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Particules Élémentaires, Gravitation et Cosmologie
Année 2008-’09

Gravitation et Cosmologie: le Modèle Standard
Cours 3: 16 janvier 2009

Outils mathématiques de base en RG

• The group of GCT, scalars, vectors, tensors
• Invariant integrals and covariant differentiation
• Divergence, curl, covariant Gauss theorem 
• Curvature tensors
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Reminder from last week
In principle one could derive all equations of GR by 
first going to L.I.C. and then transforming to
arbitrary ones. This is quite cumbersome.
There is an equivalent easier procedure. All equations
should be covariant under GCT (i.e. should look the
same in all coordinate systems) and should reduce to
those of SR if we replace gμν by ημν  
In order to use this latter method we have to get 
acquainted with some mathematical tools for working in 
four-dimensional spaces with a general metric (and even 
sometime topological) structure.



xµ → x̃µ(xλ) ≡ x̃µ(x)
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The group of 
General Coordinate Transformations  

The basic symmetry group of GR is the group of 
General Coordinate Transformations (GCT):

There are essentially no restrictions on the allowed GCT 
except that they should be invertible and differentiable
(also called diffeomorphisms) 
Note analogy with gauge transformations (both are 
“local” transformations)



GCT : xµ → x̃µ(xλ) ≡ x̃µ(x)

S(x)→ S̃(x) with S̃(x̃) = S(x)
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The simplest objects are scalars. They transform 
trivially. For a constant this means that it is the 
same number in all coordinate systems.
 For a scalar field, S(x), it means that it takes the 
same value at the same physical point

Scalars



xµ → x̃µ(xλ) ≡ x̃µ(x)

Vµ(x)Wµ(x) = S(x) ; Vµ(x)dxµ = dS(x)

dxµ → dx̃µ =
∂x̃µ

∂xν
dxν

Vµ(x) ≡ ∂φ(x)
∂xµ

; Vµ(x)→ Ṽµ(x) with Ṽµ(x̃) =
∂xν

∂x̃µ
Vν(x)

W̃µ(x̃) =
∂x̃µ

∂xν
W ν(x)
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The next simplest objects are vectors. While xμ itself 
is not a vector (unlike in SR!) dxμ is a contravariant 
vector 

is a covariant vector: an important distinction in GR!
If we “contract” a contravariant vector  with a 
covariant vector we get a scalar, e.g.

Vectors

i.e.



T̃ ν1ν2...
µ1µ2...(x̃) =

∂x̃ν1

∂xρ1

∂x̃ν2

∂xρ2
. . .

∂xσ1

∂x̃µ1

∂xσ2

∂x̃µ2
. . . T ρ1ρ2...

σ1σ2...(x)

T̃µ
µ (x̃) =

∂x̃µ

∂xρ

∂xσ

∂x̃µ
T ρ

σ (x) = δσ
ρ T ρ

σ (x) = T ρ
ρ (x)
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 Tensors 
As usual we get tensors by multiplying vectors: since 
we have two kinds of vectors we can get three kinds of 
tensors: covariant, contravariant, or mixed. But, like 
with vectors, we can define the transformation 
properties of tensors independently of their origin:

The “contraction” procedure also applies to tensors, 
e.g. we can get a scalar from a mixed tensor:

NB: Symmetries in indices at same height preserved!



gµνVρ = Tµν
ρ ; gµρVρ = Tµρ

ρ ≡ V µ
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The metric tensor 
As anticipated, a most important tensor in GR is the 
metric tensor since it contains all the information 
about the geometry of space-time and gravity. The 
fact that it is a covariant two-index symmetric tensor 
follows from its definition:

gµν(x) ≡ ηab
∂ξa

X

∂xµ

∂ξb
X

∂xν
= gνµ(x)

Its inverse, denoted by gμν, is a contravariant two-
index symmetric tensor. They are used to raise and 
lower tensor indices. For instance:



d4x→ d4x̃ = |det
∂x̃µ

∂xν
|d4x

|detgµν | ≡ (−g)→ (−g̃) = |det
∂xν

∂x̃µ
|2(−g) = |det

∂x̃µ

∂xν
|−2(−g)

d4x
√
−g(x) = d4x̃

√
−g̃(x̃)
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Integration (easier than differentiation) 
Suppose we want to integrate some integrand over a 
region of space-time. The naive integration measure is 
not invariant under GCT:

We can compensate, however, this lack of invariance 
by introducing a weight in the integration measure:

Consequently:
is a good (invariant) integration measure (not unique!)



∫

R(x)
d4x

√
−g(x)S(x) =

∫

R̃(x̃)
d4x̃

√
−g̃(x̃)S̃(x̃)
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Invariant integrals 
The above results tell us how to construct invariant 
integrals as functionals of various fields, i.e. precisely 
what we shall soon need in order to formulate an action 
principle for GR. Indeed:

if the two regions correspond to the same physical 
domain in the two coordinate systems. Setting S=1 we 
get the simplest (but uninteresting) action for GR 
(just a cosmological constant term). In order to do 
better we have to consider differentiation



Vµ(x) =
∂x̃ρ

∂xµ
Ṽρ(x̃)⇒

Vµ,ν(x) ≡ ∂

∂xν
Vµ(x) =

∂x̃ρ

∂xµ

∂x̃σ

∂xν

∂

∂x̃σ
Ṽρ(x̃) +

∂2x̃ρ

∂xν∂xµ
Ṽρ(x̃)

Vµ;ν(x) ≡ Vµ,ν(x)− Γρ
µνVρ =

∂x̃ρ

∂xµ

∂x̃σ

∂xν
Ṽρ;σ(x̃)
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(Covariant) Differentiation 
We have already seen that the gradient of a scalar is a 
covariant vector. How about the derivative of a vector?
Unfortunately it is not a tensor! Indeed:

and the last term is unwanted. It turns out that one 
can fix this problem using the affine connection Γ:



Vµ;ν(x) ≡ Vµ,ν(x)− Γρ
µνVρ(x)

V µ
;ν(x) ≡ V µ

,ν(x) + Γµ
ρνV ρ(x) = gµρ(x)Vρ;ν(x)
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(Covariant) Differentiation 
The previous formula defines the covariant derivative 
of a covariant vector (giving a covariant tensor)

For a contravariant vector (note change of sign!):

is a mixed tensor. In general the covariant 
derivative adds a lower index.
N.B. Γρμν  itself is NOT a tensor
N.B.’ The covariant derivative of gμν  is zero



Vµ;ν(x)− Vν;µ(x) = Vµ,ν(x)− Vν,µ(x)

V µ
;µ(x) =

1√
−g

(√
−g V µ

)
,µ

∫

R(x)
d4x

√
−g(x)V µ

;µ(x) =
∫

R(x)
d4x

(√
−g(x)V µ

)

,µ
=

∫

∂R
d3Σµ . . .
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Curl, Divergence, Gauss
The covariant curl happens to coincide with the usual 
curl (Γρμν drops out because of its symmetry in μν) 

The covariant divergence (using the expression of Γρμν) 
takes a simple form:

This implies a covariant version of Gauss theorem:
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The Curvature Tensor 

Is there an intrinsic way to decide whether a space-
time described by a certain gμν(x) is curved or just 
flat (Minkowski) space-time written in complicated 
coordinates? The answer is yes! The necessary and 
sufficient condition for a space-time to be equivalent 
to Minkowski is that a certain four-rank tensor, the 
(Riemann) curvature tensor, is identically zero.

There are several ways to introduce the curvature 
tensor. One which is closest to the way the field-
strength tensor Fμν arises in gauge theories, is through 
the commutator of two covariant derivatives 



[Dµ, Dν ] = Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Vρ;µ;ν − Vρ;ν;µ = −
(
Γλ

ρµ,ν − Γλ
ρν,µ + Γη

ρµΓλ
ην − Γη

ρνΓλ
ηµ

)
Vλ

≡ −Rλ
ρµνVλ

V ρ
;µ;ν − V ρ

;ν;µ = Rρ
λµνV λ

Rµνρσ = gµλRλ
νρσ
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Non abelian field-strength tensor:

GR’s curvature tensor:

Also:

Introducing the fully covariant tensor

we can discuss its form and interesting symmetries



Rµνρσ =
1
2

[gµρ,νσ − gνρ,µσ − gµσ,νρ + gνσ,µρ]

+ gαβ

[
Γα

µρΓ
β
νσ − Γα

µσΓβ
νρ

]

Rµνρσ = −Rνµρσ = −Rµνσρ = Rρσµν

Rµνρσ + Rµσνρ + Rµρσν = 0
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After quite some algebra one finds:

From which we deduce the following properties

The Riemann tensor has 20 components



Rµν = gαβRαµβν = Rνµ

R = gµνRµν
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The Ricci tensor:
Related lower-rank tensors 

Has 10 components (like gμν):

The curvature scalar:

The Riemann tensor can be decomposed into 10 
components determined by the Ricci tensor and 10 
others (contained in the so-called Weyl tensor). As 
we shall see, matter determines only the Ricci 
tensor => space-time can be curved even in the 
absence of matter sources (gravitational waves!)


