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Hot Big Bang cosmology
Einstein’s equations, together with the cosmological principle 
(assumption of a homogeneous, isotropic Universe at large 
scales) and present observations (e.g. the redshift), lead to a 
very simple model known as Hot Big Bang (HBB) cosmology.
Its geometry is described by the Friedmann-Lemaître- 
Robertson-Walker (FLRW) metric:

It contains a scale-factor a(t), telling us how physical 
distances depend on (cosmic-proper) time, and a discrete 
parameter (K = 0, 1, -1) giving at any given time the spatial 
geometry (flat, closed, open) with curvature (3)R ~ K/a2(t).

ds2 = gµνdxµdxν = −dt2 + a2(t)
�

dr2

1−Kr2
+ r2dΩ2

�

dΩ2 = dθ2 + sin2θdφ2 ; K = 0,±1



ρ̇ = −3H(ρ+ p) = −3Hρ(1 + w) ; w ≡ p

ρ
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a(t) is related to the redshift by (1+z) = a(t0)/a(ts). Its 
evolution is determined by the energy & pressure content of 
the universe via the two Friedman equations:

For standard matter with ρ + 3 p > 0 this leads to a scale 
factor that goes to zero at a finite time in our past, 
conventionally called t=0. 
At t=0, curvature and energy density diverge, forcing the 
physical interpretation of t=0 as the beginning of time. 

H(t) ≡ ȧ

a
H

2 +
K

a2
=

8πG

3
ρ ;

ä

a
= −4πG

3
(ρ + 3p)

implying:



ρ
(cr) ≡ 3H

2

8πG
=

�

i

ρi + ρK ; ρK = − 3K

8πGa2

H
2 +

K

a2
=

8πG

3
ρ =

8πG

3

�

i

ρi

Ωi ≡
ρi

ρ(cr) ρ̇i = −3Hρi(1 + wi)

Ω ≡
�

i �=K

Ωi = 1− ΩK

18 mars 2011 G. Veneziano, Cours no. XII 4

Critical density and fractions

The 1st Friedman equation:

can be rewritten in the simple form:

Introducing

NB: A spatially flat Universe is equivalent to  Ω = 1
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Successes of HBB cosmology
1. The cosmic microwave background 

(Penzias and Wilson 1965)

Since the 1940s, Gamow and coll. had realized that the 
Universe should now be filled with a black-body spectrum of 
electromagnetic radiation. 
The first theoretical estimate (~1950) for the present 
temperature was 5K in quite good agreement with the first 
determination of 3.5±1.0 K. 
Today, the CMB spectrum is the best Planck spectrum 
known in Nature. Its average temperature is 2.725±0.002K.
Predicting the CMBR and its temperature was the first clear 
success of HBB cosmology!
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dn(ν) =
8πν2dν

exp(hν/kBT )− 1
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2. Primordial (BB) nucleosynthesis

A second big success of HBB cosmology is that it provides a 
mechanism (BBN) for producing light nuclei*) (d, He, Li, ..) out 
of protons and neutrons. 
Temperatures of order 1010K are needed for this to happen. 
The success of BBN is not just qualitative: we know the 
physics of the underlying processes, we can calculate the 
relative abundances of those light elements and compare 
them with the data.

 *) Ηeavier elements are believed to be produced much later 
in very hot and dense stars, like supernovae.
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Horizontal bands 
correspond to 
experimental bounds;
Vertical band  to 
allowed range for 
ΩB ~ 0.021 h-2

Comparison with data

H(t0) ≡ H0 = 100 h km s
−1Mpc−1 ; h ∼ 0.72± 0.05



ΩK(t) = ΩK,0
a
2
0

a2

H
2
0

H2
= ΩK,0

�
ȧ0

ȧ(t)

�2

∼ ΩK,0

�
t

t0

� 2(1+3w)
3(1+w)
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1. Flatness problem
We know that, today, |ΩK| cannot exceed 0.1. On the other 
hand ΩK evolves in time according to:

and increases with t for a decelerated expansion (w > -1/3). 
=> |ΩK| < 10-32 at BBN & < 10-60 at t = tP ~ 10-43 sec.    
Q: Why should the Universe start with such a small spatial 
curvature w.r.t. the total space-time curvature?
NB: A similar result holds for the contribution of spatial 
gradients. It had to be infinitesimal in the early Universe in 
order not to dominate today.

Shortcomings of HBB cosmology
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2. Homogeneity problem

The CMB comes to us today, basically undisturbed (just 
redshifted) from the time of recombination (or last scattering, 
when atoms formed and the Universe became transparent to 
photons). This happened at z = zrec ~ 1100 i.e. when the 
Universe we can observe today was 1100 times smaller.
This size should be compared with another scale, the horizon, 
which is the distance traveled by light from t=0 till trec. 
For standard HBB cosmology this second length scale is much 
smaller than the size of the Universe. The ratio is about 30 at 
recombination and can be as large as 1030 if we go back to t = tP 
~ 10-43 sec (see picture). 



now

time

space

big-bang
t=0
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regions

LP



(a/a0)

(t/t0)
=

�
t

t0

� 2
3(1+w)−1

=

�
t

t0

�− 1+3w
3(1+w)
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By causality (finite c), primordial inhomogeneities can only be 
washed out over distances of the order of the horizon, while 
at recombination our Universe consisted of about 104-105 

causally disconnected regions.
The puzzle is that the CMB temperature was(is) the same in 
each one of those causally disconnected region (directions).
Clearly, the reason why in the past the Universe was larger 
than the horizon is, again, that w > -1/3: 
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3. Origin of large-scale structure (LSS)

The Universe, even if homogeneous on very large scales, 
has large (and to an even larger extent small) scale 
structures: clusters of galaxies, galaxies, stars, ...
In HBB cosmology there is no explanation for LSS. In 
order to explain today’s structures one has to start 
with some tiny inhomogeneities to be put by hand on top 
of the LFRW Universe.
In other words the HBB model tends to give either too 
much or too little LSS. Another fine-tuning problem. 



(afHf )
(aiHi)

=
ȧf

ȧi
≥ e

Nmin
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The obvious solution: acceleration! 
From the preceding discussion it is clear that an obvious 
solution to our puzzles is to insert a sufficiently long period of 
accelerated expansion, called inflation.  One demands:

If N > Nmin ~ 60 inflation turns a generic initial Universe into a 
very (spatially) flat one since a-2 goes down faster than H2. 
Thus, Ω= 1 is a generic prediction of inflation. Also, initial 
inhomogeneities are stretched to scales larger than our present 
Horizon.
The homogeneity problem is also solved since, in the far past, 
our visible Universe was inside a single Hubble patch (picture).



big-bang singularity?
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Who provides the acceleration? 

 Ordinary matter, thanks to gravitational attraction, resists the 
expansion, decelerates it. In order to accelerate the expansion 
we need a “fluid” with ρ + 3 p < 0 (negative enough pressure). 
Quite amazingly it is relatively easy to “invent” such fluids. A 
positive cosmological constant is the simplest example (in fact 
was invented by Einstein for a similar purpose) but it’s hard to 
get rid of. A more interesting choice is the potential energy of a 
nearly homogeneous and constant scalar field, called the 
inflaton. It has almost the same equation of state as a 
cosmological constant:  w ~ -1 (p ~ - ρ).
At some point the inflaton starts changing rapidly in time and 
inflation stops. The inflaton’s potential energy has to be 
dissipated, heating up the Universe (otherwise no BBN!).
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Inflation’s bonus: a quantum origin of LSS

One of the greatest bonuses of inflation is that, besides 
providing a mechanism for erasing initial inhomogeneities 
and spatial curvature, it can also generate a calculable 
(within a given inflationary model) amount of primordial 
perturbations.
As we shall discuss the reason for this “miracle” is quantum 
mechanics. Indeed, while the wavelength of any primordial 
classical perturbation gets stretched beyond our horizon by 
inflation, quantum mechanics keeps acting throughout 
inflation continuously generating new short-scale 
perturbations. When amplified and stretched to present 
cosmological scales by inflation they may well give rise to all 
the structures we see in the sky.
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Shortcomings of standard inflation
Inflation is a very interesting paradigm but looks to be 
short of a truly satisfactory theory:
1. One needs a special kind of potentials in order to 

keep the inflaton nearly constant for a long time 
(slow-roll conditions);

2. Initially, the inflaton has to be away from the 
minimum of its potential and has to be “fairly 
homogeneous” (i.e. over several Hubble lengths);

3. It is difficult (but perhaps not impossible?) to 
identify the inflaton with some (fundamental or 
effective) scalar field already present in models of 
particle physics.



18 mars 2011 G. Veneziano, Cours no. XII 19

Can QST help?
There have been several attempts to incorporate standard 
(i.e. slow-roll) inflation in QST*). It seems that slow-roll 
inflation is not a natural outcome of string theory (although it 
may be possible to get realistic inflaton potentials with some 
amount of fine-tuning). We shall instead ask the question:
What is the most natural cosmology that emerges from QST?
Let us start from the field equations that follow from the 
effective action of string theory at tree level (small gs) and 
small curvature (i.e. neglecting higher-derivative terms).
***********
*) Incidentally: classical strings (i.e. cosmic strings) have been 
shown to fail as a model for LSS.



Γeff = −
�

d
D
x

l
D−2
s

√
−Ge

−φ

�
4(D − 10)

3l2s
+R(G)− ∂µφ∂

µφ+
1

12
H

2

�

Γeff = −
�

d
10
x

l8s

√
−Ge

−φ

�
R(G)− ∂µφ∂

µφ+
1

12
H

2

�

18 mars 2011 G. Veneziano, Cours no. XII 20

Here Gµν is the string-frame metric H = dB and φ = 2Φ of 
previous formulae. If D ≠ 10 we have no chance to get a low-
curvature solution and thus we shall limit ourselves to D =10:

We limit ourselves to these massless fields representing a 
universal sector in all string theories (we shall briefly discuss 
later what happens if we add other backgrounds). 
We allow the extra dimensions to be dynamical (unfrozen).
We work in the “string frame” (fixed ls, varying lP) but physical 
consequences are frame-independent.



ds2 = −dt2 +
�

i

a2i (t)(dx
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Homogeneous (Bianchi I) equations
It is straightforward to write down the field equations for a 
homogeneous (for simplicity Bianchi I) universe:

They take the simple form:

where the so-called shifted dilaton is defined  by:

and satisfies, as a consequence,



ai(t) = (±t)pi ; φ(t) = −(1−
�

i

pi) log(±t) + const. ;
�

i

p2i = 1

ai(t) = t±
1√
d ; φ(t) = −(1∓

√
d) log t ; t > 0 ; d ≡ D − 1 = 9
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Generalized Kasner solutions
In the absence of other sources the equations of Bianchi I string 
cosmology can be easily solved. One finds:

These reduce to the usual Kasner cosmology if we impose a 
constant dilaton. Note however that, unlike for pure Kasner, one 
can have a perfectly isotropic cosmology for a non-trivial dilaton:

and similarly for t < 0. 
Also note the interesting possibility of flipping arbitrarily the 
signs of the Kasner exponents if we do not freeze the dilaton.
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Scale-factor duality
This last feature is related to an interesting symmetry of the 
string-cosmology equations under inversion of any individual scale 
factor ai(t), provided we keep the shifted dilaton invariant. 
Indeed, under ai(t) -> 1/ai(t),  Hi(t) -> - Hi(t), but our two 
independent equations go into themselves under this change.
This symmetry, mapping solutions into new (and generically 
inequivalent) ones has been called scale-factor duality (SFD) and 
is closely connected to T-duality (although the latter is a true 
symmetry of the theory). It also holds if we add stringy matter.
If the Bµν field is turned on, the discrete (Z29) SFD symmetry 
becomes a continuous O(9,9;R) symmetry closely connected to 
Narain’s O(n,n;R) group of (generically inequivalent)
compactifications of n space dimensions (see last year’s course).
Only a subgroup leaves the physics invariant.



ai(t) → ãi(t) ≡ a
−1
i (−t) ⇒ H̃i(−t) = Hi(t) ;

˙̃
Hi(−t) = −Ḣi(t)
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The pre-big bang scenario
The so-called pre big bang scenario in string cosmology is deeply 
rooted on SFD (a stringy symmetry) combined with the (more 
standard) invariance of the cosmological equations under T, the 
time reversal operation t -> -t. The combination SFDxT clearly 
acts on an individual scale factor as follows:

Therefore, given a standard FLRW cosmology (an expanding & 
decelerating Universe at t > 0), SFDxT associates to it another 
expanding, but now accelerating, cosmology at t < 0. Can we put 
together these two SFDxT-related cosmologies?
If the answer is yes we may have a new scenario in which a long 
“dual” phase at t < 0 preceded the standard FLRW phase possibly 
solving the shortcomings of the latter.
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V( )

present ?initial 

weak coupling strong coupling

Figure 2.1: According to the pre-big bang scenario, the dilaton starts in the asymptotic past

of our Universe at very large negative values, and grows through a flat potential towards

the strong-coupling regime. At present, it is either trapped at a minimum of the potential,

or keeps growing monotonically towards +∞ (see Section 10).

extended also to a more general brane–gas context, see Subsection 8.5).

This as well as the other, early attempts were based on Einstein’s cosmological equations,

i.e. on gravitational equations at fixed dilaton. Taking into account the large-distance

modifications of general relativity required by string theory, and including a dynamical

dilaton, the target-space duality typical of closed strings moving in compact spaces can be

extended (in a somewhat modified version) even to non-compact cosmological backgrounds

[599, 478, 580, 581, 582]. Consider in fact a generic solution of the field equations of string

theory (hence a point in our moduli space), which possesses a certain number n of Abelian

isometries (the generalization to non-Abelian isometries is subtle, see [206]). Working in an

adapted coordinate system, in which the fields appearing in the solution are independent

of n-coordinates, it can then be argued [477] that there is an O(n, n;R) group that, acting

on the solution, generates new ones (in other words, this group has a representation in that

part of moduli space that possesses the said isometries).

Note that, unlike strict T -duality, this continuous O(d, d;R) extension is not a true

symmetry of the theory, but only a symmetry of the classical field equations. The corre-

sponding transformations can be used to generate, from a given solution, other, generally

inequivalent ones, and this is possible even in the absence of compactification. In the next

subsections we will show in detail that such transformations, applied to a decelerated cos-

mological solution (and combined with a time-reversal transformation) lead in general to

inflation, and we shall present various (low-energy) exact inflationary solutions, with and

without sources, which may represent possible models of pre-big bang evolution. We shall

consider, in particular, both scale-factor [599, 580, 582] and O(d, d) [477, 478, 560, 367, 318]

duality tranformations, and we will discuss some peculiar kinematic aspects of such pre-big

22

Diagrams illustrating PBB idea
 (GV '91, Gasperini & GV '93)
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Figure 1.1: Qualitative evolution of the curvature scale in the standard cosmological model,

in conventional inflationary models and in string-cosmology models.

and extended objects).

In the context of general relativity, however, the problem is how to avoid the curvature

singularity appearing at the end of the phase of growing curvature. This is in general impos-

sible, for both contraction and superinflationary expansion, unless one accepts rather drastic

modifications of the classical gravitational theory. In the contracting case, for instance, the

damping of the curvature and a smooth transition to the phase of decreasing curvature can

be arranged through the introduction of a non-minimal and gauge-non-invariant coupling of

gravity to a cosmic vector [504] or scalar [555, 56] field, with a (phenomenological) modifi-

cation of the equation of state in the Planckian curvature regime [540, 621], or with the use

of a non-metric, Weyl-integrable connection [503]. In the case of superinflation, a smooth

transition can be arranged through a breaking of the local Lorentz symmetry of general

relativity [266, 281], a geometric contribution of the spin of the fermionic sources [267], or

the embedding of the space-time geometry into a more fundamental quantum phase-space

dynamics [136, 269]. In the more exotic context of topological transitions, a smooth evolu-

tion from contraction to expansion, through a state of minimal size, is also obtained with

the adiabatic compression and the dimensional transmutation of the de Sitter vacuum [316].

In the context of string theory, on the contrary, the growth of the curvature is naturally

associated to the growth of the dilaton and of the coupling constants (see for instance

Section 2). This effect, on the one hand, sustains the phase of superinflationary expansion,

with no need of matter sources or extra dimensions. On the other hand, it necessarily leads

the Universe to a regime in which not only the curvature but also the couplings become

strong, so that typical “stringy” effects become important and are expected to smooth out

the curvature singularity. This means that there is no need to look for more or less ad hoc

modifications of the theory, as string theory itself is expected to provide the appropriate

tools for a complete and self-consistent cosmological scenario.

8
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TTT+++ ttt

TTT

TTT+++ ttt

•

  expanding
post-big bang

 contracting
post-big bang

contracting
pre-big bang

 expanding
pre-big bang

dH

Figure 8.1: The four branches of the lowest-order string effective action (solid lines), and

a possible self-dual solution (dashed curve), characterized by a(t) = a−1(−t) and φ(t) =

φ(−t). The symbols T and t represent a T-duality and a time-reversal transformation,

respectively.

In the string cosmology case, however, such a problem is sharpened by the fact that the

transition from the pre- to the post-big bang phase is expected to occur at high curvature

and strong coupling, possibly in the full quantum-gravity regime. This may suggest that a

correct approach to the exit problem is to be developed in a quantum cosmology context, by

exploiting the Wheeler-De Witt equation in the string cosmology minisuperspace, and the

associated O(d, d) symmetry, which helps avoiding operator ordering ambiguities [310, 410].

In this approach, interesting in itself, the probability of quantum transition from the pre-

to the post-big bang branches of the low-energy solutions can be finite and non-vanishing,

even if the two branches are classically disconnected by a singularity [310, 322]. This

possibility will be presented in detail in Section 9. In this section we shall keep on a

classical (i.e. deterministic) description of the exit, which requires the smoothing out of the

background singularities.

It should be stressed, in particular, that the phenomenological predictions made in the

previous sections were based on the assumption that the singularity can be regularized,

and that i) a graceful exit does take place; ii) sufficiently large scales are only affected by

it kinematically, i.e. through an overall redshift of all scales. Of course, one would not

only like to know that a graceful exit does take place: one would also like to describe the

transition between the two phases in a quantitative way. Achieving this goal would amount

to nothing less than a full description of what replaces the big bang of standard cosmology

in the pre-big bang scenario. As mentioned in Section 1, this problem of string cosmology

is the analogue, in some sense, of the (still not fully solved) confinement problem of QCD.

165
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