmological constant)
It gives the time of emission of light arriving to us 
today with redshift z. 
If we set z=0 we get the age of the Universe, i.e. the 
proper time elapsed since a=0. 

remember: 
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Ωr,0 is very small (O(10-4)) and can be neglected. There 
are also upper bounds on ΩK,0 (making it small wrt Ωm,0)
In a Universe dominated by matter this gives:

t0 = 2/3 H0-1 = 6.52 x 109 h-1 yr, 
which appears to be too short compared to the age of 
certain globular clusters in our galaxy (> 1010 yr). 
A positive cosmological constant increases t0. In the 
(presently favoured) CDMΛ model  (Ωm,0 ~ 0.28, ΩΛ,0 ~ 
0.72) we get a more confortable:  

t0  =13.4 ±1 x 109 (0.7/h) yr.
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Luminosity distance and deceleration parameter
Two interesting quantities in cosmology are the so-
called luminosity distance dL and deceleration 
parameter q0. They are defined by the equations:

where L(l) is the absolute (apparent) luminosity, say of 
a star or galaxy. The Hubble law, when expanded to 
second order in z, relates these parameters:

 On the other hand:

Hubble law beyond linear order => information about eq.of state!
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General expression for Hubble’s law

To order z2 we can approximate siny ~ sinh y ~ y, so that:

as previously written
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This generalized Hubble law can be checked using Type Ia 
Supernovae as standard candles: evidence for negative q0...



ΩΛ,0x
3 + ΩK,0x + Ωm,0 = 0 ; for x > 1 ; with ΩΛ,0 + ΩK,0 + Ωm,0 = 1
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Will the Universe expand forever?

H0t(z) =
∫ 1

1+z

0

dx

x

1√
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We can answer this question (within our model) by looking at:

If the quantity inside the √ vanishes at some x=x*=a*/a0 >1 
then this a* represents the maximun value reached by the 
scale factor before the Universe collapses. Neglecting 
radiation (a very good approximation for x>1), this means 
having a root with x > 1 of the cubic equation: 

Possible only for a sufficiently negative ΩK,0 (K = +1). This is 
excluded by the data (see graph), but what if DE is not just Λ?
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