HAMILTON'S INVERSE FUNCTION THEOREM: PROOF OF THE CONVERGENCE OF THE ITERATION SCHEME

JEAN-CHRISTOPHE YOCCOZ

1. The Setting

- E, F are two tame Frechet spaces, $S(t), t \geqslant 1$ are the corresponding smoothing operators;
- r_{0} is a positive integer;
- f is a map defined on the ball $B=\left\{\|x\|_{r_{0}}<1\right\}$ of E, with values in F satisfying $f(0)=0$;
- f is C^{2} tame and satisfies, for $x \in B, y \in E, r \geqslant 0$:

$$
\begin{aligned}
\|D f(x, y)\|_{r} & \leqslant C_{r}\left(\|x\|_{r+r_{0}}\|y\|_{r_{0}}+\|y\|_{r+r_{0}}\right) \\
\left\|D^{2} f(x, y, y)\right\|_{r} & \leqslant C_{r}\left(\|x\|_{r+r_{0}}\|y\|_{r_{0}}^{2}+\|y\|_{r_{0}}\|y\|_{r+r_{0}}\right)
\end{aligned}
$$

- There exists a continuous tame inverse of $D f$ denoted by $L: B \times F \rightarrow E$ which satisfies, for $x \in B, z \in F, r \geqslant 0$:

$$
\|L(x, z)\|_{r} \leqslant C_{r}\left(\|x\|_{r+r_{0}}\|z\|_{r_{0}}+\|z\|_{r+r_{0}}\right) .
$$

2. The iteration scheme

Let $\varepsilon^{*}>0$ and r_{1} a positive integer to be chosen later (Actually, we will have $r_{1}=$ $17 r_{0}$). We start with $y \in F$ in the ball $B^{*}:=\left\{\|y\|_{r_{1}}<\varepsilon^{*}\right\}$ and will construct $x \in B$ such that $f(x)=y$. Set $t_{n}:=\exp \left(\frac{3}{2}\right)^{n}$ for $n \geqslant 0$.

Let $x_{0}=0$; as long as $\left\|x_{n}\right\|_{2 r_{0}}+\left\|f\left(x_{n}\right)\right\|_{2 r_{0}}<1$, we define inductively

- $e_{n}=y-f\left(x_{n}\right)$;
- $\widetilde{\delta}_{n}=L\left(x_{n}, e_{n}\right)$;
- $\delta_{n}=S\left(t_{n}\right) \widetilde{\delta}_{n}$;
- $x_{n+1}=x_{n}+\delta_{n}$.

This is Newton's algorithm with the smoothing from $\widetilde{\delta}_{n}$ to δ_{n} added. We will prove that, if B^{*} is small enough, x_{n} is defined for all n and converge to a solution x of $f(x)=y$.

3. The basic estimates

The properties of L give, for $r \geqslant 0$

$$
\begin{equation*}
\left\|\widetilde{\delta}_{n}\right\|_{r} \leqslant C_{r}\left(\left\|x_{n}\right\|_{r+r_{0}}\left\|e_{n}\right\|_{r_{0}}+\left\|e_{n}\right\|_{r+r_{0}}\right) \tag{1}
\end{equation*}
$$

We assume that $r_{1} \geqslant 2 r_{0}$ and $\varepsilon^{*}<1$. Then, the property $\left\|f\left(x_{n}\right)\right\|_{2 r_{0}}<1$ implies

$$
\begin{equation*}
\left\|e_{n}\right\|_{2 r_{0}}<2 \tag{2}
\end{equation*}
$$

Then, as we have also $\left\|x_{n}\right\|_{2 r_{0}}<1$, we get from the previous inequality

$$
\begin{equation*}
\left\|\widetilde{\delta}_{n}\right\|_{r_{0}} \leqslant C \tag{3}
\end{equation*}
$$

The next estimate comes directly from the properties of the smoothing operators: for any $r^{\prime} \geqslant r$, we have

$$
\begin{equation*}
\left\|\delta_{n}\right\|_{r^{\prime}} \leqslant C_{r, r^{\prime}} t_{n}^{r^{\prime}-r}\left\|\widetilde{\delta}_{n}\right\|_{r} . \tag{4}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left\|\delta_{n}\right\|_{r_{0}} \leqslant C \tag{5}
\end{equation*}
$$

To estimate e_{n+1}, we will use Taylor's formula at order 1 or 2 . On one side

$$
f\left(x_{n}+\delta_{n}\right)=f\left(x_{n}\right)+\int_{0}^{1} D f\left(x_{n}+u \delta_{n}, \delta_{n}\right) d u
$$

which gives, in view of the properties of $D f$, for $r \geqslant 0$

$$
\left\|e_{n+1}\right\|_{r} \leqslant\left\|e_{n}\right\|_{r}+C_{r}\left(\left\|\delta_{n}\right\|_{r_{0}}\left(\left\|x_{n}\right\|_{r+r_{0}}+\left\|\delta_{n}\right\|_{r+r_{0}}\right)+\left\|\delta_{n}\right\|_{r+r_{0}}\right)
$$

Using $\left\|\delta_{n}\right\|_{r_{0}} \leqslant C$, we get

$$
\begin{equation*}
\left\|e_{n+1}\right\|_{r} \leqslant\left\|e_{n}\right\|_{r}+C_{r}^{\prime}\left(\left\|x_{n}\right\|_{r+r_{0}}+\left\|\delta_{n}\right\|_{r+r_{0}}\right) \tag{6}
\end{equation*}
$$

This crude estimate will be useful in complement to the one coming from

$$
f\left(x_{n}+\delta_{n}\right)=f\left(x_{n}\right)+D f\left(x_{n}, \delta_{n}\right)+\int_{0}^{1}(1-u) D^{2} f\left(x_{n}+u \delta_{n}, \delta_{n}, \delta_{n}\right) d u
$$

Here, from the definition of δ_{n} we get
$e_{n+1}=D f\left(x_{n},\left(1-S\left(t_{n}\right)\right) L\left(x_{n}, e_{n}\right)\right)-\int_{0}^{1}(1-u) D^{2} f\left(x_{n}+u \delta_{n}, \delta_{n}, \delta_{n}\right) d u=e_{n+1}^{\prime}-e_{n+1}^{\prime \prime}$
The properties of $D^{2} f$ give, for any $r \geqslant 0$

$$
\left\|e_{n+1}^{\prime \prime}\right\|_{r} \leqslant C_{r}\left(\left\|\delta_{n}\right\|_{r_{0}}^{2}\left(\left\|x_{n}\right\|_{r+r_{0}}+\left\|\delta_{n}\right\|_{r+r_{0}}\right)+\left\|\delta_{n}\right\|_{r+r_{0}}\left\|\delta_{n}\right\|_{r_{0}}\right)
$$

Using again $\left\|\delta_{n}\right\|_{r_{0}} \leqslant C$, we get

$$
\begin{equation*}
\left\|e_{n+1}^{\prime \prime}\right\|_{r} \leqslant C_{r}^{\prime \prime}\left(\left\|\delta_{n}\right\|_{r_{0}}^{2}\left\|x_{n}\right\|_{r+r_{0}}+\left\|\delta_{n}\right\|_{r+r_{0}}\left\|\delta_{n}\right\|_{r_{0}}\right) \tag{7}
\end{equation*}
$$

To estimate e_{n+1}^{\prime}, we will use the approximation property of $S\left(t_{n}\right)$.

4. CONVERGENCE OF THE ITERATION SCHEME

Lemma 4.1. Let $r \geqslant r_{0}$. There exists a constant $A=A(r)$ such that, for every $n \geqslant 0$ such that x_{n+1} is defined, one has

$$
\begin{align*}
\left\|\widetilde{\delta}_{n}\right\|_{r-r_{0}} & \leqslant A t_{n}^{5 r_{0}}\|y\|_{r}, \tag{8}\\
\left\|\delta_{n}\right\|_{r+r_{0}} & \leqslant A t_{n}^{7 r_{0}}\|y\|_{r}, \tag{9}\\
\left\|x_{n+1}\right\|_{r+r_{0}} & \leqslant A t_{n}^{7 r_{0}}\|y\|_{r}, \tag{10}\\
\left\|e_{n+1}\right\|_{r} & \leqslant A t_{n}^{7 r_{0}}\|y\|_{r} \tag{11}
\end{align*}
$$

Proof. We have $x_{0}=0$ and $e_{0}=y$. For $n \geqslant 0$, we write

$$
\begin{aligned}
\left\|\widetilde{\delta}_{n}\right\|_{r-r_{0}} & =A_{1}(n, r) t_{n}^{5 r_{0}}\|y\|_{r} \\
\left\|\delta_{n}\right\|_{r+r_{0}} & =A_{2}(n, r) t_{n}^{7 r_{0}}\|y\|_{r} \\
\left\|x_{n+1}\right\|_{r+r_{0}} & =A_{3}(n, r) t_{n}^{7 r_{0}}\|y\|_{r} \\
\left\|e_{n+1}\right\|_{r} & =A_{4}(n, r) t_{n}^{7 r_{0}}\|y\|_{r} .
\end{aligned}
$$

We write C_{r} for various constants depending only on r.
From (1), we have $A_{1}(0, r) \leqslant C_{r}$. From (4), we have

$$
\begin{equation*}
A_{2}(n, r) \leqslant C_{r} A_{1}(n, r) \tag{12}
\end{equation*}
$$

Next we have $A_{3}(0, r)=A_{2}(0, r)$ and, for $n>0$

$$
\begin{equation*}
A_{3}(n, r) \leqslant A_{2}(n, r)+A_{3}(n-1, r)\left(t_{n-1} t_{n}^{-1}\right)^{7 r_{0}} \tag{13}
\end{equation*}
$$

with $t_{n-1} t_{n}^{-1}=t_{n}^{-1 / 3}$. From (6), we have also

$$
\begin{equation*}
A_{4}(n, r) \leqslant C_{r}\left(A_{2}(n, r)+t_{n}^{-7 r_{0} / 3}\left(A_{3}(n-1, r)+A_{4}(n-1, r)\right)\right) \tag{14}
\end{equation*}
$$

Finally, from (1), we get, for $n>0$

$$
\begin{equation*}
A_{1}(n, r) \leqslant C_{r} t_{n}^{-7 r_{0} / 3}\left(A_{3}(n-1, r)+A_{4}(n-1, r)\right) . \tag{15}
\end{equation*}
$$

Whatever the values of the constants C_{r}, the inequalities (12)-(15) imply that the sequences $A_{i}(n, r), 1 \leqslant i \leqslant 4$, are bounded from above by a constant depending only on r.

Lemma 4.2. There exists a constant A^{*}, and, for any $r \geqslant 8 r_{0}$, a constant $A^{*}(r)$, such that, for all $n \geqslant 0$ such that x_{n+1} is defined, one has

$$
\begin{equation*}
\left\|e_{n+1}\right\|_{r_{0}} \leqslant A^{*} t_{n}^{3 r_{0}}\left\|e_{n}\right\|_{r_{0}}^{2}+A^{*}(r) t_{n}^{8 r_{0}-r}\|y\|_{r} \tag{16}
\end{equation*}
$$

Proof. Write $e_{n+1}=e_{n+1}^{\prime}-e_{n+1}^{\prime \prime}$ as above. We have, from (7), (4), (1)

$$
\left\|e_{n+1}^{\prime \prime}\right\|_{r_{0}} \leqslant C\left\|\delta_{n}\right\|_{r_{0}}\left\|\delta_{n}\right\|_{2 r_{0}} \leqslant C^{\prime} t_{n}^{3 r_{0}}\left\|\widetilde{\delta}_{n}\right\|_{0}^{2} \leqslant A^{*} t_{n}^{3 r_{0}}\left\|e_{n}\right\|_{r_{0}}^{2}
$$

On the other hand, from the properties of $D f, S\left(t_{n}\right)$ and L, we have

$$
\begin{aligned}
\left\|e_{n+1}^{\prime}\right\|_{r_{0}} & \leqslant C\left\|\left(1-S\left(t_{n}\right)\right) L\left(x_{n}, e_{n}\right)\right\|_{2 r_{0}} \\
& \leqslant C^{\prime}(r) t_{n}^{3 r_{0}-r}\left\|L\left(x_{n}, e_{n}\right)\right\|_{r-r_{0}} \\
& \leqslant C^{\prime \prime}(r) t_{n}^{3 r_{0}-r}\left(\left\|x_{n}\right\|_{r}+\left\|e_{n}\right\|_{r}\right) \\
& \leqslant A^{*}(r) t_{n}^{8 r_{0}-r}\|y\|_{r}
\end{aligned}
$$

where the last inequality follows from Lemma 4.1. The proof of the lemma is complete.

We now take $r_{1}:=17 r_{0}$.
Lemma 4.3. There exists a constant C^{*} such that, if $\|y\|_{r_{1}}$ is small enough, we have

$$
\begin{equation*}
\left\|e_{n}\right\|_{r_{0}} \leqslant C^{*} t_{n}^{-6 r_{0}}\|y\|_{r_{1}} \tag{17}
\end{equation*}
$$

Proof. This clearly holds for $n=0$ if $C^{*} \geqslant 1$. We then proceed by induction, using the previous lemma with $r=r_{1}$:

$$
\begin{aligned}
\left\|e_{n+1}\right\|_{r_{0}} & \leqslant A^{*} t_{n}^{3 r_{0}}\left\|e_{n}\right\|_{r_{0}}^{2}+A^{*}\left(r_{1}\right) t_{n}^{-9 r_{0}}\|y\|_{r_{1}} \\
& \leqslant A^{*}\left(C^{*}\right)^{2} t_{n}^{-9 r_{0}}\|y\|_{r_{1}}^{2}+A^{*}\left(r_{1}\right) t_{n}^{-9 r_{0}}\|y\|_{r_{1}} \\
& =C^{*} t_{n+1}^{-6 r_{0}}\|y\|_{r_{1}}\left(A^{*} C^{*}\|y\|_{r_{1}}+\frac{A^{*}\left(r_{1}\right)}{C^{*}}\right) .
\end{aligned}
$$

It is therefore sufficient to take $C^{*} \geqslant 2 A^{*}\left(r_{1}\right)$ and then $\|y\|_{r_{1}}<\frac{1}{2 A^{*} C^{*}}$.
Lemma 4.4. If $\|y\|_{r_{1}}$ is small enough, the sequence $\left(x_{n}\right)$ is defined for all $n \geqslant 0$ and we have, with appropriate constants C and any $0 \leqslant k \leqslant 5$

$$
\begin{align*}
\left\|\widetilde{\delta}_{n}\right\|_{0} & \leqslant C t_{n}^{-6 r_{0}}\|y\|_{r_{1}} \tag{18}\\
\left\|\delta_{n}\right\|_{k r_{0}} & \leqslant C t_{n}^{(k-6) r_{0}}\|y\|_{r_{1}} \tag{19}\\
\left\|e_{n}\right\|_{2 r_{0}} & \leqslant C t_{n}^{-5 r_{0}}\|y\|_{r_{1}} \tag{20}
\end{align*}
$$

Proof. The first inequality follows from (1) and Lemma 4.3. Then the second inequality follows from (4). This proves in particular that $\left\|x_{n}\right\|_{2 r_{0}}$ remains very small. From Hadamard interpolation inequalities and Lemmas 4.1 and 4.3, we have

$$
\left\|e_{n}\right\|_{2 r_{0}} \leqslant C\left\|e_{n}\right\|_{r_{0}}^{15 / 16}\left\|e_{n}\right\|_{r_{1}}^{1 / 16} \leqslant C t_{n}^{-5 r_{0}}\|y\|_{r_{1}}
$$

Therefore, $\left\|f\left(x_{n}\right)\right\|_{2 r_{0}}=\left\|y-e_{n}\right\|_{2 r_{0}}$ remains also very small. This proves that the sequence $\left(x_{n}\right)$ is defined for all $n \geqslant 0$.

We now assume that $\|y\|_{r_{1}}<\varepsilon^{*}$, with ε^{*} small enough so that the conclusions of the last lemma are satisfied.

Lemma 4.5. The sequence $\left(x_{n}\right)$ converge in E to a limit x such that $f(x)=y$.
Proof. Let $r \geqslant r_{0}$. We have

$$
\left\|\delta_{n}\right\|_{3 r} \leqslant A t_{n}^{7 r_{0}}\|y\|_{3 r-r_{0}}, \quad A=A\left(3 r-r_{0}\right)
$$

from Lemma 4.1 and

$$
\left\|\delta_{n}\right\|_{0} \leqslant C t_{n}^{-6 r_{0}}\|y\|_{r_{1}}
$$

from Lemma 4.4, hence

$$
\left\|\delta_{n}\right\|_{r} \leqslant C_{r} t_{n}^{-5 r_{0} / 3}\|y\|_{3 r-r_{0}}^{1 / 3}\|y\|_{r_{1}}^{2 / 3}
$$

by interpolation. This proves the convergence of $\left(x_{n}\right)$ to a limit x. A similar estimate is obtained from $\left\|e_{n}\right\|_{r}$, which proves that $\left(e_{n}\right)$ converge to 0 in F. As f is continuous, this proves that $f(x)=y$.

We have thus constructed a map $g: B^{*} \rightarrow B$ which satisfies $f \circ g(y)=y$ for $y \in B^{*}$.
It remains to prove that $g \circ f(x)=x$ for x close to 0 , that g is continuous and tame, and that g is Gateaux differentiable with $D g(y, v)=L(g(y), v) \ldots$ This is left to the reader.

