Un boson nommé Higgs LHC : Le chemin vers la haute performance

Colloque de clôture - G. Veneziano Collège de France

4.05.2013

Jörg Wenninger CERN Beams Department Operation group

Acknowledgments to my OP group colleagues for slides and plots

Introduction

LHC magnets and early commissioning LHC performance 2010-2012 Mastering the challenges Towards top energy

Upgrades

June 1994 first full scale prototype dipole

1994 project approved by council (1-in-2)

SSC cancelled

1984

Cham el

Owner

12

Sugar

8.E

ECFA-CERN workshop

Madarah

8.2

Top Channel (in the spanlat)

17 . 11

Redecate.

anig

8.E

4+Hageatic Cimelli-4

June 2007 First sector cold

50% delivered

November 2009 Start of Run 1

LHC ring layout

The Large Hadron Collider LHC

Installed in 26.7 km LEP tunnel

Depth of 70-140 m

Lake of Geneva

LHC ring

Control Room

The Large Hadron Collider LHC

Installed in 26.7 km LEP tunnel

Depth of 70-140 m

Lake of Geneva

Outline

Introduction

LHC magnets and early commissioning

LHC performance 2010-2012

Mastering the challenges

Towards top energy

Upgrades

'Bold beginning'

Challenges & choices:

- □ High magnetic fields 8T,
 - \Rightarrow super-conducting magnets
- 2 in 1 design,
- Superfluid Helium,
- □ Luminosity ~1×10³³ cm⁻²s⁻¹

 \Leftrightarrow limit to 4 events / bunch crossing !

Parameters remained rather stable over time, except for luminosity:

LARGE HADRON COLLIDER IN THE LEP TUNNEL

Vol. I

PROCEEDINGS OF THE ECFA-CERN WORKSHOP

held at Lausanne and Geneva, 21-27 March 1984

□ Pushed to $\sim 1 \times 10^{34}$ cm⁻²s⁻¹ to compete with SSC.

Beautiful technology

1232 NbTi superconducting dipole magnets – each 15 m long
 Magnetic field of 8.3 T (current of 11.8 kA) @ 1.9 K (super-fluid Helium).

 $_{\circ}$ But they do not like beam loss – quench with few mJ/cm³.

10

- Field quality tracking and adjustment.
 - Field quality vitally important for beam stability.

Magnet sorting.

- Not all magnets are created equal !
- Optimize aperture and field quality: install good magnets where it is critical and less good magnets where it doesn't matter so much.

Magnet modeling.

 Characterize the important dynamic effects in anticipation of corrections.

Geometry of dipoles

The superconducting magnet zoo

~ 8000 SC magnets – LHC is not just dipoles

Le chemin vers la haute performance au LHC

LHC energy evolution

24.05.2013

12

-e chemin vers la haute performance au LHC

24.05.2013

September 10th 2008

A brief moment of glory

LHC magnet interconnection

busbar tongue wedge Denience superconducting cables busbar stabiliser On 19th September magnet interconnections became the hot topic for more than 1 year

Incident September 19th 2008

An electrical arc in a defect interconnection provoked a He pressure wave that damaged ~700 m of the LHC and polluted the beam vacuum over more than 2 km...

e Arcing in the interconnection

More problems on the joints

- The copper stabilizes the bus bar in the event of a cable quench (=bypass for the current while the energy is extracted from the circuit).
 Protection system in place in 2008 not sufficiently sensitive.
- A copper bus bar with reduced continuity coupled to a badly soldered superconducting cable can lead to a serious incident.

LHC Energy Evolution

24.05.2013

17

LHC is back !

20th November 2009: after 14 months of repair

LHC Energy Evolution

24.05.2013

Introduction

LHC magnets and early commissioning LHC performance 2010-2012 Mastering the challenges

Towards top energy

Upgrades

Collider luminosity

The key parameter for the experiments is the event rate dN/dt. For a physics process with <u>cross-section σ </u> it is proprotional to the collider

Luminosity L:

unit of L : 1/(surface × time)

Collider luminosity

Expression for the luminosity L (for equal particle populations, Gaussian profiles) :

* refers to the IP

- $\sigma *_x, \sigma *_y$: transverse rms beam sizes.
- **k** : number of particle packets / bunches per beam.
- **N** : number of particles per bunch. **k**×**N** : total beam intensity
- f : revolution frequency = 11.25 kHz.

LHC design
k = 2808
$N = 1.15 \times 10^{11}$
$\sigma_x^* = \sigma_y^* = 16 \mu m$

24.05.2013

Optimizing luminosity

What limits the parameters affecting the luminosity?

	Injectors (pre-accelerators)	LHC
N	Define intensity limit	Limit may be lower than injector limit (stability, heating, losses)
k	Correlated to N	Maximum ~2800 bunches (min. spacing of 25 ns)
σ	Define phase-space volume of the beam (emittance ϵ)	Preservation of emittance Focusing at the collision point (β)

- $\sigma(s) = \sqrt{\beta(s)\varepsilon/\gamma}$ \Box $\sigma_{x}^{*}\sigma_{y}^{*} = \beta^{*}\varepsilon/\gamma$
- ϵ phase space volume of the beam, γ = E/m.
- β beam envelope (betatron) function, defined by optics of the LHC, varies along the circumference (s)

High luminosity 2011-2012

Over the last 2 years the luminosity was progressively increased:

- Through the beam intensity (mainly 2011),
- By beam size ($\beta^*, \varepsilon/\gamma$) reduction at the IP.

Luminosity production 2011-2012

The integrated luminosity of both ATLAS/CMS reaches now ~28 fb⁻¹ or ~2×10¹⁵ inelastic pp interactions in each detector.

30-Sep 31-Dec 01-Apr

• We spend 37% of the scheduled time delivering collisions to the experiments ('stable beams').

Initial target

defined around

2009/2010

collisions (10¹⁴

No. inel.

20

18

16

14

12

10

8

6

4

2

n

01-Jul 01-Oct

Mode: Proton Physics

-e chemin vers la haute performance au LHC

01-Jul

01-Apr

LHC 2012 versus Design

		2012
Collision energy:	7+7 TeV	4+4 TeV
Bunch spacing (ns):	25	50
Number of bunches k:	2808	1374
Number of particles per bunch N:	1.15×10 ¹¹	1.6×10 ¹¹
Beam emittance ε (µm):	3.75	2.3
Beam size at ATLAS/CMS (μm):	16	18
Circulating beam current:	0.58 A	0.42 A
Stored energy per beam:	360 MJ	140 MJ
Peak luminosity (cm ⁻² s ⁻¹):	10 ³⁴	7.7×10 ³³

2012 peak L scaled to 7 TeV : ~2x10³⁴

24.05.2013

Introduction

LHC magnets and early commissioning LHC performance 2010-2012

Mastering the challenges

Towards top energy

Upgrades

Cryogenics challenge

- A HUGE system !!
 Most of the LHC magnets are cooled with superfluid He at 1.9K.
 - Very low viscosity.
 - Very high thermal conductivity.
- In 2012 the availability of the cryogenics reached ~95%!
 Availability ~97% if external failures are excluded !!

-e chemin vers la haute performance au LHC

24.05.2013

Superb performance of the machine protection system

Beam collimation challenge

- The LHC requires a complex multi-stage collimation system to operate at high intensity.
 - Previous hadron machines used collimators only for experimental background conditions.

Beam collimation challenge

- To be able to absorb the energy of the protons, the collimators are staged – primary, secondary, tertiary – multi-stage system.
- The system worked perfectly also thanks to excellent beam stabilization and machine reproducibility.
 - $\circ~$ ~99.99% of the protons that were lost from the beam were intercepted.
 - No magnet was quenched in operation at 3.5/4 TeV.

Not without risk !

Effect of direct beam impact on a Tungsten collimator

In high intensity accelerators with <u>positively charged beams</u> and <u>closely</u> <u>spaced bunches</u> electrons liberated on vacuum chamber surface can multiply and build up a cloud of electrons.

The cloud triggers vacuum pressure increases and beam instabilities!

> Electron energies are in the 10 to few 100 eV range.

Strong reduction of e-clouds with larger bunch spacing:

With 50 ns spacing e-clouds are much weaker than with 25 ns !

 \rightarrow One of the main reason to operate so far with 50 ns.

- The e-cloud can 'cure itself': the impact of the electrons cleans the surface (Carbon migration), reduces the electron emission probability and eventually the cloud disappears.
- 'Beam scrubbing' consists in producing e-clouds deliberately with the beams in order to reduce the SEY until the cloud 'disappears'.

○ Done at 450 GeV where fresh beams can be injected easily.

In April 2011 50 ns beams were used to '*scrub'* the vacuum chamber at 450 GeV to prepare operation at 3.5 TeV.

◦ Further slow improvement during operation at 3.5 TeV and 4 TeV.

• Operation with nominal 25 ns spacing will require further scrubbing.

Beam scrubbing

Evident improvement on beam lifetime

Flexible beams challenge

- □ We made full use of the flexibility of the LHC and of its injector chain.
- Beams with 50 ns bunch spacing are used operationally since April 2011 instead of the design 25 ns spacing.
 - More luminosity with 50 ns beams, smaller beams, easier to operate.
 - Much less susceptible to electron clouds.
- And it will come even better in 2015.

LHC beam parameters (LHC injection)

2012	Spacing	N (p/bunch)	ε [μ m]	Relative luminosity / Bunch Crossing		
	50 ns	1.65 x 10 ¹¹	1.8	4		
	25 ns design	1.15 x 10 ¹¹	3.5	1		
	25 ns low ϵ	1.2 x 10 ¹¹	1.4	2.7		
	The 'Dream Beam' for 2015 / 7 TeV					

Le chemin vers la haute performance au LHC

24.05.2013

□ Focusing (β^*) at the collision point is limited by the aperture of the last focusing quadrupoles ('triplet') \Leftrightarrow phase space conservation.

Surprising 'Unidentified Falling Objects'

- Very fast and localized beam losses were observed as soon as the LHC intensity was increased in 2010.
- The beam losses were traced to dust particles falling into the beam – 'UFO'.
- If the losses are too high, the beams are dumped to avoid a magnet quench.
 - $-\sim$ 20 beams dumped / year due to UFOs.
 - We observe conditioning of the UFOrate from ~10/hour to ~2/hour.

In one accelerator component UFOs were traced to Aluminum oxide particles.

24.05.2013

Outline

Introduction

LHC magnets and early commissioning LHC performance 2010-2012

Mastering the challenges

Towards top energy

Upgrades

LHC energy evolution

Preparing for nominal energy

- Around 10'000 high current magnet interconnections will be checked, re-done if needed. All of them will consolidated 12 months of work.
 No more S34 incident in the future.

The next objective

Turn this planning...

Two out of many possible scenarios @ 6.5 TeV

Beam	k	N _b [10 ¹¹ p]	ε [μ m]	β* [m]	L [10 ³⁴ cm ⁻² s ⁻¹]	Event pile-up	Int. L [fb ⁻¹]
50 ns	1260	1.70	1.6	0.4	2.0	110*	~30
25 ns low ε	2520	1.15	1.9	0.4	1.5	42*	~50
25 ns standard	2760	1.15	3.7	0.5	0.85	23	~30

The cryogenic limit to the luminosity is expected ~ 1.75×10³⁴ cm⁻²s⁻¹ !
 Cooling limit of the triplet quadrupoles (collision debris).

Many scenarios imply luminosity levelling to control pile-up

• Discussion & optimization between machine & experiments.

(*) leveled down to a pile-up of ~40.

Int. L based on 120 days of production/year, 35% efficiency.

- During magnet re-commissioning in 2014 we will define the target energy for the run : ≥ 6.5 TeV.
 - Experience of 2008: 6.5 TeV OK, 7 TeV may require too much training.
- □ Early in 2015 we will explore the LHC at 6.5+ TeV with low intensity.
 - Full system commissioning up to first collisions ~ 2 months.
- The first serious luminosity and some intensity ramp up will be made with 50 ns spacing.
 - We think that we know how to do that!
- This will be followed by preparation of the LHC for 25 ns operation electron cloud reduction at injection – 2 weeks.
- □ ...and finally intensity ramp up and production at 25 ns.

The first months of 2015 will be interesting...

The next few years

Proton physics Ion Physics Recommissioning

HL-LHC

24.05.2013

Outline

Introduction

LHC magnets and early commissioning LHC performance 2010-2012

Mastering the challenges

Towards top energy

Upgrades

HL-LHC

- □ Aim for a 10-fold increase in integrated luminosity.
 - \circ 3000 fb⁻¹ in 10 years as compared to 300 fb⁻¹.
- An increase in luminosity needed but the event pile-up has to be controlled.
 - Peak luminosity $\geq 10^{35}$ cm⁻²s⁻¹
 - ⇔ Smaller beam sizes at IPs, higher beam brightness
 - ATLAS / CMS peak luminosity $\sim 5 \times 10^{34}$ cm⁻²s⁻¹, pile-up of 135 !!
- Major accelerator component developments.
 - Nb₃Sn large aperture quadrupoles,
 - 11 T Nb₃Sn dipoles,
 - Crab-cavities.

Higher Fields

With HL-LHC we will see the first high(er) field Nb₃Sn magnets in an operating accelerator.

Courtesy L. Bottura & L. Rossi

Triplet Area ATLAS/CMS

High field dipoles

The goal is to develop a 10 m long 11.2 T Nb_3 Sn dipole to replace a standard LHC dipole and provide space for collimators downstream of the straight sections.

- A long magnet prototype is expected in 2015, with aim to demonstrate accelerator grade quality in 2016.
- Priority / need not fully established. Review next week...

Crab-cavities

Transverse

- Crab-cavities (CC) are RF cavities used to deflect the bunch head and tail transversely to counteract the luminosity loss from the large crossing angles and small beam sizes at HL-LHC.
 - 0
- To be installed on both sides of ATLAS and CMS.

CCs have never been used in a hadron machine - there are many challenges: noise on the beam, machine protection etc.

24.05.2013

80 km tunnel study

Lake Geneva

«Pre-Feasibility Study for an 80-km tunnel at CERN» J. Osborne and C. Waaijer, submitted to ESPG

Outlook

- □ The progress in the performance of the LHC has been breath-taking.
 - We are the first to be amazed above design after 3 years !
- The LHC is performing better than expected thanks to the quality of the design, the construction, the operation and the injectors.
 - The interface of the magnets was the only weak spot...
- Expectations for 2015 are very high the work to meet them is in full swing (and not just in the tunnel).
 - Guido and Fabiola are waiting for the next party !

Thank you for the attention!

Gime

500

62

LHC repair and consolidation

UFO frequency and future issues

□ The tolerable loss will go down by a factor 4-5 (quench margin smaller),

→ at 7 TeV UFOs could cause one beam loss / dump per <u>DAY</u> !! Could become a serious issue !!

Le chemin vers la haute performance au LHC

24.05.2013

Energy after LS1

- In 2008 attempts to commission the first LHC sector to 7 TeV revealed a problem on the magnets from one manufacturer.
 - The magnets that had been trained on test stands started to quench again.
 - The number of quenches increased rapidly beyond 6.5 TeV.
- Extrapolations showed that the number of training quenches required to reach 7 TeV is rather large.
 - Time and risk for the magnets.
- For those reasons we will most likely restart at <u>6.5</u>
 <u>TeV</u>, or slightly above depending on time and experience during the recommissioning.

Courtesy of E. Todesco

24.05.2013

66

Parameters and challenges

	LHC	HL-LHC	HE-LHC	VHE-LHC
Energy (TeV)	7	7	16	50
Dipole B (T)	8.33	8.33	20	20
Injection (TeV)	0.45	0.45	>1	>3 (?)
No. bunches	2800	2800	2800	8400
Stored energy (MJ)	360	~700	~600	5400
SR* power (W/m)	0.2	0.4	4	36
L (10 ³⁴ cm ⁻² s ⁻¹)	1	5	5	5
Events / BC*	27	135	135	135

- □ New injectors,
- □ Stored energy in the beams,
- □ Heat load on the vacuum chamber.

Performance limited by event pile-up !?

SR* = Synchrotron radiation, BC* = Bunch crossing

- Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).
- □ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole.

Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

□ An electrical arc developed which punctured the helium enclosure.

Secondary arcs developed along the arc.

Around 400 MJ from a total of 600 MJ stored in the circuit were dissipated in the cold-mass and in electrical arcs.

Large amounts of Helium were released into the insulating vacuum.

In total 6 tons of He were released.

- Cold-mass Vacuum vessel Line E Cold support post Warm Jack Compensator/Bellows Vacuum barrier
- Pressure wave propagates along the magnets inside the insulating vacuum enclosure.
- □ Rapid pressure rise :
 - Self actuating relief valves could not handle the pressure.
 designed for 2 kg He/s, incident ~ 20 kg/s.
 - Large forces exerted on the vacuum barriers (every 2 cells).
 designed for a pressure of 1.5 bar, incident ~ 8 bar.
 - Several quadrupoles displaced by up to ~50 cm.
 - Connections to the cryogenic line damaged in some places.
 - Beam vacuum to atmospheric pressure.