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Biomedical big data potential

Death registries

2

Cancer registries

Environmental data

Screening programmes

Genetic data

Pathology records

.
o

Pharmacy records

Primary care data Built environment



The Oxford Big Data Institute

BIG DATA
INSTITUTE

Interdisciplinary research
institute of 350 researchers
working on the acquisition and
analysis of population-scale data
resources linking detailed
biological measurement with
longitudinal information on
health, treatment and outcome.

Gil McVean FRS FMedSci Director

Cohorts Measurement technologies
UK Biobank Genomics and other ‘omics
China Kadoorie Biobank Neuroimaging
Genomics England 100,000 Genomes Sensors
Local partnerships within BRC Electronic healthcare records
Tropical medicine overseas centres Mobile data
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MO0-MO3 Infectious arthropathies Impioving The healih of Aiture panaralions

Integrative analysis methods Data access and sharing
Statistics Consent
Epidemiology Privacy and security
Meta-analysis Information governance
Machine learning Intellectual property
Software development Standards and protocols

http://bdi.ox.ac.uk



Blood Oxygenation Level-Dependent Effect
Intro to BOLD fMRI Red blood — Blue blood

Diamagnetic — Paramagnetic

* Finger Tapping

Single fMRI Image

* Learning task

I I
Thresholded T statistic image overlaid on single fMRI image

* Mass Univariate Model:
Actually, just a simple regression model at each voxel



Median sample size
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Typical fMRI sizes break the N=20 barrier only recently

Poldrack, et al. (2017). Nature Reviews. Neuroscience.



Motor: tongue, hand and foot movements vs. rest
Working memory: 2-back’ vs.'0-back’

Emotion: fearful faces vs. neutral faces

Gambling: monetary reward vs. punishment

Neuroimaging: Big Effects?

Main effects in fMRI strong - designed experiment

d=0.8 = r2=13%

But interest
is rather in

subtle

modulations,

r2<1%

Big N needed

% BOLD change
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Big(ger) Imaging Data:
The Human Connectome Project

e 1,200 subjects

e Population sample

e Subjects drawn from state birth records

* Twins+siblings design, =300 families of =4
* Cutting edge MRI

 fMRI + rs-fMRI + dMRI

* Extensive non-imaging

e 478 variables on behavior, health, medical
history

* All data openly shared

* Allows unprecedented methodological
development

Van Essen et al. (2013). The WU-Minn Human Connectome Project:
An overview. Neurolmage, 80, 62—79.




Human Connectome Project

Conventional 3T data (2 mm) HCP data (1.25 mm)

 All data freely

available
e ‘1-click’
authorization
* All imaging data
* Coarsened age

* No sensitive
medical history

* No family
structure.

* With signed
authorization
e All variables

Principal Direction



UK Biobank: Sampling Design

e 2006-2010: 9.2 million
individuals contacted

* Drawn from NHS registers

e Aged 40-69 years

* Living within 40 km of one
of 22 assessment centres in
England, Wales, and
Scotland

e 503,317 consented & had
baseline assessment

* 5.5% response rate

Fry et al. (2017). Am. J of Epid, 186, 1-9. http://doi.org/10.1093/aje/kwx246

Invited
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Did not attend Attended
assessment center assessment center
69,749 507,177

Not invited but
consented
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Did not consent
3.867

Consented
503,317




UK Biobank: The Sample

* Basic demographics on 9.2 million

e For 95% of those contacted (8.8m), have:

* Sex
e Birth month & year

 Townsend deprivation index (socioeconomic status)
of the post code of residence

* UK census data also available

* Fry et al. (2017) used this to to assess
characteristics of 500k subjects in UKB sample

Fry et al. (2017). Am. J of Epid, 186, 1-9. http://doi.org/10.1093/aje/kwx246
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UK Biobank: Response Rates (%)
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UK Biobank: Representitive(ish)

* UKB sample slightly more white, more affluent,
* 94.6% white in UKB, vs. 91.3% in 2011 UK Census
* 90.6% own a home in UKB, vs 80.2% in 2001 UK Census

* UKB sample slightly more healthy
* Lower disease burden, smokes less than UK population
* Well-established “healthy volunteer” effect
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UK Biobank: 1000+ variables

Body Mass Index Processing speed (RT) Fluid Intelligence
(N=492,753) (N=496,898) (N=190,387)

Spirometry, FEV1 Hearing test, SNR Grip strength
(N=353,384) (N=192,164) (N=499,305)

Vision, logMAR Systolic BP Max heart rate during
(N=132,026) (N=473,723) fitness test (N=95,138)

http://Www.ukbiobank.ac.u-k/data-showcase/



Big Data in UK Biobank

* Genetics
* Genotyping: 11,734,353 SNPs (all subjects)
* Sequencing (planned)

* Imaging
* 100,000 planned, ~20k so far

* MRI: T1, T2 FLAIR, SWI, dMRI, rs-fMRI t-fMRI
 Distilled into 3,144 “Image-Derived Phenotypes” IDP






UK Biobank:
maging Extension shiamen

* 2006-2010 a"e“'

* Baseline assessment of
500,000

 2014-
* Imaging of 100,000 UKB subjects
* Brain MRI, Heart MRI, Carotid ultrasound, Dexa

* Brain MRI
* T1, T2 FLAIR, T2%*, r-fMRI, t-fMRI, dMRI & SWI
e Customised FSL pipeline by S. Smith, F. Alfaro-Almagro et al.
* Generates 1000’s of “Image-Derived Phenotypes” (IDPs)

Carotid




000000000

Imaging study

biobank’

shapes faces
faces>shapes

Slide: S. Smith



Concern:
Big Imaging Data Confounds

* Just a few sources of (confound) imaging effects

Confound

Example Effects on MRI Data

Potential Artifactual Correlates

Comments

Head motion

Breathing rate/depth

Blood pressure

Age

Scanner hardware

Operator inconsistency

Striping, ringing, blurring, dMRI
dropout, low SNR, biased
connectivity

Changes in fMRI contrast, SNR,
distortion and dropout (due to B0)

BOLD contrast (fMRI) and vascular
compartment size (dMRI)

Structural atrophy (cortical thinning,
ventricle enlargement) influences
voxel partial volume effects

Differences in SNR, contrast or
artifact as a function of site or date
(all MRI modalities)

Differences in SNR, artifacts,
distortion, coverage

Diseases (PD, ADHD) and aging correlate
with increased head motion

COPD, heart conditions, BMI, exercise
levels, some fMRI tasks

Functional connectivity (fMRI), and white
matter microstructure (dMRI) in disease
Non-volumetric imaging measures;

interaction with disease progression

Other measures varying with site or date

Other measures varying with site or date

Relates to head size; may be
estimated from and partially
corrected in fMRI and dMRI

Can cause changes in real
and apparent head motion
and blood oxygenation/flow

If age is not of explicit interest,
it should generally be included
as a confound

Can occur even in studies run
with “identical” hardware

Even with automated protocol,

subject placement or instructions

can vary

Smith & Nichols (2018). Statistical Challenges in “Big Data” Human Neuroimaging. Neuron, 97(2), 263—-268.



Non-concern: Big Data Power -
N (sample size) beats K (number of tests)

* N subjects
K tests
1 effect, K-1 null

* To retain same
power, roughly:

Square the

number of tests
->

Only double the

sample size

Sample size needed for 80% power
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Smith & Nichols (2018). Statistical Challenges in “Big Data” Human Neuroimaging. Neuron, 97(2), 263—-268.



Powerful even witfgg ‘Tust” N=8,000
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UK Biobank:
maging-Genetics Association

* Imaging+Genetics
* Genetics
* 11,734,353 SNPs (all 500k subjects)
* I[maging
e MRI: T1, T2 FLAIR, SWI, dMRI, rs-fMRI t-fMRI

* Distilled into 3,144 “Image-Derived Phenotypes” IDP
* N=8,428 have both in Elliot et al. (2017)
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Elliott et al. (2017). The genetic basis of human brain structure and function ... bioRxiv. http://doi.org/10.1101/178806



UK Biobank:
maging-Genetics Association

e Strong gene-brain associations discovered
* P<1030 |
e Diffusion MRI measure: intra-cellular volume fraction
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Elliott et al. (2017). The genetic basis of human brain structure and function ... bioRxiv. http://doi.org/10.1101/178806



UK Biobank:
maging-Genetics Association

e Association between T2* in Putamen & iron
transport genes

Structural MRI

SWI Tzs!avrleﬂ,pul_mwn plus_right_pulamen

rs4428180 chr3:133466374
alleleC A

allele1 G
allele1 fres ue1ncy 0.152

impute4 in

© T1 - global volumes

® T1 - sub-cortical volumes

i ® T1 - sub-cortical volumes L+A
£ .1 o e © T1 - Cortex ROIs

= @ T2 FLAIR - White matier hyperintensities
® SWI T2* sub—cortical

© SWI T2" sub—cortical L+R

® FreaSurier - volumes

© FreeSurier - cortical areas

® FreeSurier - cortical thicknesses

rs4428180

Elliott et al. (2017). The genetic basis of human brain structure and function ... bioRxiv. http://doi.org/10.1101/178806



Progress on two problems

* Dependence (not spatial)

 Spatial Inference Under the Alternative



Related Individuals

* HCP subjects clustered in families
* Twins + siblings

e UK Biobank — relatedness varies
* “Unrelated” can mean sharing 0.0001%-0.01% of DNA

* This is small, but if effect highly heritability, some
dependence induced

* Neglected dependence = inflated FPR

* But neuroimaging software can’t accommodate complex
dependence

* Modelling dependence can also improve sensitivity



Example of Inference Bias: HCP Data,
Anatomy on 1Q

OLS vs Mixed Effects with Family Effect
189 FS Traits on 'PMAT24_A_CR'’

* 523 subjects . . l . .
e 189 Freesurfer

traits 4T
£
* Compare -
* Naive OLS Lo
« Mixed Effects, 2
random Family £ N
effect 3
|_
* OLS inflates ,,
. . o P 5 OLS: 1lm(Y~X)
significance ME:  lmer(¥-x+(1|Family))
5 0 2 : 0

T-statistics OLS (Im)



Modeling Relatedness

e Structured variance component model

. ] Kinship Matrix
* Neglecting common environment 20,=1 : Subji&j
MZ twins
Y =XB+e€ Var(e) =T = g;3(2P) + of 20,=1/2: Subji&;j
* O is kinship matrix DZ twins or sibs.

* Jointly estimate 8 and 0%, and 0%,

* Inference on H,: 5 =0 accounting for 02, # 0, or may also want
* Inference on H,: 0%, =0 (no heritability)

* Eigen-simplification
¢ =5D,5
SY=5SXB+Sg+Se =Y =XB+¢€

* This turns a correlated-data problem into an
independent but heteroscedastic one

Ganjgahi, et al. (2015). Neurolmage Fast and powerful heritability inference for family-based ... Neurolmage.



Nonparametric INference for
Genetic Analysis (NINGA)

* Initial, OLS estimate of regression
BoLs = (X*/X*)_1 X¥y*
* Make squared residuals f*,¢, regress on @ eigenvalues

U=[1 diag(D,)]
0 = (0% 02,)

BoLs = max {0, (UU)~ U'fg;LS}
e 1-step GLS of B
Bwis = (X*,( oLs)” 1X*) X*(L5s) Y
e 1-step ML of 0 = (02 62,)
Bwis = max {O, (U/(ZOLS) U) U'(L8is)” 1’[&5}

Ganjgahi, et al. (2015). Neurolmage Fast and powerful heritability inference for family-based ... Neurolmage.



NINGA Evaluations: Inference on h?

* Heritability
* h2=0%,/ (0%, + 0% ) ...testwithH,: 0%, =0
* Despite 1-step optimization

 Valid FPR control with score test
* Better than ML due to inaccuracies of 50:50 x%,:x?; null

False Positive Rates Power
5 T T 100 T T T
I
a4l ! 80 | . P2 )
[ Parametric
wn wn
L o
& 3t & 60}
= o
= S
(O] (6]
o o
1 - 20 | -
0 0
Ts  Teme Towes Twme Twwis Ts  Tume Towes Twwme Twwes
Test Statisics, h® =0 Test Statisics, h® =0.2
 Com para ble power to ML Simulation: 138 subjects, 2 families from GAW10,

5000 realisations and 500 permutation each



NINGA Evaluations: Inference on 5

* Typically regression application:
Genome-Wide Association Study (GWAS)

e X has one column for allele dose {0,1,2} for SNP

* Valid, nearly as powerful as fully converged LRT
1-Step WLS+Score Test: Null Fully Converged ML/LRT vs NINGA Score Test

10

o}

bR oL Converged LRT (FaST-LMM) : 1 hour

Upper MC ClI ;
5| Reirence Line . NINGA Score test: 3 sec.

i o | 8

. ng-:-O‘ti ‘

. r.7g=0'6 T

. ng=0:8
G

BN
T

Observed P-value

n
T

300 subjects - N o 300 subjects I
30 million SNPs 30 million non-null SNPs
0 1 2 3 4 0 i 2 3 p : 5 7 8 s 10

Expected P-value NINGA Score Test -log,, P




NINGA Association Example

* Maryland Psychiatric Research Center study

e 332 subjects of European ancestry (CEU)

e Diffusion MRI collected
* Fractional Anisotropy computed

e 2.5 M marker, 20 ROIs of Fractional Anisotropy

e “Unrelated” subjects

* But genetic relationship matrix to account for population
structure

* Running time, all ROIs, all markers
* NINGA: 2 mins, FastLMM: 6.5 hours



NINGA Association Example

* CEU sample, but mixed effect gives

OLS

NINGA (LMM)
Reference line

cleaner PP, comparable power after G.C.

PP plot (raw)

PP plot — After Genomic Control

ACR ALIC BCC ACR ALIC BCC
40 40 40 40
20 20 20 20 20 / 20 /
0 0 0 0 0 0
0 20 40 0O 20 40 0 20 40 0 20 40 0 20 40 0 20 40
GCC IFO PCR GCC IFO PCR
40 e 40 40 = 40
20 20 20 20 20 / 20 /
0 0 0 0 0 0
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
a0 SCR SFO SLF SCR SFO SLF
20 20 7 o0
0 0 0
0 20 40 0 20 40 0 20 40




Progress on two problems

 Spatial Inference Under the Alternative



Big Neuro Data:

Beyond Null Hypothes

e Task fMRI:
Scan a subject 100 times

* 99% brain active (FDR), or
80% brain active (FWE)

* Null hypothesis testing fallacy

* With enough N, can reject null
everywhere

e Task fMRI:
Scan 100,000 subjects

* Null hypothesis testing fallacy
will strike hard
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Gonzalez-Castillo et al. (2012). PNAS 109(14), 5487-92.



UK Biobank: Task TMRI
~aces Task (Faces - Shapes)

 T-statistics grow with N
* “N beats K” or “H, fallacy”
* Both at work

T-Statistics over brain, Faces — Shapes task

100 17.36
500 34.11
1000 52.10
5000 109.05
8569 144.87

-0.05

-0.04

m— 8826 _Tstat
m—— 5000 Tstat

n500_Tstat
m— N100_Tstat




Geospatial method

-140 -100 -60

Year-on-year temperature data Spatial confidents sets estimating
2°C temperature change

Sommerfeld, Sain, Schwartzman (2017). Confidence regions for spatial excursion sets from repeated random field
observations, with an application to climate. JASA, 1459



Goal: Estimate a spatial set of
activation, and its uncertainty

Alex Bowring (Warwick->Oxford)
Armin Schwartzman, Fabian Telschow (UC Irvine)
Max Sommerfeld (Gottingen)

"Point estimate” set of
where mean exceeds ¢

“Envelope” sets that cover
A., with 0 chosen ...

to control confidence (e.g.
1- o = 95%) that true set is
covered
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Threshold

1-D Intuition

Y(s) = u(s) + gs) i=1, ..
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1-D Intuition

Y(s) = u(s) + gs) i=1,..n

Y(s) Observed
ia— e c+6 group
Th resh/old . activation
c=1% Lo e—— c-0
Location
1 I H I b



1-D Intuition

Y(s) = u(s) + gs) i=1,..n

Y(s) "
i n Ortc))se;ved
C o c+6 grou
Threshold '-' o ° activation
c=1% Lo — c-0
AC
Location
1 I N H I

Use bootstrap to estimate the maximum
distribution of |€(s)| on the boundary u(s) =c¢

b estimated as (1-a)100%ile of this max dist”



Results: HCP fMRI

Faces Faces - Shapes
%BOLD = 0.5 £0.461c0 %BOLD =0.5+0.441c

* Human Connectome
Project
e Unrelated 80 dataset.

* Task fMRI block
paradigm
e Participants match faces,
or match shapes.

Red conf. set c Yellow set < Blue conf. Set e ‘Faces’ and
‘Faces — Shapes’
contrasts

Confidence Sets:
Red ‘inner’ confidence set:
95% confidence have activation > 0.5%.

Blue ‘outer’ Confidence Set:
95% confidence have activation < 0.5%.

Confdience statements simultaneous over brain.



Results: HCP fMRI

Faces - Shapes Faces - Shapes
%BOLD =0.2 +0.4670  %BOLD = 0.5 £ 0.4410

Red conf. set C Yellow set < Blue conf. Set

Confidence Sets:
Red ‘inner’ confidence set:
95% confidence have activation > 0.5%.

Blue ‘outer’ Confidence Set:
95% confidence have activation < 0.5%.

Confdience statements simultaneous over brain.

* Human Connectome
Project
e Unrelated 80 dataset.

* Task fMRI block
paradigm
e Participants match faces,
or match shapes.

* ‘Faces’ and
‘Faces — Shapes’
contrasts

 Comparison of 0.2% and
0.5% threshold



Beyond Null Hypothesis Testing

 Spatial confidence sets

* Given threshold on % effect find confidence sets...
* Inside red: 95% confident true signal greater

e Outside blue: 95% confident true signal smaller
... in FWE/simultaneous sense

Faces - Shapes Faces — Shapes
e Human Connectome %BOLD =0.510.4410 %BOLD = 0.2 + 0.4670

Project data
* N=80 subjects
* Task fMRI, Faces>Shapes
* Threshold at
0.5% (left) 0.2% (right)

Alex Bowring (Warwick->Oxford)
Armin Schwartzman (UC Irvine)
Max Sommerfeld (Gottingen)




UK Biobank: Faces-Shapes

Faces — Shapes Faces — Shapes
N =1000 N = 5000

T-statistic, Contour Inference, T-statistic, Contour Inference,
Bonferroni c=0.2% Bonferroni c=0.2%
FWE p <0.05 Volume between FWE p <0.05 Volume between

confidence sets: confidence sets:
12,791 2,621



Next steps

* Developing method for use on standardized
‘Cohen’s d’ effects

* %BOLD change divided by standard deviation of the
data.

* Extend to confidence statements on ‘peaks’
* E.g. ellipsoidal confidence regions



Population Neuroimaging
Conclusions

* Most neuroimaging ‘small’ big data

e Still presents enormous challenges
* Must deal with dependence
* Due to family or even distant relations
* Move from null hypothesis testing to estimation
* NIH: Please fund Schwartzman H,-RFT grant

* Epidemiological concerns
* Understand sample bias
* Account for confounds




* Neuroimaging Statistics
Oxford (NISOx) group

 Collaborators near
and far
e Steve Smith, FMRIB
* Tim Johnson, U Michigan
* Tor Wager, U Colorado
* Tal Yarkoni, San Antonio
* Armin Schwartzman, UC San Diego




