Particules Élémentaires, Gravitation et Cosmologie Année 2007-08

Le Modèle Standard et ses extensions

The Flavour Sector

Particle Physics in one page

$$
\begin{align*}
\mathcal{L}_{\sim S M}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+i \bar{\psi} \not \supset \psi \tag{1}\\
& +\psi_{i} \lambda_{i j} \psi_{j} h+h . c . \tag{2}\\
& +\left|D_{\mu} h\right|^{2}-V(h) \tag{3}\\
& +N_{i} M_{i j} N_{j} \tag{4}
\end{align*}
$$

The gauge sector
The flavour sector
The EWSB sector
The v-mass sector
(if Majorana)
The quadrant of nature whose laws can be summarized in one page with absolute precision and empirical adequacy

One century to develop it, from Maxwell on
Can it be the end of the story?

The 3 Theorems of the flavour sector

(in spite of the many parameters in \mathcal{L})

$$
+\psi_{i} \lambda_{i j} \psi_{j} h+h . c .
$$

(the 2nd line of page 1)

* Theorem 1: Neglecting v-masses, L_{e}, L_{μ} and L_{τ} are separately conserved (and CP is exact in the lepton sector)

Theorem 2: In the quarks, all flavor violations reside in the weak charged-current amplitude proportional to a unitary matrix

$$
\underbrace{u_{i}=\left(u_{w}, c, t\right)}_{d_{j}=(d, s, b)}=V_{i j} A \text { with } V V^{+}=\mathbf{1}
$$

*Theorem 3: Neglecting v-masses, CP is violated in as much as V is "intrinsically" complex, i.e. a single phase δ is nonzero

Theorem 1: Neglecting neutrino masses, L_{e}, L_{μ} and L_{τ} are separately conserved* (and CP is exact in the lepton sector)

$$
\text { Proof: } \quad \mathcal{L}^{(l e p t)}=i \bar{L}_{i} \not \supset L_{i}+i \bar{e}_{i}^{c} \not D e_{i}^{c}+e_{i} \lambda_{i j}^{e} e_{j}^{c}(v+h)+(N-\text { terms })
$$

Since $\quad \lambda^{e}=V_{L}^{T} \lambda_{d}^{e} V_{R} \quad$ with " d " for "diagonal" can redefine
so that

$$
V_{R} e^{c} \Rightarrow e_{p h}^{c} \quad V_{L} L=\binom{V_{L} v}{V_{L} e} \Rightarrow\binom{v_{p h}}{e_{p h}} \equiv L_{p h}
$$

$$
\mathcal{L}^{(l e p t)}=i L_{p h}^{-} \not D L_{p h}+i e_{p h}^{\bar{c}} \not D e_{p h}^{c}+e_{p h}^{T} \lambda_{d}^{e} d_{p h}^{c}(v+h)+(N-\text { terms })
$$

Essential that v and e are rotated simultaneously, since

$$
\left(m_{e} e e_{c}+m_{\mu} \mu \mu_{c}+m_{\tau} \tau \tau_{c}\right)(1+h / v)
$$

$$
Z_{\mu} \overline{{ }_{2}} \gamma_{\mu} e, \quad Z_{\mu} \overline{\mathrm{v}} \gamma_{\mu} v
$$ but also $W_{\mu} \bar{e} \bar{\gamma}_{\mu} \nu$

(*up to very small quantum effects, (perhaps relevant in the early universe)

Theorem 2: In the quarks, all flavor violations reside in the weak charged-current amplitude proportional to a unitary matrix

$$
\underbrace{u_{i}=\left(u_{w}, c, t\right)}_{d_{j}=(d, s, b)}=V_{i j} A \text { with } V V^{+}=\mathbf{1}
$$

Proof:

$$
\begin{aligned}
\mathcal{L}^{(q u a r k s)}= & i \bar{Q} \not D Q+i \overline{u^{c}} \nexists u^{c}+i \bar{d}^{c} \not D d^{c} \\
& +u^{T} U_{L}^{T} \lambda_{d}^{u} U_{R} u^{c}(v+h)+d^{T} D_{L}^{T} \lambda_{d}^{d} D_{R} d^{c}(v+h)
\end{aligned}
$$

hence, this time, by going to the physical basis, all diagonal currents, $J_{\mu}^{e m}$ and J_{μ}^{Z}, remain unchanged, but not

$$
\begin{aligned}
W_{\mu} \bar{u} \gamma_{\mu} d & \Rightarrow W_{\mu} \bar{u}_{p h} U_{L} D_{L}^{+} \gamma_{\mu} d_{p h} \\
& =W_{\mu} \bar{u}_{p h} V \gamma_{\mu} d_{p h} \quad \text { with } \quad V=U_{L} D_{L}^{+}
\end{aligned}
$$

(Note the asymmetry between quarks and leptons!)

Testing the Theorems

Qualitative, but highly significant:
L_{e}, L_{μ} and L_{τ}-Violations

$$
\begin{aligned}
& B R(\mu \rightarrow e+\gamma)<1.2 \cdot 10^{-11} \\
& B R(\mu \rightarrow e \bar{e} e)<1.010^{-12} \\
& C R(\mu \rightarrow e \text { in } T i)<6.110^{-13}
\end{aligned}
$$

and weaker but still significant in the τ case
(with v-masses included)

$$
\begin{aligned}
& \mathcal{L}_{\mu \rightarrow e+\gamma} \approx A\left(\bar{\mu} \sigma_{v \mu} e\right) F_{v \mu} \\
& \qquad A<e \frac{\alpha}{\pi} \frac{m_{\mu}}{m_{W}^{2}} \frac{m_{v}}{m_{W}} \\
& \qquad\left.\quad B R\right|_{S M} \approx 10^{-50}
\end{aligned}
$$

Quantitative: (highly interrelated)

$$
V V^{+}=\mathbf{1}
$$

Calculable Flavour Changing Neutral Current processes (FCNC) CP-asymmetries (see next lecture)

My own favorite test of Flavour Physics

$$
\mu \rightarrow e+\gamma
$$

Current limit $B R(\mu \rightarrow e+\gamma)<1.2 \cdot 10^{-11}$
An experiment, MEG, just starting at PSI aiming at a factor of 100 better sensitivity

Two good reasons to believe in it:

1. Unification
2. Neutrino oscillations

(not only the LHC)

$$
V V^{+}=\mathbf{1}
$$

$$
\begin{array}{lll}
\Sigma_{i}\left|V_{a i}\right|^{2}=1 & a=1,2,3 & 3 \text { rel.s (Type I) } \\
\Sigma_{i} V_{a i} V_{i b}^{*}=0 & a \neq b & 6 \text { rel.s (Type II) }
\end{array}
$$

Type I: $\quad\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9992(11)$
(about 1 ppm precision!)

$$
\begin{align*}
& N \rightarrow N^{\prime}+e+v \Rightarrow\left|V_{u d} f^{u d}(0)\right| \quad\left|V_{u d}\right|=0.97377(27) \\
& d \rightarrow u+e+\bar{v} \\
& K \rightarrow \pi+e+v \Rightarrow\left|V_{u s} f^{u s}(0)\right| \quad\left|V_{u s}\right|=0.2257(21) \\
& s \rightarrow u+e+\bar{v} \\
& B \rightarrow X_{u}+l+\bar{v} \Rightarrow\left|V_{u b}\right| \\
& \left|V_{u b}\right|=4.31(30) \cdot 10^{-3} \\
& b \rightarrow u+l+\bar{v} \\
& \text { (10\%) }
\end{align*}
$$

isospin, $\mathrm{SU}(3) \sim$ conserved in QCD
(about 1% precision for the second row, when $u \rightarrow c$)

FCNC processes (genuine and calculable)

(1). Interesting because absent at tree level
(hence sensitive to new physical phenomena !?)
(Theor. 2: only the W-int.s produce flavor change, not the Z !)
(2. Genuine? E.g.: $b \bar{s} \rightarrow c \bar{c}$? No

Yes this diagram, but how about its gluon dressing?
It depends on the typical momentum of the int. lines:
If small ($\leq 1 \mathrm{GeV}$) not calculable, if large yes.
(asymptotic freedom of QCD)

$$
\Rightarrow \quad \begin{gathered}
\Delta m_{K \bar{K}} \text { (the "real part") no } \\
\varepsilon_{K} \text { (the "imag. part") yes (see next lecture) }
\end{gathered}
$$

The actual computation of a FCNC process

(1). The "short-distance" EW loop

(2. The gluon dressing
: an effective operator \widehat{O} with a known coefficient C (a low energy experiment is insensitive to the internal structure of the loop)
:generally divergent
$\Rightarrow C\left(\alpha_{S} \log \frac{M}{m}, \alpha_{S}\right) \quad M=M_{W}, m_{t} \quad m=m_{c}, m_{b}$
Need to re-sum all orders (RG) in $\alpha_{s} \log \frac{M}{m}$
3. The "matrix element" for the actual physical process

$$
A_{i \rightarrow f}=C<f|\widehat{O}| i>
$$

Need some non perturbative technique or some exp. data

The Flavour Precision Tests 1 (\Rightarrow = CP-conserving measurements)

	Observable	elementary process	exp. error	theor. error
	ϵ_{K}	$\bar{s} d \rightarrow d s$	1\%	$10 \div 15 \%$
\Rightarrow	$K^{+} \rightarrow \pi^{+} \bar{\nu} \nu$	$s \rightarrow d \bar{\nu} \nu$	70\%	3\%
	$K^{0} \rightarrow \pi^{0} \bar{\nu} \nu$	$s \rightarrow d \bar{\nu} \nu$		1\%
\Rightarrow	$\Delta m_{B d}$	$b d \rightarrow d b$	1\%	25\%
	$A_{C P}\left(B_{d} \rightarrow \Psi K_{S}\right)$	$b d \rightarrow d b$	5\%	<1\%
\Rightarrow	$B_{d} \rightarrow X_{s}+\gamma$	$b \rightarrow s+\gamma$	10\%	$5 \div 10 \%$
\Rightarrow	$B_{d} \rightarrow X_{s}+l l$	$b \rightarrow s+l l$	25\%	10 $\div 15 \%$
	$B_{d} \rightarrow X_{d}+\gamma$	$b \rightarrow d+\gamma$		$10 \div 15 \%$
	$B_{d} \rightarrow l l$	$b d \rightarrow l l$		10\%
	${ }^{B_{d} \rightarrow X_{d}+l l}$	$b \rightarrow d+l l$		$10 \div 15 \%$
\Rightarrow	$\Delta m_{B s}$	$b s \rightarrow \bar{s} b$	< 1%	25\%
	$A_{C P}\left(B_{s} \rightarrow \Psi \phi\right)$	$b s \rightarrow \bar{s} b$		1\%
	$B_{s} \rightarrow l l$	$b \bar{s} \rightarrow l l$		10\%

The Flavour tests 1

$V V^{+}=\mathbf{1} \quad$ in particular:

represented in the complex plane as:

(the angle θ has no physical meaning, only the shape has it)

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

(only using CP-conserving measurements)
a non degenerate triangle
$=\mathrm{CP}$ violation (see below)

For an overall picture of flavour physics, need to discuss CP as well

See this afternoon lecture

