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Chapter 1

Introduction

My original goal for this book was to explain the Esterel v7 synchronous language to
hardware designers by using a variety of examples. The book was intended to be a useful
complement to the Esterel v7 60 Reference Manual, which I also made available this day
from my Collège de France page at the following address:

Esterel v7, originally designed with Michael Kishivevsky (Intel Strategic CAD Lab,
Portland, OR) [3], was a great language and toolset to elegantly design very efficient
hardware circuits, as well as embedded reactive software. It has been successfully used to
design a variety of research and commercial circuits in major companies.

Esterel v7 / Esterel Studio extended the previous version Esterel v5 language and
system by many aspects, the most notable one being a fancy data path definition system
sublanguage well illustrated in this draft. Programs were processed by a variety of tools,
including a compiler to optimized Verilog or VHDL, a fancy symboloic debugger, and
a formal verifier provided by the Swedish company Prover Technologies. Unfortunately,
the 2008 crisis made several of our Esterel Technologies hardware customers disappear,
which forced us to stop the development and cancel the whole project. Hopefully, the
Esterel Technologies SCADE 6 / SCADE Studio counterpart for safety-critical software
also developed by Esterel Technologies is doing great, more information at www.esterel-
technologies.com.

I long hesitated in making this personal draft publicly available, but since I now teach
Esterel again I think it has become appropriate to do it, even knowing that the text will
probably not be made any longer for lack of time and motivation. Nevertheless, I hope it
will stimulate new ideas elsewhere !

Unfortunately, the Esterel v7 compiler and the Esterel Studio toolset are no more
available, since their new owner has decided to keep them deep frozen. But I can guarantee
that they did work very well and that all the examples presented here did work as specified.

Gérard Berry, Paris, February 8th, 2018 - almost 10 years after the draft...
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Chapter 2

Control Signals and Control
Behavior

This chapter presents basics of control handling in Esterel v7. More elaborate temporal
control will be explained in Chapter 3, and basics of data handling will be presented in
Chapter 4.

2.1 Signals, statements, and modules

Esterel describes the design or its high-level model using communication signals and
executable statements.

Signals serve as interfaces with the design environment and as internal communication
objects between parts of the design that work concurrently. Interface signals. are declared
with the input and output keywords. Signals can be also local to the design,then declared
with the signal keyword.

A signal can be a pure control, e.g, a request, an acknowledge, or a valid bit indicating
validity of information in an RTL design; it can be a data value, e.g., an address, a protocol
payload, or an operand of an adder; it can also be a combined control-value pair, e.g., an
operand of an adder together with a valid bit. Signals can be organized into homogeneous
arrays or hierarchical ports with heterogeneous interfaces.

Statements control the behavior of the design and specify the data computations. They
are imperative and operate temporally by controlling the state of the control flows and
referring to the data path state. Some of the control statements of Esterel resemble
explicit control propagation constructs found in C-like languages, e.g., statement sequenc-
ing, loops, and if-then-else and switch test statements. These standard constructs are
are augmented by Esterel-specific parallel constructs, temporal constructs, and excep-
tion handling constructs. These specific constructs provide the user with a behavioral and
hierarchical definition of sequential behavior, without resorting to manual state encoding.
Implementation state encoding of the underlying controller is done by the compiler and
can be further optimized with automatic tools.

Formally speaking, statements are divided into primitive statements and derived state-
ments that can be macro-expanded into primitives ones. In this book, we are mostly
concerned with the designer’s point of view; the difference between between the primitive
and derived statements is mostly irrelevant. See [2] and [5] for the definition of derived
statements in terms of the primitive ones.
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8 CHAPTER 2. CONTROL SIGNALS AND CONTROL BEHAVIOR

The main design unit is the module, which is composed of a module header that defines
the signal interface and a behavioral statement called the module body:

module
Header

Body

end module

Here and in the remainder of this book, italicized names such as Header and Body are
not Esterel objects, but auxiliary placeholders for declarations and statements to be
described later on. Note that module is closed by “end module”. This closing form will
be used for all statements, e.g., “end if” to close if.

For the time being, we will only consider single-clock designs. Execution of a module
is cycle-based and similar to zero-delay simulation of RTL designs. At each clock cycle,
inputs are captured, and outputs and internal signals are computed using the current
control state, data state, and input values. Concurrent components of the design are
executed concurrently within the the same cycle. The language formal semantics and
compiler implementation guarantee that control- and data-dependency constraints are
respected throughout the computation.

The clock and reset signals typically present in RTL designs are implicit in a single-
clock Esterel program and need not be declared. They become explicit in the generated
HDL, see Section ??. To refer to clock events, e.g., to count them, one uses a reserved
signal name, tick.

A module can instantiate other modules using the run statement, which can be used
at any place where any other Esterel statement can be used. Unlike for RTL designs,
Esterel modules have execution lifetime since their behavior can be started and killed
at will by surrounding temporal control statements. Therefore, an Esterel design allows
the user to specify two types of hierarchy: a structural hierarchy, as in classical RTL
design, and a behavioral hierarchy, specifically defined by Esterel control statements.

For better organization of large designs, the description of data objects and of interfaces
can be separated from module definitions and described in separate hierarchical data units
and interface units. This aspect will illustrated in Chapter 4 when designing a video filter.

2.2 Pure control signals

We start by the description of the pure control signals and of the statements that deal
with them. A pure signal S is a Boolean signal whose value is called a status. At any clock
tick, the signal can be present or absent. A signal S is present if input and set present by
the environment, or if some “emit S” or “sustain S” statement is executed in the cycle;
otherwise, it is absent. Throughout the book, we will identify present with having value 1
(or true, or high, or asserted) and absent with having value 0 (or false, or low, or false, or
deasserted). This is the default used by the Esterel compiler when synthesizing the actual
design. The compiler can also be instructed to reverse the encoding on a per-signal basis.

In addition signals can be qualified with temporal attributes that captures their be-
havior over time. By default signals are immediate (or combinational). If two modules
are connected by an immediate signal, then a combinational path is crossing the module
boundary, as in Mealy FSMs. Signals can be also specified as registered by declaring them
with the reg or reg1 keywords. In this case, a signal is captured using an automati-
cally generated register with an initial value 0 (reg) or 1 (reg1). Connecting modules
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through registered signals guarantees that no combinational path exists through the con-
nection, as in Moore FSMs. Finally, pure control signals can be combined into vectors
and multi-dimensional arrays with no restrictions on the number of dimensions. Vectors
are simply single dimensional arrays of signals, not special “packed objects” as in HDLs.
The following is an example of a signal declaration:

module M :

input A, B[2];

output X[4][5] , Y;

s ignal { RX, RY[32] } : reg in
Body

end s ignal
end module

Declarations in a comma-separated list are independent. One uses curly brackets “{}”
to group declarations with the same qualifiers, here “: reg”. Thus, A, B, X, and Y are
immediate, while RX and RY are registered. Array components such as B[0] and B[1]

can be viewed as completely independent signals. The declaration X[4][5] specifies a
two-dimentional array of pure signals with 4 rows and 5 columns.

Pure signals are most often used for specifying control signals. As was mentioned
before, a pure signal S is assumed to be implicitely deasserted (or 0, or false, or low)
at each cycle, and it is asserted by executing an explicit emit S or sustain S emission
statement as explained below.

2.3 Emission, pausing, and sequencing

The simplest statements are nothing, which does nothing in no time, emit, which asserts
a signal, pause, which consumes one cycle, and the ‘;’ statement sequencing operator1.
Here is our first example:

module Ex1 :

output X, Y, Z;

emit X;

pause; // p1

emit Y;

pause; // p2

emit {X, Z}

end module

The body of this module shoul be read using C-like sequential control propagation where
each statement starts when the previous one terminates, not as an HDL design where all
statements are executed at each cycle. Figure 2.1 explains the behavior of the example.
The circuit generated by the Esterel Studio compiler is shown in Figure 2.2 (before sequen-
tial optimization that reduces the number of registers by state reencoding, as explained
in [4, 8] and Chapter ??):

• at cycle 0, between the assertion of the reset and the first positive clock edge, the first
“emit X” statement is executed and control passes to the p1 “pause” statement.
This statement terminates execution for the cycle and waits for the next clock edge.

1Formally, ‘;’ is a separator and not a terminator. However, the Esterel compiler supports writing
“emit X; emit Y;” using ‘;’ as a C-like terminator.
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Figure 2.1: The behavior of Ex1

Figure 2.2: The circuit of Ex1
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Therefore X is asserted during cycle 0, while Y and Z are deasserted since they have
not been emitted during this cycle.

• at cycle 1, between the first and the second positive clock edges, control resumes
from the p1 pause statement; the “emit Y” statement is executed right away and
pause p2 is reached, which terminates execution for the cycle; thus, Y is asserted
while X and Z are deasserted since they are not emitted;

• at cycle 2, control resumes from pause p2 and the last emit statement is executed;
this statement asserts X and Z, while Y is deasserted since not emitted;

• after the last emit {X,Y}, end module is reached, the module behavior is termi-
nated, and all signals remain deasserted from then on.

The timing diagram pictured in Figure 2.1 is presented over continuous time. However,
the only meaningful points in time are the clock rising edges pictured by vertical dotted
lines2, where the status of each signal should be read. Signal transitions can occur between
clock rising edges as in conventional timing diagrams, but their actual positions between
rising edges is immaterial. By convention, in the waveforms, input transitions are shown
before the clock falling edge and output transitions are shown after the clock falling edge,
to stress the fact that outputs may be caused by inputs.

Notice that emit is a purely combinational statement that consumes no cycle. The
statement “emit {X, Z}” is equivalent to “emit X; emit Z”.

Notice also that multiple emissions are allowed for pure signals. In Ex1, there are
two emit statements for X, which happen not to act at the same time. It is also allowed
to simultaneously emit the same signal several times: “emit X; emit X” is equivalent
to “emit X”. In the hardware circuit generated from Esterel, each pure signal is the
output of an or-gate to which emission control wires are connected. See the gate with
the output X in Figure 2.2. Combining multiple emissions of the same signal simplifies
the specification: in the RTL specification one would need to speciy an explicit equation
implementing the OR gate.

Here is a slighly modified example with registered outputs:

module Ex1R :

output {RX, RY, RZ} : reg;
emit next RX;

pause; // p1

emit next RY;

pause; // p2

emit next {RX , RZ}

end module

For registered signals, one must use the “emit next” form. Signal RX is asserted with
a one-cycle delay, i.e., in the cycle that follows the cycle at which “emit next RX” is
executed3. When running Ex1R, X is asserted at cycle 1 and 3, Y at cycle 2, and Z at cycle
3, as shown in Figure 2.3. The corresponding (sequentially unoptimized) circuit is shown
in Figure 2.4. The Ex1R design is a Moore machine: the outputs of the module do not

2By setting the appropriate compiler option, it is possible to select the negative edges as tick boundaries
in the implementation.

3The next keyword is redundant since the signal is declared reg. However, Esterel requires an explicit
use of “next” to enhance readability and to stress the fact that the status will be set one cycle later.
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Figure 2.3: The behavior of Ex1R

Figure 2.4: The circuit of Ex1R (before sequential optimization)
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Figure 2.5: The behavior of Ex2

Figure 2.6: The circuit of Ex2 (before sequential optimization)

combinationally depend on inputs, unlike Ex1, which is a Mealy machine. Immediate and
registered signals can be arbitrarily mixed in designs.

2.4 Looping

The loop statement repeats its body until this looping behavior is preempted from out-
side the loop or exited from inside the loop. At the end of the loop statement, control
immediately returns to the beginning of the loop. Therefore, the looping operation is
combinational and consumes no cycle by itself. Here is how to alternate between asserting
two signals X and Y:

module Ex2 :

output X, Y;

loop
emit X;

pause;
emit Y;

pause
end loop

end module

The X output is emitted at cycle 0 and at every other even cycle, while the Y signal is
emitted at cycle 1 and at every other odd cycle. The behavior and the circuit of Ex2 are
shown in Figure 2.5 and Figure 2.6. Sequential optimization will merge the first (boot)
register and the second pause register.
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Figure 2.7: The behavior of Ex3

Figure 2.8: The circuit of Ex3

Notice that the second pause is essential to generate the X / Y alternation behavior.
Consider the same program with the last pause removed:

module Ex3 :

output X, Y;

loop
emit X;

pause;
emit Y

end loop
end module

The behavior is quite different: X is emitted at all cycles and Y is emitted at all cycles but
the first one. This is made clear by the following behavior-preserving loop unrolling:

emit X;

pause;
emit Y;

emit X; // loop

pause;
emit Y;

emit X; // loop

pause;
emit Y;

...

The behavior and circuit of Ex3 are pictured in Figure 2.7 and Figure 2.8.
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The behavior of a loop statement is infinite by default. To terminate a loop, one
can use the trap-exit construct described next in Section 2.11 or an enclosing abortion
statement described in Section 3.2.

A different looping construct can be specified by the repeat statement that repeats a
loop body a finite number of times:

repeat 5 times
pause;
emit O

end repeat

One can give a name to the index, which starts from 0:

repeat i < 5 times
pause;
emit O

end repeat

The index can be used inside the body (not shown in the example). The index can also
be specified to span a range, see Section ??.

Since the “loop” statement is immediate, the body of the loop should contain at least
one sequential statement for every execution path. The compiler rejects programs with
combinational loop bodies.

2.5 The sustain statement

The sustain statement “sustain S” or “sustain {X,Y}” keeps a signal or a list of signals
asserted forever and never terminates, unless preempted, i.e., externally terminated by an
enclosing or parallel statement, as described in Section 3.2. It is equivalent to a loop over
an emission followed by a pause:

loop
emit S;

pause
end loop

2.6 Signal emission equations

It is often convenient to use a an equational version of the “emit” and “sustain” state-
ments. Within emit and sustain, a signal can be conditionally emitted by defining an
emission condition after the ‘<=’ symbol.

Here is the way to permanently compute the conjunction and disjunction of two input
signals A and B, with the disjunction registered:

module Ex4 :

input A, B;

output X, Y : reg;
sustain {

X <= A and B,

next Y <= A or B

}

end module
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Equations within the same emit or sustain are executed concurrently and in no particular
order, provided dependencies are preserved. A computed signals can be tested in another
equation, as in the following example:

sustain {

X <= A and B,

Y <= X or C

}

The status of X referred to in Y’s equation right-hand-side is the one computed by the
first equation. Scheduling is implicit from dependencies, not from equation ordering. It is
equivalent to write the same equations in the reverse oder:

sustain {

Y <= X or C,

X <= A and B

}

Equations can also involve cases in their right-hand side, as in the following example:

sustain {

X <= B i f A

| C and E i f B

| D and E

}

The cases are taken in order, and the first satisfied test determines the appropriate right-
hand-side. The optional last case without an if is the default case.

Another way to embed case handling is by using if-the-else or if-case switches.
Here is an example:

sustain {

i f S then
X <= A and B,

Y <= C and D

e l se
Z <= A or C

end i f
}

See [5] for more details.

2.7 Signal expressions

Signal expressions appearing on the right-hand-side of equations are denoted exp, exp1,
etc. They can be constructed from the following elementary expressions: a reference
to a immediate or registered signal S, which denotes its current status; the pre(S) and
pre1(S) delay operators for an immediate signal S, which return the status of a signal at
the previous cycle with initial value 0 for pre and 1 for pre14; the next(R) operator for
a registered signal R, which returns true if an “emit next R” is executed in the current
cycle.

4The pre operator is borrowed from synchronous language Lustre [6].
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The logical operators include and, or, not, xor, mux, implication ‘=>’, equivalence
‘<=>’, and incompatibility ‘#’, which is a n-ary operator with e1#e2# . . . #en true if at most
one ei is true.

The following equation specifies a rising edge detector for signal S, with initial value
0:

sustain RisingEdge <= S and not pre(S)

This exemplifies the fact that Esterel expressions can be sequential, not just combi-
national. Any access to pre(S) or pre1(S) for an immediate signal involves a one-cycle
delay relatively to signal emission. Given a sequential equation the Esterel compiler will
automatically generate an appropriate register, unlike for traditional HDL specifications
where registers are manually allocated.

The pre operators can be applied to combinational expressions, see Section ??. How-
ever, pre’s cannot be directly nested. To compute pre of pre, one needs to use an
intermediate signal or better a delay line based on a signal array, as will be shown in
Section 4.3.

Equations with immediate cyclic dependencies are rejected by the semantics and com-
piler as illegal combinational loops. Typical examples of rejected loops are “emit X<=X”,
“emit X <= not X”, and “emit {X<=Y, Y<=X}”. Here is an example of a rejected loop
with two inverters:

sustain {

Y <= not X,

X <= not Y

}

See [2] and Chapter ?? for details on combinational dependencies and cycles5.

2.8 Conditional branching

Conditional branching is performed by the if-then-else and if-case statements. These
statements test Boolean signal expressions and branch to the corresponding statement.
Here is an example:

module Ex5 :

input A;

output X, Y;

loop
i f A then

emit X; pause; emit X

e l se
emit Y

end i f ;
pause; emit Z

end loop
end module

At first cycle, A is evaluated and the behavior branches as follows:

5The previous version Esterel v5 performed a deep semantical analysis of combinational loops to
accept electrically stable ones. This analysis has not be retained for Esterel v7, because it does not scale
up well enough
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Figure 2.9: The behavior of Ex5

Figure 2.10: The circuit of Ex5
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• if A is asserted, the if statement takes the then branch, which emits X in the cycle,
pauses for one cycle, emits X again in the next cycle, and terminates;

• if A is deasserted, the if statement takes its else branch, which emit Y and imme-
diately terminates.

Termination of the active branch provokes execution of the last pause statement, which
make control pause for one cycle before emitting Z and looping back to the if statement.

The behavior is pictured in Figure 2.9 and the circuit in Figure 2.10. Notice that the
test of an if statement is evaluated only when the if statement gets the control. While
executing the branches, the test is not re-evaluated. Therefore, in the timing diagram of
Figure 2.9, the status of A at cycles 1 and 4 is irrelevant, since it is not tested.

Multiple branching is possible using the if-case statement:

i f
case exp1 do

stat1
case exp2 do

stat2
[ default ] do

statd
end i f

The expressions are tested in order and the statement corresponding to the first true
expression is taken. If there is a default, it is taken if no test expression is true. Otherwise,
the if-case statement immediately terminates.

The if statement should not be confused with the use of if within emit and sustain:
the former performs sequential control branching, while the latter is purely combinational.

2.9 Parallel execution

The parallel operator ‘||’ places two ore more statements in parallel. Such parallel state-
ments are each executed concurrently in each cycle, with input signals broadcasted to all
parallel branches and output signals gathered from all parallel branches. A parallel state-
ment immediately terminates when all its parallel branches have terminated. Sequencing
‘;’ binds tighter than parallel ‘||’, and blocks can be delimited by “{}” curly brackets.
Here is an example:

module Ex6 :

output X, Y, Z, T, U;

{

emit X; pause; emit Y

||

pause; emit Z; pause; emit T

};

emit U

end module

Here, X is emitted at cycle 0, Y and Z are emitted at cycle 1, and T is emitted at cycle
2. The whole parallel statement terminates and emits U at cycle 2. Notice that the first
parallel branch lasted 2 cycles while the second branch lasted 3 cycles. The behavior is
shown in Figure 2.11 with the corresponding (semi-optimized) circuit in Figure 2.12. In
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Figure 2.11: The behavior of Ex6

Figure 2.12: The circuit of Ex6
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general, the circuit generated by a parallel statement may involve a non-trivial termination
synchronizer that gathers termination of the branches, see Section 3.5, Chapter ??, and [2].
The bottom and-gate of the circuit pictured in Figure 2.12 represents a partially optimized
version of this synchronizer for this simple case. Termination occurs at cycle 2 cycle,
with the first branch already terminated and the second branch terminating. Sequential
optimization will wipe out this synchronization gate in this simple example.

There is no limit to the nesting and intertwining of parallel and sequencing, which
makes it possible to construct arbitrarily complex sequential behaviors from their sub-
behaviors.

2.10 Local signals and communication

Parallel statements can communicate using local signals, scoped by the local signal decla-
ration statement:

s ignal S, T,

R : reg in
stat

end s ignal

Here, stats is an arbitrary statement called the body of the signal declaration. It is the
scope of S. Scoping is static: a new declaration of a signal hides a previous declaration of
a signal with the same name. Here is an example:

module Ex7 :

input A, B;

output X, Y;

s ignal S in
sustain S <= A and not pre(A)

||

emit X;

pause;
emit Y <= S and B

end s ignal
end module

The first branch emits S whenever A has a rising edge. The second branch emits X at first
instant and Y at second instant if A has a rising edge and B is asserted. See Figure 2.13 and
Figure 2.14 for the behavior and circuit. Note that the order of branches is irrelevant. As
was discussed before for the case of multiple equation inside emit or sustain statement,
parallel branches in-cycle scheduling is solely computed from signal dependencies induced
by emissions and tests. Changing the order of parallel branches preserves the behavior.

With registered signals, there is of course a unit delay between emission and reception.
Consider the following example:

module Ex8 :

output XR : reg;
s ignal LR : reg in

emit next LR

||

sustain next XR <= LR

end s ignal
end module
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Figure 2.13: The behavior of Ex7

Figure 2.14: The circuit of Ex7
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Figure 2.15: The behavior of Ex8

Figure 2.16: The circuit of Ex8

See Figure 2.15 and Figure 2.16 for the behavior and circuit of Ex8. Here, the local
signal LR is emitted at cycle 0, thus asserted at cycle 1. Therefore, “emit next XR” is
executed at cycle 1, which asserts XR at cycle 2.

The local signal declaration statement can be used wherever other statements can,
which makes it possible to nest signal scopes at will.

2.11 Trap and exit

To continue or exit loops, C provides the user with continue and break constructs. These
constructs are dangerous since unnamed, and some famous bugs are due to this.

GB: yet to be written.
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Chapter 3

Temporal control

This chapter presents the statements specialized in temporal control handling, which is the
main novelty of Esterel w.r.t. conventional languages. Two examples, ABRO and Runner,
illustrate the power of these constructs. We discuss how Esterel makes it possible to obey a
fundamental sanity principle we call Write Things Once when designing control-intensive
applications.

3.1 The await statement

The await statement waits for am expression to become true and terminates. For instance,
consider the statement

await S

When started, the statement waits for the next cycle where S is asserted, also called the
next occurrence of S, and terminates. Notice that “await tick” is the same as pause

since tick is always asserted.
Since it waits for the next occurrence of the condition, the await statement ignores the

condition at starting instant. The added immediate keyword makes the await statement
sensitive to the condition at first instant:

await immediate S

This statement immediately terminates if S is asserted at starting instant. Circuits for
await and “await immediate” are pictured in Figure 3.1.

To wait for several occurrences of an expression, one can add an occurrence count:

Figure 3.1: Circuits for await and await immediate
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await 5 S;

await 10 times (S or T)

The times keyword is necessary when either the count or the signal expression is not
trivial. The immediate keyword is incompatible with delay counters.

In the sequel, we call delay an occurrence designator of one of the forms exp, “count times exp”,
or “immediate exp”. The first form is called a simple delay, the second form is called a
count delay, and the third form is called an immediate delay. We use the symbol dl to
denote a delay.

The do keyword can be added to start a statement when an await terminates:

await S do
emit X;

pause;
emit Y

end do

The continuation statement between do and end is started when the delay elapses. It can
be arbitrary. Finally, several delays can appear in an ordered case list.

await
case dl1 do

stat1
case dl2 do

stat2
case dl3 do

stat3
end await

Immediate delays are allowed in each case, and only them are tested when the await

statement starts. There is no explicit default case for await, but “case tick” used in
the last case has the same effect as default since the implicit tick clock event is always
true.

3.2 Abortion statements

An abortion statement limit the timespan of their body, killing its behavior if a delay
elapses. Let us start with the simplest of them, the abort statement:

abort stat when dl

where stat is an arbitrary statement and dl is an arbitrary delay. The abort statement
starts is body stat and lets it execute at all subsequent cycles until one of two events
occurs:

• the delay dl elapses; then stat is killed without being executed in the cycle, and the
abort statement immediately terminates;

• the body stat terminates strictly before the delay elapses; then, the abort statement
immediately terminates.

Notice the difference with if: the test is re-evaluated at each cycle while the body is alive
for abort, while it is evaluated only when entering the statement for if.

Since the body is brutally preempted with no last chance for execution at abortion
time, the default abort statement is called strong. The weak abortion form
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Figure 3.2: The behavior of Ex9 (abort and weak abort)

weak abort stat when dl

has the same behavior, except that stat is executed for a last time in the cycle where dl
occurs. Here is an example involving the two forms of abortion:

module Ex9 :

input A, B;

output X, Y, Z;

abort
sustain X

when A;

weak abort
sustain Y

when B;

emit Z

end module

Here, X is sustained until the first subsequent instant where A is asserted, this instant not
included. Then, Y is sustained until the first subsequent instant where B is asserted, this
instant included, and Z is emitted at the same instant. A timing diagram is pictured in
Figure 3.2 and the generated circuit is pictured in Figure 3.3. Notice that occurrences of
B are ignored when waiting for A and conversely.

To also watch for the condition at starting time, one adds the immediate keyword as
for await:
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Figure 3.3: The circuit of Ex9 (abort and weak abort)

module Ex10 :

input A, B;

output X, Y, Z;

abort
sustain X

when immediate A;

weak abort
sustain Y

when immediate B;

emit Z

end module

Here, if A and B occur at first cycle, the whole sequence terminates with Y and Z emitted.
If A is not asserted at first cycle but B is asserted at first cycle where A is asserted, then the
sequence immediately terminates with Y and Z emitted. In any other case, the immediate

keyword has no effect and the behavior is as for strong abort. The circuit is a simple
variant of the one pictured in Figure 3.3.

Cases can be added to abortion statements as for await:

[ weak ] abort
stat

when
case dl1 do

stat1
case dl2 do

stat2
case dl3 do

stat3
end abort

Notice that await can be easily defined from abort, using the halt statement that never
terminates and is an abbreviation for “loop pause end”:

await S = abort halt when S
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3.3 Temporal loops

To enhance readability, temporal loops combine the abort statements and the loop state-
ment into a single compound statement. The simplest temporal loop is loop-each:

loop
stat

each dl

It is an abbreviation for

loop
abort

stat; halt
when dl

end loop

The body stat is restarted afresh when dl is true, and aborted if not yet terminated.
Because of the added halt, one waits for dl to restart stat if stat terminates before the
delay elapses.

The other temporal loop uses the every keyword and differs from loop-each by the
fact that one initially waits for dl to start stat. The statement

every [ immediate ] dl do
stat

end every

is a shorthand for

await [ immediate ] dl;
loop

stat
each dl

As usual, the immediate form tests for the condition at starting time.

3.4 Suspension and clock gating

Suspension is a milder form of preemption that suspends action of the body for the cycle
without killing the body. As abortion, it comes into two forms, weak and strong, and each
form can be delayed or immediate. The immediate weak form is important since it has
exactly the effect of local clock gating, which is essential to save power in circuits.

The strong form is as follows:

suspend
stat

when [ immediate ] exp

The body stat is only executed when the condition exp is false. In the default delayed
form, the expression is tested from the cycle that follows the starting cycle on. In the im-
mediate form, the expression is tested in the starting instant as well. The whole statement
terminates if stat terminates when executed. For instance, consider the following modul:
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module Ex11 :

input A;

output X;

suspend
sustain X

when A

end module

the output X is emitted at first instant and at all subsequent instants where A is absent.
The body can be any sequential statement, which acts only when the suspension signal is
absent. Termination of the body when not suspended provokes termination of the whole
suspend statement.

Notice that exp is an expression, not a general delay as for abort. Suspension is an
instantaneous concern and “suspend stat when 3 S” is forbidden.

Weak suspension differs in the following way: when the expression is true, the com-
binational actions are performed but there is no sequential state change. Consider the
following example:

module Ex12 :

input A, B, C;

input G; // clock gater

output X, Y, Z;

weak suspend
emit X;

await A;

emit Y <= not B;

await C;

emit Z

when G

end module

A behavior ic pictured in Figure 3.4. Because of weak suspension by “G”, state change
occurs only when G is deasserted, while emissions and combinational control propagation
take place normally. Thus, X is emitted when the program is started, and await A becomes
active. From then on, Y becomes the negation of B whenever A is asserted, and “await A”
stays active until G is deasserted again, which sets “await C” active. From then on, Z
stays asserted whenever C is asserted and “await C” stays active until G is deasserted with
C asserted, which makes the module terminate.

In the circuit translation, weak suspension can be implemented in two equivalent ways
that both act on all registers generated by the body: by disabling the register inputs using
muxes triggered by G; or by gating the register clock inputs by G. See Figure 3.5 for a
clock-gated implementation.

Nesting weak suspension statements makes it possible to manage clock gating in a
hierarchical and semantically well-defined way. Immediate weak suspension is also used to
formally model the behavior of multiclock designs, see Chapter ?? and [5] for full details.

3.5 The ABRO example

Let us give a more elaborate example using the statements defined so far.

Specification ABRO:
Emit an output O as soon as two inputs A and B have occurred. Reset this
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Figure 3.4: Behavior of Ex12

Figure 3.5: Circuits for Ex12; lines from G to register clock inputs indicate clock gating
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Figure 3.6: The ABRO Mealy machine

behavior each time the input R occurs, wihout emitting O in the reset cycle.

This simple specification actually represents a very common design pattern. A usage
example is writing to memory, where A is address availability, B is data availability, O is
the write command, and R is a reset command.

A common way of programming ABRO is to design a deterministic Mealy machine in
state graph form, which is a deterministic finite automaton in which each transition arrow
bears an input / output transition label. An Esterel Studio Mealy machine for ABRO is
pictured in Figure 3.6. Transition labels have the form “E / ” or “E / O”, where E is a
possibly empty expression on inputs that triggers the transition and O is the optional tran-
sition output. For instance, the transition labeled “A and B / O” can be taken if A and B

are both asserted, and, if taken, it provokes combinational emission of O. The numbers be-
tween angle brackets, such as <1>, are transition priorities that ensure determinism. Here,
from the topmost state, the R transition has priority over the “A and B / O” transition,
which itself has priority over the “A /” and “B /” transitions. This formal definition is of
course a little heavier to draw than an approximate one as often found in documentations,
but it is fully precise. Mealy machines can be easily encoded in Verilog or VHDL.

We now show that we can do a more readable, more scalable, and more efficient design
in Esterel. Look at the automaton in Figure 3.6. Each signal appears several times, unlike
in the original specification. For example, A appears 3 times: once on the left, as the first
input, once on the right, as the second input, and once in the middle, in “A and B”. If
priorities were not used to disambiguate transition choice, A should also appear negatively
on the first input transition on the right. The reset signal R appears 4 times, once per
state; without priorities, it should also appear negatively on all other transitions. Finally,
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the output O also appears 3 times, one for each possible sequencing of A and B. Consider
now the problem ABCRO, where there is one more signal C to wait for before emitting O. We
leave the automaton drawing to the reader: the automaton core now has the shape of a 3-
D cube with 8 vertices, and much more signal replication. Of course, the n-signal problem
yields a n-cube with 2n vertices. The design is exponential in the size of the specification,
which is not acceptable. Furthermore, automata are most often hard to draw and read
if not ridiculously small, and they are very sensitive to specification changes. Thus, in
practice, explicit Mealy machines are rarely good designs.

In contrast, the Esterel code for ABRO is as follows:

module ABRO:

input A, B, R;

output O;

loop

await A || await B ;

emit O

each R

end module

The two concurrent await statements respectively wait for A and B and terminate. The
parallel operator that joins them terminates when both are terminated, i.e., in the cycle
where the last of A and B is received. Since sequencing consumes no cycle, the output O is
emitted in the same cycle, as requested by the specification. The “loop-each R” construct
performs the reset in the right way, with priority of R over A and B since the body is not
executed when R occurs. In the Esterel code, each signal appears exactly once, as in the
specification and unlike in the Mealy machine. Furthermore, the code grows linearly with
the size of the specification. With three signals S, B, and C, it simply becomes

loop

await A || await B || await C ;

emit O

each R

A similarly linear graphical version of ABRO is pictured in Figure 3.7. The formalism
used is called Synchronous state machines or SSM. It is an evolution of André s SyncCha-
rts [1], itself a synchronous version of Harel’s Statecharts [7]. In a SSM, each state can
be hierarchically refined into another SSM or a concurrent product of SSMs. A double
circle indicates a terminal state, a state without exiting arrow is akin to halt, a dotted
line specifies concurrency, a transition starting with a triangle specifies sequencing, and a
transition starting with a circle specifies strong preemption. Therefore, in this example,
the graphical syntax is simply a variant of the textual one.

The circuit generated by ABRO is pictured in Figure 3.8. It is also linear in terms of the
number of inputs tested, unlike a circuit generated from an explicit Mealy machine which
is of exponential size. Linearity also implie that each input is tested only once, instead of
being tested by many individual transitions. The synchronizer subcircuit on the right-hand
side performs synchronization betweem the parallel await arms: the parallel terminates
if both arms terminate simultaneously or if one of them is already terminated when the
other one terminates. See [2] for the exact structure and behavior of the synchronizer.
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Figure 3.7: The ABRO SSM

Figure 3.8: The ABRO generated circuit
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3.6 The Write Things Once principle

The ABRO example illustrates the fundamental difference between Mealy machines and
Esterel programs. Esterel statements and SSM constructs make it possible to replace
code replication by behavioral description using concurrency, sequencing, and temporal
primitives. Replacing code replication by behavioral structure is indeed the essence of
language design: loops, functions, concurrency, objects, etc., all serve this purpose.

The real key to good programming is the Write Things Once or WTO principle: any
part of the specification whould appear exactly once in the code. Any code replication
makes the program harder to understand and to maintain, and yields a common source
of bugs: the possibility of modifying some of the copies without modifying the other
ones. We do not claim that Esterel fully achieves WTO. We only claim that the Esterel
and SSM primitives help finding the real structure of reactive applications, which is the
prerequisite to WTO, and that the appropriate primitives are absent from conventional
C-like programming languages and from HDLs.

For ABRO, each construct contributes in its own way to WTO. Concurrency immediately
saves an exponential. Synchronous sequencing is fundamental for using a single occurrence
of O for all the termination cases of the parallel statement. The “loop...each” abortion
statement makes it possible to preempt the body in any state using a single occurrence
of R. All these constructs are orthogonal. This means that they can be freely mixed
at any nesting depth without restriction. Here, the parallel statement appears within a
sequence that itself appears within an abortion. Many languages limit concurrency to
design toplevel, therefore loosing orthogonality. This is a sure way of not achieving WTO.

Another essential component of WTO is signal broadcasting, which is used for com-
munication in Esterel. Input broadcasting was implicit when we said that concurrent
statements evolve in lockstep in the same input environment. Broadcasting is extended to
all output and local signals (and of course scoped for locals). For instance, assume that
ABRO is a component of a wider system. Any process interested in knowing when ABRO

emits O just wait for O. Such processes do not have to signal their identity to ABRO, the
code of which does not depend on the number of receivers.

3.7 The runner example

Let us now give another example to illustrate temporal design, a runner controller. In-
puts are supposed to come from appropriate sensors, and outputs are supposed to drive
actuators. The runner should first run slowly during 100 meters, then jump and breathe
synchronously at each step for 15 seconds, then run fast up to the end of the lap. The
whole exercise is limited to 4 laps.One should check that the commands RunSlowly, Jump,
and RunFast cannot be simultaneous.
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module Runner :

input Morning;

input Second , Meter , Step , Lap;

output RunSlowly , Jump , Breathe , RunFast;

every Morning do
abort // 4 laps

loop
abort

sustain RunSlowly

when 100 Meter;

abort
every Step do

emit {Jump , Breathe}

end every
when 15 Second;

sustain RunFast

each Lap

when 4 Lap

end every
||

sustain assert AtMostOneBehavior = RunSlowly # Jump # RunFast

end module

Note how direct the formal Esterel writing is: temporal behavior is written in a straightfor-
ward way from the specification, without resorting to explicit state encoding, and counter
reset, decrementation, and test are handled automatically.

The AtMostOneBehavior assertion states that no two commands can be sent simul-
taneously, as requested by the specification. Such an assertion is defined by an equation
in emit or sustain statement; it needs no other declaration. The assertion must be true
whenever its emit oe sustain statement is active. Assertions are key to program correct-
ness verification. They can be checked either by dynamic simulation or by static formal
verification, see Chapter ?? for details.

All Runner sub-behaviors are not necessarily exercised. If some lap is shorter than 100
meters, then the runner will neither jump nor run fast in this lap (there is no assumption
that all laps are of equal length). If some lap is longer than 100 meters but ends before the
15 seconds delay, the runner does not run fast in this lap. If the runner is real slow and a
new morning occurs before the 4 laps are completed, the runner starts again without any
rest.

Notice that nesting strong temporal statements automatically build priorities. Assume
a lap occurs simultaneously with a step when the runner is in jump mode. Since loop-each
is based on strong abortion, the internal “every Step” statement is strongly preempted
by “each Lap”, which implies that Jump and Breathe are not emitted. Thus, Lap handling
has priority over Step handling when in this mode.



Chapter 4

Data Basics: a FIR Filter Example

This chapter presents a first Esterel design, a video FIR filter similar to filters commonly
found in video applications. After a short presentation of the required data-handling
primitives, the design is done in an incremental way, starting from an initial simple speci-
fication and progressively augmenting the specification to build the final filter with its full
computation, control, and pipelining aspects. This illustrates the flexibility of designing
with Esterel.

During the design process, we put emphasis on program organization and readability.
Nowadays, because of reuse needs, being able to easily read and modify specifications and
programs is as important as being able to write them. This requires programs to be well
architectured and well written, with the added benefit that well-written code is easier to
debug and much less error-prone. However, the way to best write a program depends
on its size. For instance, simple interface declarations are short and convenient for small
modules, while hierarchically defined interfaces are much better for large modules. We
show how to gradually transform lighweight “programming in the small” architectures into
heavier but more manageable “programming in the large” architectures when needed.

Section 4.1 presents basic data in Esterel v7 and introduces arbitrary precision exact
arithmetic. Section 4.2 presents the initial basic filter specification. Coding the basic filter,
is done in Section 4.3. Section 4.4 presents the impact of three successive specification
updates to the basic design. Section 4.5 introduces simple control by requiring pixels to
be read from memory words. Section 4.6 introduces more elaborate hierarchical control
by requiring the filter to handle lines of given length. Section ?? will later show how to
make the design parametric to handle other pixel types, word types, and filter coefficients.

4.1 Data handling basics

We now turn to data handling, introducing the basic unsigned type and valued signals.

4.1.1 Exact unsigned arithmetic

Here data declarations we shall need for the video filter design presented in Chapter 4:

type Pixel = unsigned <[8] >;

constant Coef : unsigned <>[5] = {1, 4, 6, 4, 1};

The Pixel type is a synonym for 8-bit unsigned numbers, and the Coef constant array is
the array of filter coefficients.

37
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Let us explain what the unsigned<[8]> and unsigned<> declaration mean. Esterel v7
is very precise about arithmetic calculations. Unlike most software and harware descrip-
tion languages, it implements arbitrary precision exact arithmetic with automatic data
path sizing. The basic arithmetic types are unsigned<M> and signed<M>, where M is
an arbitrary positive integer. We will consider only unsigned numbers throughout this
chapter, see Section ?? for signed numbers. The type unsigned<M> denotes the range
[0..M − 1], which has exactly M elements. Addition is exact: if e1 and e2 are arbitrary
expression of respective types unsigned<M1> and unsigned<M2> and of respective values
v1 and v2, then the sum expression e1+e2 has value v1+v2 of type unsigned<M1+M2−1>.
The expression type is determined by the fact that the biggest possible value of v1 + v2
is (M1 − 1) + (M2 − 1) = (M1 + M2 − 1) − 1. This definition of numbers and operation
departs from those used in C of HDLs, where numbers have given maximal bit with. In
these languages, when overflow occurs, the value of e1 + e2 is not v1 + v2, which means
that + is not mathematical addition. Esterel has no overflow, just as mathematics.

All signed and unsigned arithmetic operations are handled in the same way with exact
results and types. Explicit saturation and truncation functions make it possible to saturate
or truncate results when needed. As we will see later, arbitrary precision exact arithmetics
makes data path sizing and formal verification much simpler.

Esterel v7 numbers are viewed as abstract and not necessarily implemented by bi-
nary bitvectors. In particular, the size parameter M needs not be a power of 2. For
instance, unsigned<23> is the set of numbers from 0 to 22. However, the case where M
is a power of 2 is of course very frequent, expecially for interface signals. If M = 2N ,
we use unsigned<[N]> as an abbreviation for unsigned<M> = unsigned<2 ∗ ∗N>. In
FilterData, pixels are of type Pixel = unsigned<[8]> = unsigned<256>1.

For the Coef constant array above, we did not specify any size, because the Esterel
type-checker will figure out the size by itself. Since the biggest value in the array is 6, the
best possible type to cover all values is unsigned<7>. Writing this type explicitly is of
course allowed, but being lazy is perfect.

Notice the advantage of dealing with exact ranges instead of bit witdh: if u has type
unsigned<6> and v type unsigned<5>, both fit on 3 bits; their product has maximal value
5× 4 = 20 of type unsigned<21>, which fits on 5 bits. A bitwidth-only calculation would
have given 3 bits × 3 bits = 6 bits.

4.1.2 Valued signals

Most designs are not limited to pure control but perform value computations. In Esterel
v7, this is done through valued signals, which carry values of specified types. Valued signals
can be automatically memorized and can obey a simple valid-bit protocol. A valued signal
can be value-only, in which case it only carries a typed value, or full, in which case it also
carries an implicit pure signal called its status signal. The operator ‘?’ is used to refer to
the value, called ?S for a valued signal S. If S is full, its status is simply called S as for a
pure signal. Valued signals are full by default. Value-only signals are declared using the
value keyword.

By default, the value of a signal S is memorized between instants. This requires allocat-
ing memory elements in the hardware design, which may be too expensive. Memorization

1The notation is a little bit heavy, with a combination of ‘<.>’ to recall exact arithmetic and ‘[]’ to
recall bitvectors, but it is non-ambiguous. Writing unsigned[32] would mean array of 32 unsigned, which
is completely different.
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can be suppressed by adding the temp keyword in the signal declaration. In that case, the
value is undefined when the signal is not emitted, that is, when its status bit is deasserted.

A valued signal can also be declared registered using the reg keyword. Then, its
value (and status for a full signal) is set one cycle after its emission, and the value is
automatically memorized between cycles. Figure ?? presents the different possibilities.
Here is a simple module with valued signals:

module Valued :

type Pixel : unsigned <[8] >;

input A : temp Pixel;

output X : value Pixel;

emit ?X <= 5;

await 3 A;

sustain ?X <= ?A i f ?A > 10

}

Here, A is full temporary because of the temp declaration, while X is value-only memorized,
because of the value declaration. The first emit statement emits X with value 5 at first
cycle. Then, the await statement waits for 3 successive occurrences of A, with the value
?X still 5 since X is memorized. Then, whenever A occurs with a value greater than 10, its
value is re-emitted on X. In between, the value of X stays equal to its previous value.

Notice that the test in the sustain statement involves mixed status / value expres-
sions. Notice also that we wrote two distinct emission statements for X. Because of
the middle await statement that separates them in time, these emitters will never occur
simultaneously and thus never conflict.

As for the pure signal case, emit and sustain can involve multiple equations computed
concurrently. Furthermore, status and value equations .can be freely mixed in the same
emit or sustain.

4.1.3 Booleans, arrays, and bitvectors

Esterel support data arrays of any number of dimensions. Arrays are like C arrays, with
indices starting from 0. For instance, for a declaration “S : Pixel[3]”, the value ?S is an
array of type Pixel[3] with three components, ?Pixel[0], ?Pixel[1], and Pixel[2].
One can take slices such as [0..1]. Arrays of any base type are allowed. Multidimensional
arrays are allowed, but will not be used here; their type definition and indexation are as in
C, for instance, a correct array type is unsigned<[8]>[5][7], and indexation is A[2][3];
slicing can be done on one or several dimensions.

A very common kind of array is bitvectors. i.e., arrays of Booleans. The base type
bool of Word is the Boolean type, with two values called true and false or ’0 and ’1.

Here is a typical example:

type Word = bool [32];

The type declaration defines Word as a synonym to the array type bool[32]. Bitvector
constants can be written in binary with higher-order bit first as usual, as for ’b10011, in
octal, as for ’o325, or in hexadecimal, as for ’xFF4E. They can also be written as Boolean
arrays, with low-order bit first: ’b10011 and {’1,’1,’0,’0,’1} denote the same constant.
Note that bitvectors are not special “packed array” type as in HDLs. Packing is done by
the compiler.

Bitvectors support a map definition that gives names to slices. Here, we names the
bytes in the word, which we will convert to pixels in the filter example:
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The map declaration gives names to bits or fields of a bitvector type. Here, the map
splits the word into four consecutive pixels named p0, p1, p2, and p3, lowest-order byte
first as required by the specification. For an object W : Word, the expression W.p0 is
synonym to W[0..7]. Map fields can overlap, and several unnamed or named maps can
be used for the same type, see Section ?? for more details.

type Word = bool [32];
map Word {

p0[0..7] , p1[8..15] , p2[16..23] , p3 [24..31]

};

end data

4.1.4 Conversions between bitvectors and numbers

For the Word type and map, slices p0 to p3 are bitvectors of length 8. However, the
the filter of Chapter 4 expects pixels as numbers of type unsigned<[8]>. Since it deals
with numbers in a very precise and abstract way, Esterel does not identify bitvectors with
numbers, and it does not even automatically convert bitvectors to numbers. One must use
an explicit conversion function, here bin2u (binary to unsigned) to read the bits in binary
format. Thus, the numerical pixels out of p0 should be computed as bin2u(p0), which is
of type unsigned<[8]>. Other primitive functions are bin2gray to read the bits in Gray
code format, bin2onehot to read the bits in onehot format, i.e. 0 = ’b1000, 1 = ’b0100,
2 = ’b0010, and 3 = ’b0001 for 4-bits onehot encoding. Similar bin2s, etc., primitives
make it possible to read the bitvector as signed instead of unsigned.

4.1.5 Interfacing valued signals at HDL level

In the HDL implementation gnerated by Esterel Studio, each main module pure interface
signal S simply generates a Boolean HDL signal called S. Things are a little more involved
for valued interface signals. Each Esterel data type is implemented c a corresponding HDL.
A valued signal S of Esterel type T generates a HDL interface signal called S_data, with
type HDL type the one associated with T. Esterel bitvectors become HDL bitvectors.
Esterel unsigned numbers are assumed to be encoded binary, and signed numbers are
assumed to be encoded in 2’s complement form. In addition, if S is full, a Boolean signal
S is generated for the status.

For instance, consider the following declarations:

type Pixel : unsigned <[8] >;

input InPixel : Pixel;

Then there are two HDL signals for InPixel: the 8-bit signal InPixel_data for the value,
and the Boolean signal InPixel for the status.

4.2 Basic filter specification

4.2.1 Filtering algorithm

The filter should serially take an unbounded sequence of 8-bit pixels as input and serially
return an unbounded sequence of 8-bit pixels as output. Let the input pixels be called
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x0, x1, . . . , xm, . . . and the output pixels be called y0, y1, . . . , ym, . . . The recurrence filtering
formula should be as follows, for i ≥ 2:

yi = (xi−2 + 4xi−1 + 6xi + 4xi+1 + xi+2)/16

The filter should be started only when three input pixels have been read, with 0’s for the
missing values:

y0 = (6x0 + 4x1 + x2)/16

y1 = (4x0 + 6x1 + 4x2 + x3)/16

For instance, with input value sequence x = 12, 23, 45, 127, 82, . . ., the output sequence
should be 13, 30, 60, . . ..

4.2.2 Basic filter implementation constraints

Input pixels may not appear at every clock cycle. The filter circuit should have two inputs:
an 8-bit signal InPixel_data carrying pixel values and a Boolean signal InPixel acting as
a valid bit for InPixel_data. The value of InPixel_data should be meaningful only when
InPixel is asserted (i.e., has value 1); it should be considered as irrelevant and potentially
undefined if InPixel is deasserted. No pixel should be given by the environment at circuit
reset time, i.e., before the first clock rising edge.

Symmetrically, the filter circuit should have two outputs: an 8-bit signal OutPixel_data
carrying output pixel values and a Boolean signal OutPixel acting as a valid bit for
OutPixel_data. The value of OutPixel_data should be defined when OutPixel is as-
serted and may be left undefined otherwise.

The output pixel should be computed combinationally for each new input pixel: for
i ≥ 2, the output of yi should be synchronous with the input of xi+2.

The final circuit should be single-clocked, with full synchronous reset, and fully DFT-
compliant. A SystemC cycle-accurate model with behavior strictly idential to the circuit
behavior should be made available.

4.3 The BasicFilter 1 module

It is obvious from the specification that the interface signals InPixel and OutPixel should
be full temporary signals of type Pixel. Here is the corresponding module header:

module BasicFilter_1 :

type Pixel = unsigned <[8]>

input InPixel : temp Pixel; // full temporary

output OutPixel : temp Pixel; // full temporary

Body

end module

We use the name BasicFilter_1 because we guess we will later receive specification
updates, as usual.

We build the exectuable body by declaring a delay line signal array to hold 5 successive
pixel values and by putting two behavioral components in parallel, the delay line handler,
and the computation handler:
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s ignal DelayLine : value Pixel [5] i n i t 0 in
DelayLineHandler

||

Computation

end s ignal

The DelayLine signal is declared as an array of 5 pixels initialized to 0, shared between
DelayLineHandler and Computation. We declare DelayLine as value-only using the value
keyword, since its status will not tested in the rest of the design (they would be no harm in
declaring it full, since the unused status would be swept at circuit synthesis time). Since
it is not declared temp, the value of DelayLine will be memorized betweem cycles. Once
again, note that memorization specification is behavioral : we state that the value should
be memorized, but we do not specify how. Creating the appropriate memory elements is
the job of the Esterel compiler.

4.3.1 The delay line

The DelayLine code is as follows:

sustain {

i f InPixel then
?DelayLine [0..3] <= pre(? DelayLine [1..4]) ,
?DelayLine [4] <= ?InPixel

end i f
}

The sustain statement contains two concurrent equations, executed only when InPixel

is asserted, as stated by the if clause that tests the InPixel status. The first equation
computes the value of DelayLine[0..3] using the sequential pre operator, which returns
the value of a signal at previous cycle. Therefore, at each cycle where InPixel is as-
serted, the new value of the slice DelayLine[0..3] is defined as the old value of the slice
DelayLine[1..4] at previous cycle. The second equation specifies that the new value
of ?DelayLine[4] is the current value of InPixel. The equations all define DelayLine

array components, but do not conflict since there is no overlap in their right-hand-side
indexation.

In the delay line definition, the second equation introduces a combinational dependency
from ?DelayLine[4] to ?InPixel, while the first equation introduces no combinational
dependency since there is a pre on the way.

4.3.2 The filter computation

The computation code is as follows:

s ignal Product : temp unsigned <[11] >[5] in
await 3 InPixel;

sustain ?Product <= Coef [*] ?DelayLine i f InPixel

||

sustain ?OutPixel <= assert <[8] >((? Product [0] + ?Product [1]

+ ?Product [2] + ?Product [3]

+ ?Product [4]) / 16)

i f Product

end s ignal
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We declare a full temporary signal Product, which is an array of 5 11-bit unsigned values.
This array holds the products of the pixels times their coefficients. Basic product * is
extended elementwise to arrays by the curly brackets in ‘[*]’. The Product signal has a
single status, acting as a valid bit for each of the value array elements2. There are two
parallel branches in the signal declaration body:

• The first branch is a sequence, whose first components waits for three occurrences
of InPixel and terminates, and whose second component emits a product array
whenever an InPixel is available.

• The second parallel branch immediately computes the output pixel whenever a new
product array is available.

The await statement of the first branch implements the initial delay mentioned in the
specification. The [*] array operator performs componentwise multiplication of the Coef

and ?Product arrays. Notice that the transmission of Product from the first parallel arm
to the second parallel arm is combinational: the product values computed in the cycle are
summed in the same cycle. The numerical assertion assert<[8]>(...) asserts that the
argument value will always fit in the Pixel, i.e. is less than 256. It can be verified at
simulation or formal verification time as explained below.

The code is written in a behavioral way. We use both concurrency and sequencing of
behavior, and we write “await 3 InPixel” for the initial delay without specifying how
the counter is implemented. The Esterel code can be viewed as a formal specification of
the circuit behavior, with no precise specification of the circuit structure. Nevertheless,
the generated circuit will be very similar to a manually designed one, whose source code
would be much less readable.

4.3.3 Datapath sizing and checking

Let us now explain datapath sizing. We have set the unsigned size of Product to 11 bits.
This value needs not be guessed since it can be computed by the Esterel compiler in the
following way: first, set the size to a ridiculous unsigned<[1]>; call the compiler; the size-
checker complains that one bit is to small and that the optimal size is unsigned<1531>,
which requires 11 bits; then, correct the program, either by writing the optimal value
unsigned<1531> or the upper approximation unsigned<[11]>3. The compiler finds the
value 1531 by looking at the types of Coef, which is unsigned<7>, and that of InPixel,
which is unsigned<[8]> = unsigned<256>; the maximal value of a product is 6 × 255 =
1530, whose best-fitting type is indeed unsigned<1531>.

With the above code, we can also check datapath correctness. For the final sum, the
assert<[8]>(...) assertion asserts that the argument value will always fit in the Pixel

type, i.e. is less than 256. This property cannot be computed solely by type-checking.
Since the maximal value of a product is 1530, the maximal argument value computed at
type-checking time for the output pixel is 5×1530/16 = 478. The type-checker is not able
to use the fact that the sum of coefficients is equal to the dividend. There are two ways
to check the assertion with Esterel Studio:

2The “Product : unsigned<[11]>[5]” declaration gives the whole array a single status. To get one
individual status bit per array element, use “Product[5] : unsigned<[11]>”.

3which makes no difference here; however, in general, optimal types are better if there is more propa-
gation of size comptations.
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• dynamically by simulation, using the Esterel Studio simulator, a C / SystemC sim-
ulator running the generated C / SystemC code, or an HDL simulator running the
generated HDL code;

• by formal verification, using the Esterel Studio Design Verifier that understands both
logic and numbers and can perform a static definitive proof of the assertion.

Once the assertion is proved valid, the truncation to 8 bits implied by the ‘<=’ signal
assignment symbol is proved arithmetically safe. This strongly constrats with conven-
tional HDL practice where truncation would be built-in and not checked safe, leaving the
possibility of nasty hidden bugs.

4.3.4 Correctness w.r.t. implementation constraints

We now explain how to meet the implementation constraints. First, the HDL interface is
composed of signals InPixel, InPixel_data, OutPixel, and OutPixel_data as required
by the specification, because of the way the Esterel compiler names generated signals, as
explained in Section 4.1.5. Second, the design is combinational as required. The left-hand-
side of an equation combinationally depends on the elements of the right-hand-side that
are not within a pre delay operator. Thus, the status and data components of OutPixel
depend on those of Product, which themselves depend on those of DelayLine through
DelayLine[4], which itself depends on the status and value of InPixel. This path can
be visualized on the source code using Esterel Studio’s colorful browsing mode.

After having verified the circuit using Esterel Studio simulation and formal verification,
we generate two object models using Esterel Studio code generation: an (optimized) HDL
model and a SystemC cycle-accurate model. Since both exactly respect the Esterel formal
semantics, they have the same behavior by construction, as required by the last constraint.

4.3.5 Generated circuit structure

For HDL generation, there are settable compiling parameters for clock, reset, and DFT
compliance that make respecting the constraints easy. We do not detail them here.

GB to complete

4.4 Basic filter specification updates

4.4.1 First specification update: initialization change

When using the filter, the architects realize that using 0’s for missing initial values is not
good enough. Thereferore, they issue the following specification update:

The filter should be started only when three input pixels have been read, with the first
read pixel used for for the two missing values:

y0 = (x0 + 4x0 + 6x0 + 4x1 + x2)/16

y1 = (x0 + 4x0 + 6x1 + 4x2 + x3)/16

With the same value sequence x = 12, 23, 45, 127, 82, . . . as before, the output sequence
should now be 16, 31, 60, . . . instead of 13, 30, 60, . . ..

This update is implemented using only a small change to the delay line:
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s ignal DelayLine : value Pixel [5] in
await InPixel;

for i < 3 dopar
emit ?DelayLine[i+2] <= ?InPixel

end for ;
pause;
sustain {

i f InPixel then
?DelayLine [0..3] <= pre(? DelayLine [1..4]) ,
?DelayLine [4] <= ?InPixel

end i f
}

||

Computation

end s ignal

The newly added statements illustrate several important features of Esterel behavioral
style.

• The initial “await InPixel” waits for the first pixel and terminates4.

• Its termination immediately starts the for-dopar loop, which is static and con-
ceptually replicates three parallel instances of its body, loading the initial pixels in
DelayLine[2], DelayLine[3], and DelayLine[4].

• The three replicated emit statements terminate immediately. Just as a parallel
statement, a for loop computes the distributed termination of its instances. There-
fore, the whole for loop terminates in the cycle. Therefore, the pause statement is
started synchronously with first pixel reception.

• The pause statement pauses for one cycle and terminates, giving hand to the normal
fifo handling sustain statement.

• Multiple emission of signals makes design much easier. Here, there are three state-
ments emitting DelayLine, but conflict due to multiple simultaneous emissions for
the same DelayLine position cannot occur. With Esterel Studio, that fact that
can be checked either by dynamic simulation or by formal verification using Design
Verifier. It follows from the fact that pause temporally separates the for loop from
the sustain statement. (If needed, multiple simultaneous emission is allowed for
combined signal, see Section ??.)

In the generated circuit, the change is added muxes on positions 2 and 3 of the delay line
and added control for these muxes.

4.4.2 Second specification update: register the output

The basic filter design was initially specified to be combinational. However, this hap-
pened to make its output much too late, electrically speaking. Therefore, the following
specification update is issued:

4With await, a pixel present at reset time would be ignored. However, the specification states that
there is no such pixel, and all is well. To accept a pixel at reset time, one should write “await immediate”.
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Figure 4.1: Combinational and retimed basic filter trees

The Outpixel and OutPixel_data signals should be registered outputs. The design
should have latency 1: after reading two pixels, whenever a new pixel is read, OutPixel

and OutPixel_data should be output at next cycle.

With Esterel, such a specification update is easily implemented using the notion of a
registered signal presented in Section 2.2 and Section ??. Here is the appropriate changes
in the module header:

module BasicFilter_3 :

...

output OutPixel : reg Pixel; // full registerd

Body

end module

Here is the appropriate change in the executable code:

sustain next ?OutPixel <= assert <[8] >((? Product [0] + ?Product [1]

+ ?Product [2] + ?Product [3]

+ ?Product [4]) / 16)

i f Product

Once again, the change is behavioral: only the reg and next keyword have been added.
Actual register generation is the task of the compiler. In the generated HDL, the effect is
imply to register the OutPixel and OutPixel_data signals.

4.4.3 Third specification update: pipeline the design

Further system-level benchmarks show that the cycle-time of BasicFilter_2 is too long
and should be shortened by pipelining, adding one extra latency cycle. As shown in the
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left part of Figure 4.1, the computation parts stacks a tree of adders on top of an array
of multipliers. The circuit pipelining solution will consist in inserting a register barrier
between the multipliers and adders, as pictured in the right part of Figure 4.1. To obtain
this effect, it suffices to delare the product signal registered, changing the computation
part as follows:

module BasicFilter_4 :

...

s ignal Product : reg unsigned <[11] >[5] in
await 3 InPixel;

sustain next ?Product <= Coef [*] ?DelayLine i f InPixel

||

sustain next ?OutPixel <= assert <[8] >((? Product [0] + ?Product [1]

+ ?Product [2] + ?Product [3]

+ ?Product [4]) / 16)

i f Product

end s ignal
end module

Now, there is one cycle latency for the transmission of Product from the first equation to
the second one and one cycle latency for the output of OutPixel.

4.5 Extracting pixels out of words

The basic filter should now be linked with a control unit reading pixels from words,
according to the following specification described below.

4.5.1 Word input specification

The full filter should feed the basic filter (in its lasr version) with pixels extracted from
32-bits input words, where each word contains 4 successives pixels ordered from low-order
bits to high-order bits. The full filter circuit word interface will consists of three signals:
an output Ready control bit, which, when asserted, tells the filter environment that the
filter is ready to receive a word; a 32-bit wide signal InWord_data, which holds the input
word value; and a bit InWord acting as a valid bit for InWord_data. When InWord is
asserted by the environment, the filter can read a defined word from InWord_data. When
InWord is deasserted, the environment can leave InWord_data undefined.

The Ready and InWord signals can act asynchronously. To make a new word available,
the environment asserts InWord. When ready to process a word, the filter asserts Ready.
These can occur in any order, and can be simultaneous. Actual read is performed when
InWord and Ready are both asserted in the same cycle. Then, the filter should de-assert
Ready and the environment should prepare a new word for the next read.

4.5.2 Using data and interface units to share declarations

The new filter module will be called WordFilter_4. It will consist of two concurrent
components, a WordFeeder module whose role is to extract pixels out of words, and the
corresponding basic filter module BasicFilter_4.

We now have to deal with three modules, which share data components and interface
signals. For instance, the Pixel type should be declared in all three modules, the out-
put signal OutPixel should be declared by WordFilter_4 and BasicFilter_4, and the
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InPixel signal should be an output of WordFeeder, an input of BasicFilter_4, and a
local signal within WordFilter_4. In such a situation, it is fundamental to avoid copying
the data and interface signal declarations, otherwise any change to a declaration should be
done in several places; this is error-prone and one of the best known ways to make designs
inconsistent. Sharing declarations is the goal of data units] and interface units, which we
now introduce. Here is the way to factor out the previous declarations using these units:

data PixelData :

type Pixel = unsigned <[8] >;

end data

inter face InPixelIntf :

extends data PixelData;

input InPixel : temp Pixel;

end inter face

inter face OutPixelIntf :

extends data PixelData;

output OutPixel : temp Pixel;

end inter face

The “extends data” directive imports all declarations of a data unit in the current unit.
Here is the appropriate rewriting of PixelFilter_1, with body unchanged.

module PixelFilter_1 :

extends inter face InPixelIntf;

extends inter face OutPixelIntf;

Body

end module

The “extends interface” directive imports all declarations of an interface in the current
unit.

With extends, the data and interface secondary keywords are usually redundant
and can be omitted. However, it can be useful to solely extends the data part of an
interface Intf by explicitly writing “extends data Intf”. See Section ?? for details.

4.5.3 Declaration refinement

There is a fine point about interface extension. For PixelFilter_4, the OutPixel output
should be declared registered. This cannot be done in the interface unit, since the fact that
a signal is combinational or registered should not visible from users of the module: it is only
an internal implementation property of the module. Therefore, the reg declaration should
be performed in the module. Here is the way to do this using a declaration refinement
that keeps the previously declared type of OutPixel and adds the reg features:

module PixelFilter_1 :

extends inter face InPixelIntf;

extends inter face OutPixelIntf;

re f ine OutPixel : reg;
Body

end module
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4.5.4 Word data and interface

The data unit needed to process words has already been presented in Section ??:

data WordData :

type Word = bool [32];
map Word {

p0[0..7] , p1[8..15] , p2[16..23] , p3 [24..31]

};

end data

The interface to read words is as follows:

inter face WordIntf :

extends data WordData;

input InWord : Word;

end inter face

The InWord Esterel input full signal groups InWord and InWord_data circuit inputs as
usual.

4.5.5 The WordFeeder module

The WordFeeder module header is as follows:

module WordFeeder :

extends inter face WordIntf;

extends mirror InPixelIntf;

WordFeeder Body

end module

We extend the InWord input interface and we extend the mirror of the InPixel interface.
Mirroring an interface simply consists in swapping inputs and outputs. This is needed
here since InPixel has to be an output of WordFeeder.

The ?InWord value is automatically memorized between instants since InWord is not
declared temp. If the status InWord is asserted in the cycle, ?InWord is the value provided
by the environment. If InWord is de-asserted in the cycle, its value remains that of the
previous cycle. This memorization is necessary to extract the four successive pixels, since
the environmnent is not supposed to sustain the value of InWord_data. The body of
WordFeeder can be specified in two different ways: textually using Esterel statements. or
graphically as as state machine. Figure 4.2 presents the graphical version, and here is the
textual version:

loop
weak abort

sustain Ready

when InWord;

emit ?OutPixel <= bin2u(? InWord.p0);
pause;
emit ?OutPixel <= bin2u(? InWord.p1);
pause;
emit ?OutPixel <= bin2u(? InWord.p2);
pause;
emit ?OutPixel <= bin2u(? InWord.p3);
pause

end loop



50 CHAPTER 4. DATA BASICS: A FIR FILTER EXAMPLE

Figure 4.2: The WordFeeder state machine

The textual code is fairly obvious. The initial “weak abort” statement keeps Ready

asserted until an InWord is received, this cycle included. Four pixels are extracted in
four successive cycles separated by pause statements. Notice that OutPixel has multiple
emitters, which never collide because they are separated by pauses. Running the textual
code in the Esterel Studio simulator provides source code animation to make the state
changes obvious.

Let us now comment the graphical version, which can also be animated by Esterel
Studio. At initial instant, the S0 state is entered and Ready is emitted by the internal
sustain statement. The transition out of S0 bears the following trigger / action pair:

InWord / OutPixel(bin2u(? InWord.p0)

The state machine remains in S0 until the outgoing transition trigger becomes true, i.e.,
InWord becomes asserted. In that cycle, the transition is taken, the “sustain Ready”
statement is killed, the transition effect emits OutPixel with value ?InWord.p0 converted
from binary bitvector to unsigned, and S1 becomes the new state. The transition is drawn
as a simple line, which means that it weakly aborts the contents of S0, still emitting Ready

as required. Strong abortion would be performed by a transition staring with a small red
circle.

Pixels p1, p2, and p3 are converted to unsigned and output in the next three successives
clock cycle; the corresponding transitions are successively fired at each cycle since they
have no trigger. At third cycle after InWord, the last transition brings the state back to
S0, thus keeping Ready asserted again until the next InWord comes in.

Which is preferable from the graphical and textual designs depends on the user’s point
of view. To help the user change her or his mind, Esterel Studio embeds a sequential equiv-
alence checker able to prove that two designs behave identically for any input sequence.
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4.5.6 The WorldFilter main module

Building the WordFilter main module now simply consists in putting WordFeeded and
BasicFilter in parallel, with local declaration of the intermediate InPixel signal. This
declaration is performed extending the InPixelIntf interface:

module WordFilter_4 :

extends WordIntf;

extends OutPixelIntf;

s ignal extends InPixelIntf in
run WordFeeder

||

run BasicFilter_4

end s ignal
end module

Notice that signal directionalities are irrelevant in the local extension of InPixelIntf.

4.6 Handling pixel lines

The word filter should now be transformed into a line filter that processes image lines of
fixed length.

4.6.1 Line filter specification

The filter should process input lines of 512 pixel and output lines of the same size. Since
the first output pixel is output only when three input pixels have been read, two extra
pixels should be symmetrically output after the end of the input line by copying the last
input pixel:

y509 = x507 + 4x508 + 6x509 + 4x510 + x511

y510 = x508 + 4x509 + 6x510 + 4x511 + x511

y511 = x509 + 4x510 + 6x511 + 4x511 + x511

The basic filter in use should be BasicFilter_4. Since it has been thoroughly validated
It should be reused as such, without any modification

4.6.2 From WordFilter to LineFilter

The new module will be called LineFilter_4. There is no need for change in the data
and interfaces. We simply replace WordFeeder by a new module LineFeeder described
below and place BasicFilter_4 within a loop statement with “weak abort” body:

module LineFilter_4 :

extends InPixelIntf;

extends OutPixelIntf;

s ignal extends InPixelIntf in
run LineFeeder

||

loop
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weak abort
BasicFilter_4

when 512 OutPixel

end loop
end s ignal

end module

Because of loop and “weak abort”, the basic filter is automatically aborted, reset, and
restarted when 512 pixels have been output. Because of input-output latency, it is impor-
tant to count output pixels and not input pixels.

4.6.3 The LineFeeder module

The new LineFeeder module is obtained in a similar way from the existing WordFeeder

module. After 512 input pixels sent, the WordFeeder module is weakly aborted and a
padding state is entered for two ticks before the whole behavior is restarted afresh.

The textual version is written using a loop over a feed-pad sequence, where each
element gets weakly aborted:

module LineFeeder :

extends inter face WordFeeder;

loop
abort

run WordFeeder

when 512 OutPixel;

// padding

weak abort
pause; // skip a tick

sustain ?OutPixel <= ?InWord.p3

when 2 t ick
end loop

end module

Graphically, the same behavior is done using a hierarchical state machine. Such a
machine can be designed in two ways. Figure 4.3 shows how to call WordFeeder using
a submodule run state in LineFeeder. When the transition out of this state is taken,
the WordFeeder submodule is weakly aborted and control goes to the padding state that
resends the last pixel ?InWord.p3. After 2 ticks, the WordFeeder submodule is restarted
afresh.

An alternative pictured in Figure 4.3 is to directly embed the WordFeeder state ma-
chine into the first hierarchical state of LineFeeder, which is called a macrostate. Read-
ability is improved, but direct reuse is decreased. Mixed graphical / textual design is also
possible: the textual body of WordFeeder can be equivalently put in a textual macrostate,
as shown in Figure 4.4.

4.7 Parametrizing the filter for reuse

FilterParam
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Figure 4.3: The LineFeeder state machine
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Figure 4.4: The LineFeeder hierarchical state machine
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