HAMILTON’S INVERSE FUNCTION THEOREM: PROOF OF THE
CONVERGENCE OF THE ITERATION SCHEME

JEAN-CHRISTOPHE YOCCOZ

1. THE SETTING

e [ F are two tame Frechet spaces, S(t),t > 1 are the corresponding smoothing

operators;
e 1 is a positive integer;
f is a map defined on the ball B = {||z||,, < 1} of E, with values in F' satisfying
f(0) =05
f is C? tame and satisfies, forx € B,y € E,r > 0:

IDf@@ )l < Colll®llrtrol[Yllre + [Yllr+ro),
1D f @,y )l < Colllallrro 112, + [lylleo 19ltr0)-

There exists a continuous tame inverse of D f denoted by L : B x F' — E which
satisfies, forz € B,z € F',r > 0:

IL(z; 2)|lr < Crl[]lrtro 2]l + 2]l )-

2. THE ITERATION SCHEME

Let ¢ > 0 and r; a positive integer to be chosen later (Actually, we will have r; =
17rg). We start with y € F in the ball B* := {||y||,, < £*} and will construct € B
such that f(z) = y. Sett,, := exp(2)" forn > 0.

Let 29 = 0; as long as ||xy,||2r, + ||f(n)|]2r, < 1, we define inductively

o en=y— f(wn);
e 0, =L(z,,en);
o 6, = S(tn)on:

® Tpil1 =Tp+ On-

This is Newton’s algorithm with the smoothing from gn to 6,, added. We will prove that,
if B* is small enough, x,, is defined for all n and converge to a solution = of f(x) = y.

3. THE BASIC ESTIMATES

The properties of L give, for r > 0

(1) 100l < Cr(llnllrtrollenllro + llenllrtry)-

We assume that r; > 2rg and e* < 1. Then, the property || f(z5)||2r, < 1 implies

(2) llenllzr, < 2.

Then, as we have also ||z, ]||2-, < 1, we get from the previous inequality
1
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3) 10n]]ry < C.

The next estimate comes directly from the properties of the smoothing operators: for
any r’ > r, we have

“) H(SnHT’ < Cr,r’t:;/_THSnHT-

Thus, we have

) [10n]lry < C.

To estimate e,, 1, we will use Taylor’s formula at order 1 or 2. On one side

1
f(zn +6n) = fzn) —i—/o Df(xy, + udy, dy)du

which gives, in view of the properties of D f, for r > 0

llent1llr < llenllr + Cr([0nllro (|Znllrtro + 0nllrtre) + [[0nllrtr,)-
Using ||0n|]r, < C, we get
(6) llent1llr < [lenllr + C;(||xn||r+ro + 10nlr+r0)-

This crude estimate will be useful in complement to the one coming from

1
Flan +6.) = F(an) + Df (2, 6,) +/O (1= w)D2f (20 + uby, 5y, 6 )l

Here, from the definition of §,, we get

ent1 = Df(xn, (1S(tn))L(Imen))/I(IU)DQf(:EnJrMm Ony On)du = €,y =€y
0
The properties of D2 f give, for any 7 > 0
llenallr < CrlllonlZ (lnllrsro + nllrro) + nllr-tro 18 1ro)-
Using again ||0,]]-, < C, we get
™ llensalle < CE(18nl7 [l lrtrg + 180l lrrol1dn]1ro)-

To estimate e;, | |, we will use the approximation property of S(t,,).

4. CONVERGENCE OF THE ITERATION SCHEME

Lemma 4.1. Let r > ro. There exists a constant A = A(r) such that, for every n > 0
such that x4 is defined, one has

®) [ —— T
)] ||5n||r+ro < AtqZTOHy”ra
(10) ||xn+1||r+ro < AtZLTOHyHT?
(11) llentallr < ALyl
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Proof. We have ¢y = 0 and eg = y. For n > 0, we write

Wnllrere = Ar(nyr) 37|yl
16allrire = As(n,r) 2 [ylls,
enstllrere = As(n,r) |yl
lensalls = Aa(n,7) t70lly]l,.

We write C). for various constants depending only on 7.
From (1), we have A1(0,r) < C,.. From (4), we have

(12) Asz(n,r) < Cp Ai(n,r)
Next we have A3(0,r) = A2(0,r) and, forn > 0

(13) Asz(n,7) < Ag(n,r) + As(n — 1,7)(t,_1t )™,

with ¢, 1t ! = Y3 From (6), we have also

(14) As(n,r) < Cr(Az(n,7) + 1,773 (As(n — 1,7) + Asg(n — 1,7))).

Finally, from (1), we get, for n > 0

(15) Ai(n,r) < Cut; 773 (Ag(n — 1,7) + Ag(n — 1,7)).

Whatever the values of the constants C,., the inequalities (12)-(15) imply that the se-
quences A;(n,r), 1 < i < 4, are bounded from above by a constant depending only on
. .

Lemma 4.2. There exists a constant A*, and, for any r > 81, a constant A*(r), such
that, for all m > 0 such that x,, is defined, one has

(16) llentallre < A8 lenl[7, + A" (1)t [yl
Proof. Write e, 11 = €, — e;,,; as above. We have, from (7), (4), (1)
el s1llro < Clldnllrol18nll2ry < C'E570(8a115 < A*E30lenl[?,

On the other hand, from the properties of D f , S(t¢,,) and L, we have

llengallrg < ClI(L = S(tn)) L(2n, €n)ll2r
< O/ L (20, en)llrrg
< C"t T (lzally + llenllr)
< AT Myl

where the last inequality follows from Lemma 4.1. The proof of the lemma is complete.
O

We now take 1 := 177g.

Lemma 4.3. There exists a constant C* such that, if ||y||,, is small enough, we have

17 llenllr, < C*t;GTOHyHn-
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Proof. This clearly holds for n = 0 if C* > 1. We then proceed by induction, using the
previous lemma with r = rj :

lensillrg < AT lenll7, + A" (r)t " Iyl
< AP, + AT Oyl

* 4 —67 * Yk A*(Tl)
= Oyl (A C Iyl + =500)-
It is therefore sufficient to take C* > 2A4*(ry) and then ||y||,, < 55+ O

Lemma 4.4. If ||y||,, is small enough, the sequence (x,,) is defined for all n > 0 and we
have, with appropriate constants C and any 0 < k < 5

(18) 16allo < C 5[yl
(19) 10nllkry < C O y]|,,,
(20) lenllore < C 7yl -

Proof. The first inequality follows from (1) and Lemma 4.3. Then the second inequal-
ity follows from (4). This proves in particular that ||z, ||2,, remains very small. From
Hadamard interpolation inequalities and Lemmas 4.1 and 4.3, we have

lleallzrg < Clleallzy’*llenlr/1® < C 657 |yl
(@n)|l2ro = |ly — enll2r, remains also very small. This proves that the
sequence () is defined for all n > 0. O

We now assume that ||y||,, < &*, with e* small enough so that the conclusions of the
last lemma are satisfied.

Lemma 4.5. The sequence (x,,) converge in E to a limit x such that f(x) = y.

Proof. Letr > rq. We have
10nllsr < At [[Yllsr—ry, A= A(Br—ro),
from Lemma 4.1 and
[16nllo < Ct, ™[yl
from Lemma 4.4, hence

_ 1/3
162l < Ot 203 yll522 w2

3r—rg
by interpolation. This proves the convergence of (z,,) to a limit z. A similar estimate is
obtained from ||e, ||, which proves that (e,,) converge to 0 in F'. As f is continuous, this
proves that f(z) = y. O

We have thus constructed a map g : B* — B which satisfies f o g(y) = y fory € B*.

It remains to prove that g o f(x) = x for x close to 0, that g is continuous and tame, and
that g is Gateaux differentiable with Dg(y,v) = L(g(y),v) ... This is left to the reader.



