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A reminder:  Thermodynamics versus Statistical Mechanics

Consider a ferro/para-magnetic material in 
a magnetic field  B, and otherwise isolated 

so that its total energy E is fixed. 

B The state of the system is given by  (B, E)

Thermodynamics introduces a potential, the entropy function:

This equation of state is not universal, it depends on details of the system.

From it, using thermodynamic identities, we can compute other 
macroscopic quantities

− ∂S

∂B
= MTemperature: Magnetization:

S(B, E)

∂S

∂E
=

1
T

1



Given a microscopic description of the system, it is in principle possible to 
calculate, rather than postulate, the equation of state  S(B, E). 

Boltzmann-Gibbs  statistical entropy:

 Number of states of the system,
for given energy and magnetic field

In most cases it is not easy to calculate  S , though it can be 
done in principle with a sufficiently large computer.  

Explicit calculations are possible for non-interacting degrees of freedom,
or when the interactions are weak and can be treated perturbatively. 

S = kB logN (B, E)



B

 Suppose for example that our paramagnet is described, at the 
microscopic level,  by  N non-interacting spins: 

number of
spins UP

Bohr
magneton

E := Nε = −
∑

2µB"σ · "B

Calculating the entropy is a simple counting problem:

number of
spins DOWN

= µB B(N+ −N−)

S = log
(

N
N+

)
y± :=

1± ε/µBB

2
= −N(y+logy+ + y−logy−) ,  where

the calculation isn’t simple.  

!

For interacting spins, e.g.  Eint = −J
∑

<ij>

!σi · !σj

At very strong coupling, even the choice of degrees of freedom may be inadequate, 
and one has to go back to the description in terms of atoms and electrons.   



The geometry of a charged BH is described by the Reissner-Nordström metric: 

ds2 = −fdt2 + f−1dr2 + r2dΩ2
2 ,

f(r) = (1− r+

r
)(1− r−

r
)

where

with

charge in units where 
Coulomb’s constant  =1 .

The  outer horizon is at               ,  and                              by the cosmic-censorship
 

hypothesis (no naked singularities). The Schwarzschild BH is found for Q=0 , while

 the extremal BH  is obtained when the inequality is saturated.                                      

r = r+

NB:  Astrophysical black holes have zero charge;  but in our discussion we 
will focus on near-extremal BHs,  so  the charge is essential .   

A second reminder:  Thermodynamics of Black Holes2
(voir cours de G. Veneziano)

r± = GNM ±
√

G2
NM2 −GNQ2

√
GNM ≥ Q



River as a rowers’ black hole:

asymptotic
horizon singularity

Passing the horizon seems very innocent while it is happening. It’s 
like being in a rowboat above Niagara Falls. If you accidentally pass 
the point where the current is moving faster than you can row, you 
are doomed. But there is no sign—DANGER! POINT OF NO RETURN—
to warn you. Maybe on the river there are signs but not at the 
horizon of a black hole.
                                 (Lenny  Susskind, CA Literary Review)

turbulent !*?#
velocity

field

>  top speed of
Olympic champ

To an in-falling observer nothing special happens as he crosses the horizon!

(r ! ∞) (r ! r+) (r ! 0)



This is shown by Hawking’s semiclassical calculation of thermal radiation emission. 
A quicker alternative calculation is to go to imaginary time, and choose its periodicity

so as to avoid a conical singularity. Changing  radial coordinate near the horizon: 

r − r+ =
(

r+ − r−
4r2

+

)
ρ2

0

Tip of cigarwhere the Hawking temperature is

{ Schwarzschild

extremal

TH := ! r+ − r−
4πr2

+

=

=⇒ ds2 " dρ2 + ρ2(
2πTH

! dtE)2 + r2
+dΩ2

2 ,}
!

8πGN M

             Choosing the periodicity of the time coordinate so that                             .              
results in a non-singular geometry. This allows the definition of a 
KMS state  [defined by functional integral] thereby showing that the 

BH is at equilibrium with the asymptotic heat bath.
                  .

T = TH

invariant under
imaginary time

translations

To a distant observer  the horizon looks thermal with temperature  TH !



horizon area

If BHs have a temperature, then from the first law of thermodynamics they must 
also have an entropy:

Bekenstein-Hawking

dM = THdS + V dQ SBH =
4πr2

+

4GN!=⇒

Valid for all kinds of black holes, provided   M, Q ...     are large 

thermodynamic 
limitEinstein’s gravity “knows” the equation of state !

Can we compute  SBH by counting microstates?

Check consistency of quantum gravity  & uncover horizon ``degrees of freedom” 



The simplest String-theory  Black Hole3

Schwarzschild  BHs have negative specific heat ∂M

∂TNear-extremal  BHs have positive specific heat

< 0
> 0

unstable

(marginally) stable

We will need to extrapolate parameters, so want  near-extremal BHs. 

But the Reissner-Nordström  BH  is  NOT a solution of string theory: 

Recall the effective 4D action of Kaluza-Klein theory:

x5 ≡ x5 + 2π

Seff =
∫

d4x
√
−g

(
−R +

3
2
∂µφ∂µφ− 1

4
e3φFµνFµν

)

ds2 = e−φgµνdxµdxν + (eφdx5 + Aµdxµ)2

R



Suppose we had a spherically-symmetric charged BH with smooth horizon:

ds2 = −fdt2 + f−1dr2 + r2dΩ2
2 ,

!E =
Q!r

r3

f(r+) = 0

Gauss’ law

for finite horizon size r+

The equation for the radius field

 has no solution near the horizon

∂2φ

∂r2
+

2
r

∂φ

∂r
= e−3φ Q2

4r4

 where the  radius wants to go to infinity .  

 This is because in KK theory  charge = momentum in 5th dimension. For a massless

 particle: M = E =
n

R
 ,   so the radius wants to be as large as possible.

 asymptotic region 

 particle xµ



To balance the pressure in the 5th dimension, we need a string that 
carries both momentum and winding.

The winding #  appears as charge of a second  U(1) gauge field    (       )

Seff =
∫

d4x
√
−g

(
−R +

3
2
∂µφ∂µφ− 1

4
e3φFµνFµν − 1

4
e−3φF̃µνF̃µν

)

but in the presence of both momentum and winding the radius field is fixed at 
the horizon to the potential minimum:

 “attractor mechanism”

 asymptotic region

 string xµ

a winding string pushes the radius at the horizon to zero:

Bµ5

e−φ

e4φ =
3Q2

Q̃2

R



This  2-charge BH  is still NOT a solution of string theory.  String theory has a large  

For the fundamental strings, the dimensionless parameter:  

To counterbalance this “pressure”  we need to endow the BH with  D-brane charge: 

number of scalar fields called “moduli” :  size and shape of 6d compact space, and  
a universal dilaton field determining the string coupling constant   

The important combination is the mass in units of the (effective) Newton’s constant:  

gs

1
#g2

sα′ 4

∫
d10x

√
−gR → V (10−d)

#g2
sα′ 4

∫
ddx

√
−gR ≡ 1

16πGN

∫
ddx

√
−gR

so the string coupling is pushed to zero at the BH horizon.  

All of these moduli must have equilibrium values at the BH horizon. 

Ms(GN )
1

d−2 ∼ g
2

d−2
s

MD(GN )
1

d−2 ∼ g
−1+ 2

d−2
s



The simplest example is a  solution of  type-IIB theory compactified on                      .T 4 × S1

The   Strominger-Vafa   BH:  
D5-branes wrapping

D-strings wrapping

units of KK momentum along

N5 T 4 × S1

S1N1

S1

looks complicated, but
for a smooth solution

need to provide opposite
pressures to stabilize

all moduli
chumpysclipart

Seen from a distance, this will look like a particle in 4+1 non-compact  dimensions, 
carrying three  different types of charge. 

We need to find the corresponding BH solution of the effective 5d supergravity. 
This is a straightforward generalization of the 4d  Reissner-Nordström BH.       

Np

                 the relation between mass and integer charges
 is completely fixed  by String Theory !                Non-trivial input:  



The corresponding extremal solution is:

ds2 = −f−2/3dt2 + f1/3(dr2 + r2dΩ2
3) , where f(r) = H1(r)H5(r)Hp(r)

Hi = 1 +
r2
i

r2
andwith

r2
1 = (2π)4α′ 3gs

V4
N1

r2
5 = gsα′N5

r2
p = (2π)6α′ 4g2

s
V4R Np .

} charge normalization

   The horizon is at  r = 0 , and its area is 2π2r1r5rp .

Using the value of the 5D Newton’s constant, 
1

16πGN

=
RV4

(2π)7α′ 4g2
s

our convention here
for gs differs from
that of lecture 2leads to the BH entropy:

SBH =
A

4GN

= 2π
√

N1N5Np

radius of  S1
and volume of T4

moduli-independent
index



 Dp-branes  are soliton-like  excitations of string theory extending in  p  spatial  
dimensions (p=0 particle, p=1 string, p=2 membrane, etc). Their worldvolumes

D-branes interact with the closed strings [e.g. an open string can emit a closed one].

x0

x1···p

xp+1,···9

open

closed

They have, in particular, Ramond-Ramond charge density and tension: 

Polchinski  ‘95

One last reminder:   Dirichlet branes4

 are spacetime hypersurfaces to which open-string endpoints can be attached.

ρp  and  Tp



S1 = ρ1

∫
dτds ∂τXµ∂sX

νAµν

S2 = ρ2

∫
dτds1ds2 (∂τXµ∂s1X

ν∂s1X
ρ)Aµνρ

S0 = ρ0

∫
dτ ∂τXµAµ D-particle

D-string

D-membrane

.

.

.

.

.

.

Fµn+1···µ10 =
1
n!

εµ1···µ10F
µ1···µn

The antisymmetric RR forms obey duality relations:

In standard electromagnetism:

1
2

εµ1···µ4F
µ3µ4 ≡ F̃µ1µ2 ≡ ∂µ1Ãµ2 − ∂µ2Ãµ1

Fµ1µ2 ≡ ∂µ1Aµ2 − ∂µ2Aµ1 electric charge:

magnetic charge:

qe

∫
AµdXµ

qm

∫
ÃµdXµ



So Dp-branes/D(6-p)-branes  behave like  electric/magnetic charges . 

Dirac quantization condition:

2κ2ρpρ(6−p) = 2πNNepomechie-Teitelboim condition:

is satisfied with N=1.  So D-branes are elementary RR charges, they cannot

be decomposed into more elementary constituents ! 

magnetic charge 

Dirac string

electric charge 

Aφ = qm(1− cosθ)

2qeqm = N!

in polar coordinates:

no Aharonov-Bohm phase implies :



N5 D5s

N1 D1s

Np KK momentum

3-charge Black Hole

Microscopic description of 3-charge BH5

Our task is to count the number of quantum states with the lowest 
energy (extremality condition) for the given values of integer charges.



The minimal-energy condition simplifies the problem enormously: 

No  brane/anti-brane pairs 

No  excited fundamental strings 

All fundamental strings move in same direction  

What are the lowest states of the fundamental strings ? 

(5,5) strings:  gauge bosons of  U(N5)  theory & susy partners

(1,1) strings:  gauge bosons of  U(N1)  theory & susy partners

(1,5) & (5, 1) strings:   

oriented 

 N1 N5  hypermultiplets

1  hypermutliplet = 4 bosons + 4 fermions

The (1,5) strings have 2 coordinates with Neumann-Neumann boundary cns 

 4 coordinates with Dirichlet-Neumann boundary cns 

 4 coordinates with Dirichlet-Dirichlet boundary cns 

µ = 0, 1
µ = 2, 3, 4, 5

µ = 6, 7, 8, 9



Xµ = xµ + 2α′pµτ + i
√

2α′
∑

0 "=n∈Z

1
n

aµ
n einτcos nσ

Xµ = i
√

2α′
∑

0 "=n∈Z

1
n

aµ
n einτ sin nσ

Xµ = i
√

2α′
∑

n∈Z+ 1
2

1
n

aµ
n einτ sin nσ

NN

DD

DN

Mass-shell condition: 

zero-point 
mass excitations 

E0

!
=

∑

n>0

n

2!
e−nε/" − #!

ε2 {=
− 1

24

1
24 DN

DD

& likewise for fermions, so lowest-lying (15) strings are massless. 

! = 1

σ ∈ [0, π#]
standard convention sets 

α′M2 =
∑

i∈{2···9}

∑

n>0

(αi
n)†αi

n + E0



The anticommuting coordinates of 
the superstring have b.cs. : 

Neveu- 
Schwarz

Ramond

DD A P

DN P A

so there are in both sectors four anticommuting zero modes whose algebra is realized on  
4 mass-degenerate string states. 

The effective low-E theory on the D-branes [neglecting string excitations and the KK
1
2
Nmax

N2
1 + N2

5 + N1N5

modes on T4 ]  is a             supersymmetric

hypermultiplets. Its details are a little complicated to discuss

here but the upshot is that only the           states can be filled by the string gas. 

for a technical review, see e.g.  David, Mandal, Wadia
  hep-th/0203048

U(N1)× U(N5) gauge theory,  with

N1N5



The problem finally boils down to a combinatorial question:  

Count  # of ways to distribute the total KK momentum        in a gas of free

 single-string states for each integer value of momentum.

fundamental strings, if there are                bosonic and                  fermionic

Np

4N1N5 4N1N5

( ∞∏

m=1

(1 + qm)
(1− qm)

)4N1N5

≡:
∞∑

Np=0

qNp N (N1N5, Np)

Generating function (quantum-statistical partition function):

Compute by saddle-point method for                                        :                      

S = logN ! 2π
√

N1N5Np

N1N5, Np ! 1

in agreement with semi-classical computation !



Why did it work ?6

The string calculation requires that the strings be free, or at least weakly- coupled.  

which  imply  (see solution)

r1, r5, (V4)1/4 !
√

α′ , G1/3
N

N1gs , N5gs ! 1 ,

This is the case if 

The two calculations have a priori very different ranges of validity :

The gravity calculation requires that all volumes and curvatures are 
much larger than both the string scale and the Planck scale, 

in particular

N1gs, N5gs ! 1

because ∼ g2
sN2



This is (modulo a mild assumption) an index , which does not change 
as theory parameters, such as        ,  vary continuously. gs

The day is saved by supersymmetry:      what we were counting are the supersymmetric ground
states in a given charge sector  [1/8-BPS black holes]

can be sometimes 
checked 

An important step forward was taken with the understanding that a large  

number of (semi)classical gravity calculations should match those in a   

holographically dual large-N quantum field theory at strong coupling.   

get rid of strings on 
the D-brane side !

This is the AdS/CFT correspondence, about which you will hear more
later in this course.   



The  End


