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Biomedical big data potential 
Death registries

Cancer registries

Hospital records

Primary care data
Pharmacy records

Pathology records

Screening programmes

Environmental data

Employment records

Built environment

Genetic data

Imaging



The Oxford Big Data Institute

Cohorts
UK Biobank

China Kadoorie Biobank

Genomics England 100,000 Genomes

Local partnerships within BRC

Tropical medicine overseas centres

Measurement technologies
Genomics and other ‘omics

Neuroimaging

Sensors

Electronic healthcare records

Mobile data

Integrative analysis methods
Statistics

Epidemiology

Meta-analysis

Machine learning

Software development

Interdisciplinary research 

institute of 350 researchers 

working on the acquisition and 

analysis of population-scale data 

resources linking detailed 

biological measurement with 

longitudinal information on 

health, treatment and outcome.

Data access and sharing
Consent

Privacy and security

Information governance

Intellectual property

Standards and protocolsGil McVean FRS FMedSci Director

The Oxford Big Data Institute

http://bdi.ox.ac.uk



Intro to BOLD fMRI
• Finger Tapping

• Learning task

• Mass Univariate Model:
Actually, just a simple regression model at each voxel

Tap 
fingers

Rest

Learn A

Recall A

Learn B

Recall B

Learn C

Recall C

Feedback

Fixation

Single fMRI Image

Thresholded T statistic image overlaid on single fMRI image

Blood Oxygenation Level-Dependent Effect
Red blood ® Blue blood
Diamagnetic ® Paramagnetic



Neuroimaging: Big Data?

Poldrack, et al. (2017). Nature Reviews. Neuroscience. 

Typical fMRI sizes break the N=20 barrier only recently

Median N by Year Effect Size for d=0.8
80% Power, 5% FWE



Neuroimaging: Big Effects?

Poldrack, et al. (2017). Nature Reviews. Neuroscience. 

• Main effects in fMRI strong - designed experiment

• d=0.8 ≈ r2=13%

• But interest
is rather in
subtle 
modulations,
r2<1%

• Big N needed

% BOLD change Cohen’s d

Motor: tongue, hand and foot movements vs. rest

Working memory: ‘2-back’ vs.‘0-back’

Emotion: fearful faces vs. neutral faces

Gambling: monetary reward vs. punishment

d=0.8



Big(ger) Imaging Data: 
The Human Connectome Project
• 1,200 subjects

• Population sample
• Subjects drawn from state birth records
• Twins+siblings design, ≈300 families of ≈4

• Cutting edge MRI
• fMRI + rs-fMRI + dMRI

• Extensive non-imaging
• 478 variables on behavior, health, medical 

history
• All data openly shared
• Allows unprecedented methodological 

development

Van Essen et al. (2013). The WU-Minn Human Connectome Project: 
An overview. NeuroImage, 80, 62–79.



Human Connectome Project

• All data freely 
available
• ‘1-click’ 

authorization
• All imaging data
• Coarsened age
• No sensitive 

medical history
• No family 

structure.
• With signed 

authorization
• All variables

Principal Direction

FA



UK Biobank: Sampling Design
• 2006-2010: 9.2 million 

individuals contacted
• Drawn from NHS registers
• Aged 40–69 years
• Living within 40 km of one 

of 22 assessment centres in 
England, Wales, and 
Scotland

• 503,317 consented & had 
baseline assessment
• 5.5% response rate

Fry et al. (2017). Am. J of Epid, 186, 1-9. http://doi.org/10.1093/aje/kwx246



UK Biobank: The Sample

• Basic demographics on 9.2 million
• For 95% of those contacted (8.8m), have:

• Sex
• Birth month & year
• Townsend deprivation index (socioeconomic status) 

of the post code of residence

• UK census data also available
• Fry et al. (2017) used this to to assess 

characteristics of 500k subjects in UKB sample

Fry et al. (2017). Am. J of Epid, 186, 1-9. http://doi.org/10.1093/aje/kwx246



UK Biobank: Response Rates (%)
• UKB Sample: 

More women, 
older &  
better SES 
than all 
invitees
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UK Biobank: Representitive(ish)
• UKB sample slightly more white, more affluent, 
• 94.6% white in UKB, vs. 91.3% in 2011 UK Census
• 90.6% own a home in UKB, vs 80.2% in 2001 UK Census

• UKB sample slightly more healthy
• Lower disease burden, smokes less than UK population
• Well-established “healthy volunteer” effect

Mortality

Men Women

Smoking

Women, 45–54 years

Fry et al. (2017). 



UK Biobank: 1000+ variables

http://www.ukbiobank.ac.uk/data-showcase/

Fluid Intelligence 
(N=190,387)

Grip strength 
(N=499,305)

Max heart rate during 
fitness test (N=95,138)

Systolic BP 
(N=473,723)

Hearing test, SNR 
(N=192,164)

Vision, logMAR
(N=132,026)

Spirometry, FEV1 
(N=353,384)

Processing speed (RT) 
(N=496,898)

Body Mass Index 
(N=492,753)



Big Data in  UK Biobank

• Genetics

• Genotyping: 11,734,353 SNPs (all subjects)

• Sequencing (planned)

• Imaging

• 100,000 planned, ~20k so far

• MRI: T1, T2 FLAIR, SWI, dMRI, rs-fMRI t-fMRI

• Distilled into 3,144 “Image-Derived Phenotypes” IDP



SKIP



UK Biobank: 
Imaging Extension
• 2006-2010

• Baseline assessment of 

500,000

• 2014-

• Imaging of 100,000 UKB subjects

• Brain MRI, Heart MRI, Carotid ultrasound, Dexa

• Brain MRI

• T1, T2 FLAIR, T2*, r-fMRI, t-fMRI, dMRI & SWI

• Customised FSL pipeline by S. Smith, F. Alfaro-Almagro et al.

• Generates 1000’s of “Image-Derived Phenotypes” (IDPs)



T1 T2 FLAIR

Brain Imaging 
6 modalities 

Miller et al, in submission

FA MD MO

ICVF ISOVF OD

CC SLF

dMRI

a

shapes faces
faces>shapes

 task
fMRIresting

fMRI

 SWI T2*

swMRI

Slide: S. Smith



Concern:
Big Imaging Data Confounds
• Just a few sources of (confound) imaging effects 

Smith & Nichols (2018). Statistical Challenges in “Big Data” Human Neuroimaging. Neuron, 97(2), 263–268. 



Non-concern: Big Data Power -
N (sample size) beats K (number of tests)

• N subjects
K tests

1 effect, K-1 null 
• To retain same 

power, roughly:
Square the 
number of tests

-> 
Only double the 
sample size

Smith & Nichols (2018). Statistical Challenges in “Big Data” Human Neuroimaging. Neuron, 97(2), 263–268. 



Powerful even with ‘just’ N=8,000

• d

Miller, et al. (2016). Nature Neuroscience, 19(11), 1523–1536. 



UK Biobank: 
Imaging-Genetics Association
• Imaging+Genetics
• Genetics

• 11,734,353 SNPs (all 500k subjects)

• Imaging
• MRI: T1, T2 FLAIR, SWI, dMRI, rs-fMRI t-fMRI
• Distilled into 3,144 “Image-Derived Phenotypes” IDP

• N=8,428 have both in Elliot et al. (2017)

Elliott et al. (2017). The genetic basis of human brain structure and function … bioRxiv. http://doi.org/10.1101/178806

Anatomy Thickness
Diffusion

TBSS
Anatomy
Volume

Diffusion
Tracks



UK Biobank: 
Imaging-Genetics Association
• Strong gene-brain associations discovered
• P<10-30 !  

• Diffusion MRI measure: intra-cellular volume fraction

Elliott et al. (2017). The genetic basis of human brain structure and function … bioRxiv. http://doi.org/10.1101/178806



UK Biobank: 
Imaging-Genetics Association

• Association between T2* in Putamen & iron 
transport genes

Elliott et al. (2017). The genetic basis of human brain structure and function … bioRxiv. http://doi.org/10.1101/178806



Progress on two problems

• Dependence (not spatial)

• Spatial Inference Under the Alternative



Related Individuals

• HCP subjects clustered in families
• Twins + siblings

• UK Biobank – relatedness varies
• “Unrelated” can mean sharing 0.0001%-0.01% of DNA
• This is small, but if effect highly heritability, some 

dependence induced

• Neglected dependence = inflated FPR
• But neuroimaging software can’t accommodate complex 

dependence
• Modelling dependence can also improve sensitivity



Example of Inference Bias: HCP Data,
Anatomy on IQ
• 523 subjects
• 189 Freesurfer

traits
• Compare
• Naïve OLS
• Mixed Effects, 

random Family 
effect

• OLS inflates 
significance

OLS vs Mixed Effects with Family Effect
189 FS Traits on 'PMAT24_A_CR'

T−statistics OLS (lm)
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OLS: lm(Y~X)
ME:  lmer(Y~X+(1|Family))



Modeling Relatedness
• Structured variance component model

• Neglecting common environment

• Φ is kinship matrix 

• Jointly estimate β and σ2
A and σ2

E
• Inference on H

0
: β = 0 accounting for σ2

A ≠ 0, or may also want

• Inference on H
0
: σ2

A = 0 (no heritability)

• Eigen-simplification 

• This turns a correlated-data problem into an 

independent but heteroscedastic one

Ganjgahi, et al. (2015). NeuroImage Fast and powerful heritability inference for family-based … NeuroImage.

Kinship Matrix
2Φ

ij
= 1     :  Subj i & j

MZ twins

2Φ
ij

= 1/2 :  Subj i & j
DZ twins or sibs.



Nonparametric INference for 
Genetic Analysis (NINGA)
• Initial, OLS estimate of regression

• Make squared residuals f*OLS, regress on Φ eigenvalues

• 1-step GLS of β

• 1-step ML of θ = (σ2
E σ2

A)’

Ganjgahi, et al. (2015). NeuroImage Fast and powerful heritability inference for family-based … NeuroImage.

U=[1 diag(Dg)]
θ = (σ2

E σ2
A)’



NINGA Evaluations: Inference on h2

• Heritability
• h2 = σ2

A / (σ2
A + σ2

E )  …. test with H0: σ2
A = 0

• Despite 1-step optimization
• Valid FPR control with score test

• Better than ML due to inaccuracies of 50:50 χ2
0:χ2

1 null

• Comparable power to ML 

False Positive Rates Power

Simulation: 138 subjects, 2 families from GAW10, 
5000 realisations and 500 permutation each



NINGA Evaluations: Inference on β
• Typically regression application:

Genome-Wide Association Study (GWAS)
• X has one column for allele dose {0,1,2} for SNP 

• Valid, nearly as powerful as fully converged LRT
Fully Converged ML/LRT vs NINGA Score Test1-Step WLS+Score Test: Null

LR
T 

-lo
g 1

0
P 

NINGA Score Test -log10 P 

Converged LRT (FaST-LMM) : 1 hour
NINGA Score test: 3 sec. 

300 subjects
30 million non-null SNPs

300 subjects
30 million SNPs



NINGA Association Example

• Maryland Psychiatric Research Center study
• 332 subjects of European ancestry (CEU) 
• Diffusion MRI collected

• Fractional Anisotropy computed
• 2.5 M marker, 20 ROIs of Fractional Anisotropy
• “Unrelated” subjects

• But genetic relationship matrix to account for population 
structure

• Running time, all ROIs, all markers
• NINGA: 2 mins,   FastLMM: 6.5 hours 



NINGA Association Example
• CEU sample, but mixed effect gives

cleaner PP, comparable power after G.C.

PP plot (raw) PP plot – After Genomic Control

OLS
NINGA (LMM)



Progress on two problems

• Dependence (not spatial)

• Spatial Inference Under the Alternative



Big Neuro Data:
Beyond Null Hypothesis Testing

• Task fMRI: 
Scan a subject 100 times
• 99% brain active (FDR), or

80% brain active (FWE)
• Null hypothesis testing fallacy

• With enough N, can reject null 
everywhere

• Task fMRI: 
Scan 100,000 subjects
• Null hypothesis testing fallacy 

will strike hard

Gonzalez-Castillo et al. (2012). PNAS 109(14), 5487–92. 



UK Biobank: Task fMRI
Faces Task (Faces - Shapes)
• T-statistics grow with N
• “N beats K” or “H0 fallacy”
• Both at work

N = 8826

N = 5000

N = 500
N = 100

T-Statistics over brain, Faces – Shapes task

N Max T
100 17.36
500 34.11

1000 52.10
5000 109.05
8569 144.87



Geospatial method

Year-on-year temperature data Spatial confidents sets estimating
2℃ temperature change

Sommerfeld, Sain, Schwartzman (2017). Confidence regions for spatial excursion sets from repeated random field 
observations, with an application to climate. JASA, 1459



Goal: Estimate a spatial set of 
activation, and its uncertainty

”Point estimate” set of 
where mean exceeds c

P
h
Â�

c ⇢ Ac ⇢ Â+
c

i
= 1� ↵

Ac = {s : µ(s) � c}

“Envelope” sets that cover  
Ac, with δ chosen …

A�
c = {s : µ(s) � c� �}

A+
c = {s : µ(s) � c + �}

to control confidence (e.g. 
1- α = 95%) that true set is 
covered

Alex Bowring (Warwick->Oxford)
Armin Schwartzman, Fabian Telschow (UC Irvine)
Max Sommerfeld (Göttingen)



1-D Intuition

Yi(s) = μ(s) + εi(s)          i = 1, …, n

38



c − δ

c + δ

1-D Intuition

Observed
group
activation

Location

Yi(s) = μ(s) + εi(s)          i = 1, …, n

7

Y(s)

Threshold
c = 1%



c − δ

c + δ

1-D Intuition

Observed
group
activation

Location

Yi(s) = μ(s) + εi(s)          i = 1, …, n

7

Y(s)

Threshold
c = 1%



Threshold
c = 1% c − δ

c + δ

1-D Intuition

Observed
group
activation

Location

Yi(s) = μ(s) + εi(s)          i = 1, …, n

Use bootstrap to estimate the maximum 
distribution of |ε(s)| on the boundary μ(s) = c

δ estimated as (1-α)100%ile of this max distn

Y(s)
Â+

c

Â�
c



Results: HCP fMRI

• Human Connectome 
Project
• Unrelated 80 dataset.

• Task fMRI block 
paradigm
• Participants match faces, 

or match shapes. 

• ‘Faces’ and 
‘Faces – Shapes’ 
contrasts

8

Red conf. set ⊂ Yellow set ⊂ Blue conf. Set

Confidence Sets:

Red ‘inner’ confidence set: 

95% confidence have activation > 0.5%. 

Blue ‘outer’ Confidence Set:

95% confidence have activation < 0.5%.

Confdience statements simultaneous over brain.



Results: HCP fMRI

• Human Connectome 
Project
• Unrelated 80 dataset.

• Task fMRI block 
paradigm
• Participants match faces, 

or match shapes. 

• ‘Faces’ and 
‘Faces – Shapes’ 
contrasts
• Comparison of 0.2% and 

0.5% threshold

8

Red conf. set ⊂ Yellow set ⊂ Blue conf. Set

Confidence Sets:
Red ‘inner’ confidence set: 
95% confidence have activation > 0.5%. 

Blue ‘outer’ Confidence Set:
95% confidence have activation < 0.5%.

Confdience statements simultaneous over brain.



Beyond Null Hypothesis Testing
• Spatial confidence sets

• Given threshold on % effect find confidence sets…

• Inside red: 95% confident true signal greater

• Outside blue: 95% confident true signal smaller
… in FWE/simultaneous sense

Faces − Shapes

%BOLD = 0.5 ± 0.441σ
Faces − Shapes  

%BOLD = 0.2 ± 0.467σ• Human Connectome 

Project data

• N=80 subjects

• Task fMRI, Faces>Shapes

• Threshold at 

0.5% (left) 0.2% (right)

Alex Bowring (Warwick->Oxford)

Armin Schwartzman (UC Irvine)

Max Sommerfeld (Göttingen)



Faces – Shapes
N = 1000

Faces – Shapes
N = 5000

T-statistic,
Bonferroni 

FWE p < 0.05

Contour Inference,
c = 0.2%

T-statistic,
Bonferroni 

FWE p < 0.05

Contour Inference,
c = 0.2%

Volume between 
confidence sets:

12,791

Volume between 
confidence sets:

2,621

UK Biobank: Faces-Shapes



Next steps

• Developing method for use on standardized 
‘Cohen’s d’ effects
• %BOLD change divided by standard deviation of the 

data. 
• Extend to confidence statements on ‘peaks’
• E.g. ellipsoidal confidence regions

11



Population Neuroimaging 
Conclusions
• Most neuroimaging ‘small’ big data
• Still presents enormous challenges
• Must deal with dependence

• Due to family or even distant relations
• Move from null hypothesis testing to estimation

• NIH: Please fund Schwartzman H1-RFT grant
• Epidemiological concerns

• Understand sample bias
• Account for confounds
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