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Particules Élémentaires, Gravitation et Cosmologie
Année 2008-’09

Gravitation et Cosmologie: le Modèle Standard
Cours 5: 30 janvier 2009

Les équations cosmologiques d’Einstein

• The cosmological “principle”
• Cosmological metric and energy-momentum tensor
• The cosmological Einstein equations
• Equations of state and energy redshifts
• Einstein’s real blunder
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The cosmological principle
Soon after the proposal of GR (1915) physicists thought of
applying it to the Universe as a whole. This is even more
justified after having checked GR for isolated systems.
At first sight, however, the task looks like an impossible
one, if compared, say, to the static, spherically symmetric
case we have already discussed.
Some drastic approximations are clearly necessary.

The Universe is indeed a very complicated system, 
dominated by (almost) empty space, but also containing 
dense objects: clusters, galaxies, stars, planets.

Also, we do not know if and where the Universe ends...
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The expansion of the Universe was not known at the time. 
Yet, even if the prevailing view was that the Universe was 
also the same at all times (i.e. static), the option of a time 
evolution was left open.
For consistency, the cosmological principle must apply 
separately to both sides of EE i.e. to: 

1. The geometry of space-time;
2. The matter content of the Universe.
Let us see how this can be translated in mathematical terms.

 Physicists were bold enough to make the assumption that, 
on average over very large regions, the Universe is the 

same at every point and in each direction. This assumption 
of homogeneity and isotropy is known as the

  “Cosmological Principle”



ds2 = gµνdxµdxν = −dt2 + a2(t)
[

dr2

1−Kr2
+ r2dΩ2

]

dΩ2 = dθ2 + sin2θdφ2 ; K = 0,±1

30 January 2009 G. Veneziano, Cours no. 5 4

The cosmological principle for the metric
One can show that, in suitable coordinates, the most general 
metric describing an isotropic, homogeneous Universe can be 
reduced to the following (Lemaître, Friedmann, Robertson, 
Walker, or FRW) form:

Here r is a dimensionless radial coordinate while the “scale 
factor” a(t) has dimensions of length
K distinguishes spatially flat (K=0) from open (K=-1) and 
closed (K=1) Universes. Only the latter one has a finite 
volume: V = 2π2a3 (for K=0, r can be given dimensions of 
length with a(t) dimensionless)



H(t0) ≡ H0 = 100 h km s−1Mpc−1 ; h ∼ 0.72± 0.05
H−1

0 = 9.778× 109 h−1years

ds2 = −dt2 + gijdxidxj = −dt2 + a2(t)
[

dr2

1−Kr2
+ r2dΩ2

]
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A few comments
The time t, usually called cosmic or proper time, is the one 
measured by a clock at rest in these coordinates;
Such a clock falls freely,  since Γi00 = 0

As we shall see the scale factor a(t) is directly related to 
the famous redshift (Hubble, 1929). A very important 
quantity in cosmology is the Hubble parameter: H(t) ≡ ȧ

a
(with an overdot = d/dt) Today (t = t0) we have:  



dt = −a(t)
dr√

1−Kr2

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1−Kr2

∆t0
a(t0)

=
∆t1
a(t1)

νem. =
a(t0)
a(t1)

νrec. ≡ (1 + z)νrec.

a(t1) ∼ a(t0)− ȧ(t0)(t0 − t1) = a(t0) (1−H0(t0 − t1))
z = H0(t0 − t1) ∼ H0d
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The cosmological redshift

t1 + Δt1

t0 +Δt0
t0

t1

t

r
z (> 0 for exp. U.) is 
called the redshift

For nearby sources:  

giving Hubble’s law: 

r1



R00 = 3
ä

a
; R0i = 0 ; Rij = −

(
2H2 +

ä

a
+ 2

K

a2

)
gij

G00 ≡ R00 −
1
2
g00R = R00 +

1
2
R = −3

(
H2 +

K

a2

)

G0i = 0 ; Gij =
(

H2 + 2
ä

a
+

K

a2

)
gij

R = −6
(

H2 +
ä

a
+

K

a2

)
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The l.h.s. of EE

It is “easy” to compute the different components of the 
Ricci (or Einstein) tensor corresponding to the above metric:

ds2 = −dt2 + gijdxidxj = −dt2 + a2(t)
[

dr2

1−Kr2
+ r2dΩ2

]
Gµν ≡ Rµν −

1
2
gµνR = −8πGTµν



T00 = ρ(t) ; T0i = 0 ; Tij = gij(t, r) p(t)

gij(t, r)dxidxj = a2(t)
[

dr2

1−Kr2
+ r2dΩ2

]
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The cosmological principle for matter
For consistency, matter has to be distributed 
homogeneously and isotropically. 
Assuming, for simplicity, matter to behave like a perfect 
fluid (this is also the case for field-theoretic models of 
matter), its energy-momentum tensor must take the 
following simple form (in our coordinate system):

At this point it is straightforward to write down the 
cosmological version of Einstein’s equations. 



T00 = ρ(t) ; T0i = 0 ; Tij = gij(t, r) p(t)

ä

a
= −4πG

3
(ρ + 3p)

Gµν ≡ Rµν −
1
2
gµνR = −8πGTµν

G00 ≡ R00 −
1
2
g00R = R00 +

1
2
R = −3

(
H2 +

K

a2

)

G0i = 0 ; Gij =
(

H2 + 2
ä

a
+

K

a2

)
gij

H2 +
K

a2
=

8πG

3
ρ ; H2 +

K

a2
+ 2

ä

a
= −8πGp
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The cosmological Einstein Equations

The (0i) equation is 0=0; the (00) and (ij) equations give:

implying:



H(t) ≡ ȧ

a

H2 +
K

a2
=

8πG

3
ρ ;

ä

a
= −4πG

3
(ρ + 3p)

ρ̇ = −3H(ρ + p)
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General comments on the CEEs

imply:

1. Hamiltonian constraint: expansion as negative kinetic energy
2. Matter resists expansion, helps collapse (if ρ+3p >0)
3. Energy conservation (dilution + work) is automatic 

(consequence of Bianchi identities)
4. Two equations for three unknowns?



p = w ρ

ρ ∼ a−3(1+w)

w = 0 ; ρ ∼ a−3

w = 1/3 ; ρ ∼ a−4 ; (Tµ
µ = 0)

w = −1 ; ρ = const. ; (Tµν ∼ gµν)
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The equation of state: examples
The missing equation is provided by the detailed model of 
matter through the so-called equation of state, typically a 
relation between p and ρ. If the equation of state is simply

(with w a constant) 

one finds immediately:

Important examples

• Cold (non relativistic) matter (“dust”)
• Relativistic matter (“radiation”)
• Cosm. const. (“vacuum energy”)



Tµν = ∂µφ∂νφ− gµν

(
1
2
∂ρφ ∂ρφ + V (φ)

)

w =
φ̇2 − 2V

φ̇2 + 2V

ρ(t) = T00 =
1
2
φ̇2 + V

gij p(t) = Tij = gij(
1
2
φ̇2 − V )

S = −
∫

d4x
√
−g

(
1
2
∂µφ∂νφgµν + V (φ)

)
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A (minimally coupled) scalar field
An interesting and relevant example:  Starting from:

If φ depends only on time:

we find:

A dynamical eos: goes from “stiff matter” (w=1) when kinetic 
terms dominates to cosm. const. (w=-1) when the potential 
energy dominates. Inflation is much based on this example.



ρ(cr) ≡ 3H2

8πG
=

∑

i

ρi + ρK ; ρK = − 3K

8πGa2

H2 +
K

a2
=

8πG

3
ρ =

8πG

3

∑

i

ρi

Ωi ≡
ρi

ρ(cr) ∑

i !=K

Ωi = 1− ΩK

ρ(cr)
0 ≡ 3H2

0

8πG
= 1.878× 10−29h2gcm−3 ρ̇i = −3Hρi(1 + wi)
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Critical density and fractions
Let us rewrite the Friedmann equation

in the form

introducing

the FE becomes a sum rule

that should hold at all times in spite of the huge 
variations of the various Ωi. Also, if we could measure the 
l.h.s., we would know in which kind of U we are living!
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Redshift of different ρi

 a(t)

ρi(t)

log-log plotradiation, a-4

matter, a-3

curv, a-2.

cosm. c., a0

 a(t0)
Notes: there is only an upper limit on the curvature 
contribution. Radiation is small (Ωr~10-4). Matter and 
“dark energy”  share most of the energy in a 1:2 ratio.
Puzzle: Why are curvature and c.c. not dominating today?



H2 +
K

a2
=

8πG

3
ρ ;

ä

a
= −4πG

3
(ρ + 3p)

H2 =
8πG

3
(ρm + ρΛ)− 1

a2
;

ä

a
= −4πG

3
(ρm − 2ρΛ) ; ρΛ =

Λ
8πG

a =
1√
Λ

; ρm = 2ρΛ
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Einstein’s real blunder
Friedmann’s equations 

appear to imply that the Universe cannot be static (H=0). 
This motivated Einstein to introduce (1917) a “cosmological 
constant” term so that, for K= +1, the equations:

admit the static solution:

Usual gravitational attraction balanced by repulsion due to Λ



ρm = 2ρΛ

H2 =
8πG

3
(ρm + ρΛ)− 1

a2
;

ä

a
= −4πG

3
(ρm − 2ρΛ)
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When Hubble discovered the redshift, Einstein took back 
his proposal calling it a “blunder”.
Actually, the blunder was not in the new equations but in 
the instability of Einstein’s static solution against small 
perturbations away from his condition 

Indeed from:

we see that, if ρm = (2+ε) ρΛ with ε positive, the Universe 
starts contracting and, by the different redshifting of ρm 
and ρΛ, ε keeps increasing until matter completely 
dominates the collapse. The opposite happens if ε starts 
slightly negative: in that case the Universe expands faster 
and faster diluting ρm. Evidence that today ρΛ ~ 2ρm.


