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x / y



Types 
For division to make sense, x and y should be  
some kind of numbers. 

x : int; 
y : int; 

    … x / y …

P. Naur: Checking of operand types in Algol compilers (1965)



Pre-conditions
Avoid division-by-0 error. 

require y ≠ 0; 

… x / y …



Pre- and post-conditions

require x > 0, y > 0;  

x / y       

ensures result > 0; 

Another possible requirement:  

"x and y should be positive". 

Allows us to say something about the result.



Compositionality

x / g(y)
"The post-condition of one operation  
may be another operation's pre-condition"

Specifications are essential for modular  
software development.



Why specify?
• Express what the code is supposed to do: 

• a priori requirements. 

• documentation. 

• Check properties at run-time. 

• Generate test cases. 

• Prove formally that a program satisfies its specification.  

• voir cours 2014-2015 : "Prouver les programmes : pourquoi, 
quand, comment". 



Languages with verification
In the object-oriented paradigm: 

• Eiffel (1986): programming with contracts, 

• JML : a specification language for Java, 

• Spec#: a new version of C# with software contracts.

… and also:  
Lustre, Esterel,  
SparkADA, Scala,  
Racket, Coq, Agda, Idris,… An active area of research!



Today

• Overview of JML and Spec#  
• Dynamic and static verification of specifications 

• Specifying security and confidentiality.



The JML and Spec# approach



JML and Spec#
• Design a specification language for programmers 

• JML  (Gary Leavens, Iowa State U. )  

• Spec# (Microsoft Redmond). 

• Keep close to program syntax 

• specs as comments (JML) or language constructs (Spec#) 

• logic close to programmer intuition ("good enough") 

• Programmer productivity as a key objective 

• bug finding is prime objective.  



Pre- and post-conditions
Consider a simple bank account application 
with a debit method (here Java and JML)

public class Account 
private int balance; 

public int debit (int amount) { 
   … 
}

/*@  requires  amount >= 0; 
ensures \result == balance;  @*/



Pre- and post-conditions

Pre- and post-conditions can be weakened. 

public class Account 
private int balance; 

public int debit (int amount) { 
   … 
}

/*@  requires  amount; >= 0 
ensures true;  @*/



Pre- and post-conditions

public class Account 
private int balance; 

public int debit (int amount) { 
   … 
}

/*@ requires  amount >= 0; 
    ensures  
    \result == balance &&  
    balance == \old(balance) - amount;  
@*/

… and they can be strengthened: 

Value of balance  
at entry  to debit  
method



Invariants
Invariants are properties that must hold throughout 
the execution. 

public class Account 
private int balance; 

/*@  invariant 0 <= balance;  @*/

"Should never 
be negative"

Checking invariants dynamically may incur  
an important run-time overhead.



Assertions
Specify a property that should hold at one 
particular place in the program. 

v = get_velocity(); 

//@ assert v <= SPEED_OF_LIGHT; 

So useful that assert was added to most 
languages, including Java itself. 

Cheaper to verify. 

Goes back to von Neumann and Turing (late '40)



Quantifiers
Consider a class Costumer with several accounts 
and a table of amounts stored on each account.

public class Costumer { 
  private int[] balances 
  private Account[] accounts

/*@ ensures \forall i :    
   0 <= i && i < table.length-1; 
   table[i] <= table[i+1]         @*/

Another example: sorting:

/*@ invariant \forall i :  
   0 <= i && i < balances.length ; 
   balances[i] >= 0        @*/



The language of properties
Close to the programming language, but with a few 

essential add-ons:  
✓ History variables: \old(var) 
✓ Result variable \result 
✓ Universal and existential quantification: 
• Exceptions, pure methods and assignable 

variables, non-null types.  



Specifying exceptions

public class Account 
private int balance; 

public int debit (int amount) throws …{ 
   … 
}

/*@  signals (AccountException e) 
amount > balance && 
balance == \old(balance)…; @*/

Only OK if enough  
money on account



Null pointers
"I couldn't resist the temptation to put in a null 
reference, simply because it was so easy to 
implement. This has led to innumerable errors, 
vulnerabilities, and system crashes, which have 
probably caused a billion dollars of pain and 
damage in the last forty years." 

C.A.R. Hoare, on the design of Algol W



Non-null types

public class Costumer { 
  private int [] balances 
  private /*@ non-null @*/ Account[] accounts 

 void deposit (/*@ non-null @*/ String id, 
  int amount){ 
   … 
   /*@ non-null @*/ Account find_account(String id) 
   …

Declare and check that a reference always points to 
something. 

Very useful and easy to check locally.



Side effects
Limit the variables that can be modified in a 
method: 

Default: assignable \everything 
Also useful: assignable \nothing

/*@  requires  amount; >= 0 
ensures … ;   
assignable balance @*/ 

public int debit (int amount) { 
   … 
}



Spec#
True language integration:  
• assignable variables are signaled by a modifies 

declaration in the method header. 
• non-null references are declared by a ! 

class Costumer { 
  Account[]! accounts 

 void deposit modifies balance (String! id, 
  int amount){ … }

Also addresses harder problems:  
- limit side effects on internal sub-objects, 
- private members must not appear in public signatures.



Pure methods
Methods that are assignable \nothing are 
called side-effect free or pure.

/*@  invariant 0 <= getBalance(); @*/

Pure methods are the only methods that can be used in 
specifications.

int /*@ pure @*/ getBalance(); 
int /*@ pure non-null @*/ findAccount(…)



Verification



How to verify

• Dynamic verification.  

• Generating verification conditions. 

• Interactive theorem proving with programmer-specified 
invariants 

• See course on SMT.  

• Static (automatic) program analysis.



Dynamic or static verification?
Dynamic evaluation of pre- and post-conditions 
and invariants: 
• easy to implement 
• run-time overhead (especially with invariants, 

history variables and recursion) 
• late discovery of errors 

Static checking of pre-, posts- and invariants:  
• difficult program verification problem, often with 

approximations and false positives.  
• no run-time overhead 
• early detection of (some) errors



Issues with dynamic verification
Verifying first-order contracts is well understood - 
both in theory and in practice.  

Contracts for higher-order functions pose questions: 
eg., how to check that a functional argument satisfies 
Even -> Even. 

 int M (Even -> Even f, int x) { 
… f(f(x))… 

        }

Who is to blame when M(incr,3)goes wrong?



Types and Blame

For incremental software development it is important to mix 
statically and dynamically verified code: 

"Well-typed parts of code cannot be blamed"

Type checking is one of the major success stories 
of formal verification: 

"Well-typed program do not go wrong"



Static program analysis



Static program analysis 

Infer properties about the behaviour of a program 
without running the program: 

• Automatic. 

• Correct. 

• Approximate.



ensure: -1 ≤ \result < size_of(vec);

Verifying binary search



Verifying binary search



Abstract interpretation
A foundation for static program analysis: 

Interpret program over abstract domain of properties. 

Eg, abstract integers by,  

•  signs   (+,-,±) 

•  intervals ([1 ; 1] , [0 ; 3] , [1 ; ∞[ ,…) 

•  polyhedra



Polyhedral analysis
Describe program states by convex sets.

Represented by sets of linear inequalities: 
  

0 ≤ x ,  x < 2y.



Example

x := 0; y := 0; 
while (x < 6) { 
  if (…) { 
    y := y + 2; 
  }  
  x := x +1; 
} 

assert (y ≤ 12)



Polyhedral analysis

x := 0; y := 0;

x < 6 ?

y := y +2

x := x + 1;

x ≥ 6 ?

x = ?, y = ?

x = 0, y = 0

x = 0, y = 0

x = 0, 0 ≤ y ≤ 2 

x = 1, 0 ≤ y ≤ 2 

x ≤ 1, 0 ≤ y ≤ 2x 

x ≤ 1, 0 ≤ y ≤ 2x 

x ≤ 1, 0 ≤ y ≤ 2x +2 

 1 ≤ x ≤ 2, 0 ≤ y ≤ 2x 

0 ≤ y ≤ 2x 

x < 6, 0 ≤ y ≤ 2x 

x < 6, 0 ≤ y ≤ 2x +2 

x ≤ 6, 0 ≤ y ≤ 2x 

x ≤ 6, 0 ≤ y ≤ 2x x = 6, 0 ≤ y ≤ 12 

Stabilisation



One analysis of many

• Numerical domains for integers, floats,… 

• Alias, null-pointer and shape analysis of memory. 

Principle of program analysis: 

•  translate to flow equations over partial orders, 

•  general solver based on iteration.



Specifying security



Information security
Three main properties of information security 

• Confidentiality, 

• Integrity of data,  

• Availability. 

Most are non-functional properties



Confidentiality
Classify data as  
• private/secret/confidential  
• public  
  
A basic security policy: 

"Confidential data should not become public" 



Breaking confidentiality

int secret s;   // s ∈ {0,1} 
int public p;

p := s;        // direct flow

if s == 1 then 
p := 1  
else         // indirect flow 
p := 0



Dynamic verification

Add a security level to all data and variables

p := s;        // direct flow

Security levels evolve due to assignments 

p := s;        // direct flow

and when we assign under secret control:

if s == 1 then 
p := 1 
if s == 1 then 
p := 1 



Secure?
Not enough to enforce confidentiality

p := 0; q := 1; 
if s == 0 then 
 q := 0;  
if q == 1 then 
 p := 1; 

int secret s;   // s ∈ {0,1} 
int public p,q;

The "no-sensitive-upgrade" principle

s=0  
p=0,q=1 

p=0,q=0  

skip 
p=0

s=1  
p=0,q=1 

skip  

p=1,q=1 
p=1



Static information flow control
Information flow types:  

⊢ e : T      T ⊑ Tx      Tpc ⊑ Tx 

Tpc ⊢ x := e assign

 ⊢ e : T      Tpc ⨆ T  ⊢ Si          i = 1,2 

Tpc ⊢ if e then S1 else S2 if

T,Tx,Tpc ∈ {public ⊑ secret} 

Typing rules:  



"Real" information flow control

More elaborate policies would also specify how to 
declassify confidential data: 

• what to declassify? 
• when to declassify?

Proposals for information flow control for Java: 
• JIF (Cornell) 
• Paralocks (Chalmers) 



Integrating verification in 
programming languages

• Specification and verification increasingly present 

• Robust code. 

• More productive programmers. 

• Both in academia and in industry.  

• Functional and non-functional properties. 

• Mix of dynamic and static verification.
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