Particules Élémentaires, Gravitation et Cosmologie Année 2005-2006
Interactions fortes et chromodynamique quantique II: aspects non-perturbatifs Cours IV: 28 fevrier 2006

## Jouant avec $\mathrm{N}_{\mathrm{c}}, \mathrm{N}_{\mathrm{f}}$

- Reminder from previous lecture
- Motivations for large-N
- Counting powers of N :

1. $N$-vector-valued fields
2. $N \times N$ matrix-valued fields, $Q C D$

Masses, couplings, anomaly in large-N QCD

## Reminder from last week

- We considered first QCD with $\mathrm{N}_{\mathrm{f}}$ quark flavours in an ideal world where its full global classical symmetry

$$
G_{F}=S U\left(N_{f}\right)_{L} \otimes U(1)_{L} \otimes S U\left(N_{f}\right)_{R} \otimes U(1)_{R} \otimes U(\text { is not explicitly broken (no masses, no anomaly) }
$$

- We assumed that $G_{F}$ is spontaneously broken down to its diagonal subgroup $U\left(N_{f}\right)_{V}$ by a $B E C$ :

$$
\langle 0| \bar{\psi}_{i} \psi_{j}|0\rangle=c \delta_{i j} \Lambda^{3} \equiv \delta_{i j}\langle\bar{\psi} \psi\rangle
$$

- Then, according to Goldstone's theorem, there must be $N_{f}{ }^{2}$ NG bosons, $\pi_{i j} \sim q^{\star} q_{j}$ that couple to as many spontaneausly broken symmetry currents (no sum over i,j)

$$
\langle 0| J_{\mu 5}^{i j}\left|\pi_{i j}\right\rangle=-i F_{\pi} q_{\mu}
$$

- We then considered the effect of (small) quark masses $m_{i}$ while still neglecting the anomaly, and found that our NGB become PNGB with masses given to first order in $m_{i}$ by:
$\mu_{i j}^{2}=-F_{\pi}^{-2}\left(m_{i}+m_{j}\right)\langle\bar{\psi} \psi\rangle ; i, j=1,2, \ldots N_{f}$
In this (no anomaly) limit the mass (energy) eigenstates are «pure» (unmixed) in the quark basis.
This works perfectly well for the 6 flavourful PNGB:

$$
\pi^{ \pm} \sim u d^{*}, d u^{*} ; K^{+}, K^{-} \sim u s^{*}, s u^{*} ; K^{0}, K^{0^{*}} \sim d s^{*}, s d^{*}
$$

(their measured masses already tell us much about the relative values of the corresponding quark masses)

This does not work at all for the 3 flavour-less PNGB

$$
u u^{*}=? ?, d^{*}=? ?, s s^{*}=? ?
$$

- We suspected this problem to have to do with the ABJ anomaly coming from the diagram (GV2, KK1)


Indeed, this diagram only contributes to the flavourless channels (recall: gluons do not carry flavour!). In fact the contribution of the anomaly to the flavourless $3 \times 3$ mass matrix is "completely democratic" in flavour space:


NB: $a \neq 0$ requires $\nu \neq 0$, instantons (KK2)

## Can the anomaly save us?

- Let us combine the two contributions to the PNGB masses: a) from quark masses, and b) from the anomaly. We get:


Two limiting cases:

1. If $a=0$ we have "pure quark" eigenstates ( X ) 2. If $m_{i}=0$ we have two massless eigenstates and one, the flavour singlet of mass $^{2}=3 a$
If $m_{u}=m_{d}=0$ and $\mu_{s s}{ }^{2} \ll a$, we have approximate eigenvalues $0,2 / 3 \mu_{s s}{ }^{2}, 3 a+1 / 3 \mu_{s s}{ }^{2}$ and the right flavour-mixing pattern..

$$
\begin{gathered}
\pi^{0} \sim \frac{1}{\sqrt{2}}\left[u u^{*}-d d^{*}\right] \\
\eta \sim \frac{1}{\sqrt{6}}\left[u u^{*}+d d^{*}-2 s s^{*}\right], \eta^{\prime} \sim \frac{1}{\sqrt{3}}\left[u u^{*}+d d^{*}+s s^{*}\right]
\end{gathered}
$$

The problem in dealing quantitatively with the anomaly and instantons is that, unlike the explicit breaking due to quark masses, there is apparently no sense in which the anomaly can be treated as a perturbation.
This is true, a priori, of all non-perturbative phenomena in QCD, almost by definition.
Fortunately, we can find appropriate limits in which the anomaly can be regarded as being small..

## The large- N idea

- When the coupling constant $\alpha_{s}$ is large, as it is our case, there is no reason to stop perturbation theory (i.e. the loop expansion) at any finite order
- Terms of order $\exp \left(-1 / \alpha_{s}\right)$ are invisible in PT
- Can we find, in this regime, another small expansion parameter?
- At first sight the answer looks negative: QCD depends just on one dimensionful constant, $\Lambda_{Q C D}$
- It turns out, however, that a trick to generate another small parameter does exis $\dagger$
- It is the so-called large-N expansion of QCD
- Consider a whole infinite family of QCD-like theories that differ from QCD by having $S U(N)$ (rather than $S U(3)$ ) as gauge symmetry.
- Unlike powers of $\alpha_{s}$, powers of $1 / \mathrm{N}$ do not correspond to the number of loops, but to some more global, topological, property of the Feynman diagrams
- Actually, $1 / \mathrm{N}$ methods are of much more general applicability (also in statistical mechanics where they were first discovered).
- There are essentially two kinds of $1 / \mathrm{N}$ expansions:

1. When fields are $N$-dim vectors of some $O(N)$ symmetry
2. When fields are $N x N$ matrices of some $S U(N)$ symmetry

The former case is much easier; unfortunately, QCD belongs to the second..

## Vector fields in $O(N)$

- A prototype model is as follows (sum over i understood):

$$
S=\int d^{4} x\left[\frac{1}{2}\left(\partial_{\mu} \phi^{i} \partial_{\mu} \phi^{i}-m^{2} \phi^{i} \phi^{i}\right)-g\left(\phi^{i} \phi^{i}\right)^{2}\right]
$$

Its Feynman rules are simple:
$i \longrightarrow q \quad j=\delta_{i j} /\left(q^{2}-m^{2}\right)$


Consider now, for instance, a 2->2 scattering process:



Q: What characterizes the leading diagrams?
A: Certainly not the number of loops, but some global topological property. How can we characterize them?

Let us introduce a "fake" heavy singlet and redraw diagrams


A: At large $N$ the leading diagrams are those that become disconnected as soon as one heavy-singlet line is cut. They are "trees" from the point of view of the heavy singlet This is what makes life "easier" (see seminar by P. Di Vecchia)

## Matrix-valued fields, QCD

- The gauge fields of QCD, $A_{\mu}{ }^{a}$ can be rewritten as $N \times N$ matrices through: $A_{\mu j}{ }^{i}=\Sigma_{a}\left(T^{a}\right)_{j}^{i} A_{\mu}{ }^{a}$
- A gauge transformation acts as $A_{\mu} \rightarrow \cup A_{\mu} U^{+}+$derivatives
- Quark fields are instead N -dim vectors of $\operatorname{SU}(\mathrm{N})$ and transform as $\psi-->U \psi, \psi^{+}$--> $\psi^{+} U^{+}$
- However they also carry a flavour label ( $f=1,2, . . N_{f}$ )
- The essential points of the $1 / \mathrm{N}$ expansion can be easily understood, once more, if we «decorate» the FD by adding lines that keep track of these colour/flavour indices:

$$
i, f \quad q \quad j, f^{\prime}=\delta_{i j} \delta_{f f}\left(q^{2}-m^{2}\right)^{-1}
$$

## Drawing Feynman diagrams à la '† Hooft


propagators
quark-gluon

vertices

Counting powers of $g, N$ and $N_{f}$ is now straightforward

## Counting powers of $9, N, N_{f}$ graph topology

Easiest to give examples:


$$
g^{8} N^{5} N_{f}=\left(g^{2} N\right)^{4} N N_{f}
$$



Apart for powers of $g^{2} N$, FDs carry an extra power of $N_{f} / N$ per quark loop and an extra power of $1 / \mathrm{N}^{2}$ per handle (degree of non-planarity)

## Different large-N limits

This means that we can consider the following large N limits:

1. Take $N$-> infinity while keeping $g^{2} N$ and $N_{f}$ fixed: both quark loops and non planar diagrams are suppressed (this is the original ' t -Hooft large-N expansion)
2. Take $N$-> infinity while keeping $g^{2} N$ and $N_{f} / N$ fixed: quark loops are included, but non planar diagrams are suppressed (so-called topological expansion)

But why should one be interested in these limits?

## Masses, widths, scattering at large N

Let us keep the $\Lambda_{Q C D}$ parameter fixed as we send $N$ to infinity. One can figure out how different quantities scale at large $N$

1. Masses of hadrons become $N$-independent in $\Lambda_{Q C D}$ units
2. Hadronic couplings, widths, scattering amplitudes vanish in $\Lambda_{\text {QCD }}$ units
3. Couplings to singlet currents, leptonic, photon widths, blow up in $\Lambda_{Q C D}$ units (e.g. $\pi^{0} \rightarrow \gamma \gamma, F_{\pi} \sim N$ )
4. Topology of the leading Feynman diagrams at large $N$ is the same as that describing the scattering of strings (reason for discovery of string theory in the sixties?)
___ =quark Omitting double lines =gluon


Breakup of long string costs $N_{f} / N$

G. Veneziano, Cours no. 4

## The axial anomaly at large N


$\sim g^{4} N^{3}=O(N)$
Anomaly contribution down

by $N_{f} / N$

$$
\sim \delta_{i j} \delta_{k l} g^{4} N^{2}=O\left(N_{f}\right)
$$

## In conclusion

Using the large- $N$ idea (at fixed $N_{f}$ ) we managed to «buy» a new small parameter controlling the anomaly-induced breaking of $U(1)_{A}$. The parameter a turns out to be $O\left(N_{f} / N\right)$

Recall that the PNGB mass matrix contains quantities like $\mu_{i j}{ }^{2}$, which are proportional to the quark masses, and $a$.
=> We are able to use perturbation theory in both if we consider both the small-mass and the large-N limits

This is what we shall do next time in order to achieve a quantitative solution of the $U(1)$ problem

