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1. THE SETTING

• E,F are two tame Frechet spaces, S(t), t > 1 are the corresponding smoothing
operators;

• r0 is a positive integer;
• f is a map defined on the ball B = {||x||r0 < 1} of E, with values in F satisfying
f(0) = 0;

• f is C2 tame and satisfies, for x ∈ B, y ∈ E, r > 0:

||Df(x, y)||r 6 Cr(||x||r+r0 ||y||r0 + ||y||r+r0),

||D2f(x, y, y)||r 6 Cr(||x||r+r0 ||y||2r0 + ||y||r0 ||y||r+r0).

• There exists a continuous tame inverse of Df denoted by L : B × F → E which
satisfies, for x ∈ B, z ∈ F , r > 0:

||L(x, z)||r 6 Cr(||x||r+r0 ||z||r0 + ||z||r+r0).

2. THE ITERATION SCHEME

Let ε∗ > 0 and r1 a positive integer to be chosen later (Actually, we will have r1 =
17r0). We start with y ∈ F in the ball B∗ := {||y||r1 < ε∗} and will construct x ∈ B
such that f(x) = y. Set tn := exp( 32 )

n for n > 0.

Let x0 = 0; as long as ||xn||2r0 + ||f(xn)||2r0 < 1, we define inductively
• en = y − f(xn);
• δ̃n = L(xn, en);
• δn = S(tn)δ̃n;
• xn+1 = xn + δn.

This is Newton’s algorithm with the smoothing from δ̃n to δn added. We will prove that,
if B∗ is small enough, xn is defined for all n and converge to a solution x of f(x) = y.

3. THE BASIC ESTIMATES

The properties of L give, for r > 0

(1) ||δ̃n||r 6 Cr(||xn||r+r0 ||en||r0 + ||en||r+r0).

We assume that r1 > 2r0 and ε∗ < 1. Then, the property ||f(xn)||2r0 < 1 implies

(2) ||en||2r0 < 2.

Then, as we have also ||xn||2r0 < 1, we get from the previous inequality
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(3) ||δ̃n||r0 6 C.

The next estimate comes directly from the properties of the smoothing operators: for
any r′ > r, we have

(4) ||δn||r′ 6 Cr,r′t
r′−r
n ||δ̃n||r.

Thus, we have

(5) ||δn||r0 6 C.

To estimate en+1, we will use Taylor’s formula at order 1 or 2. On one side

f(xn + δn) = f(xn) +

∫ 1

0

Df(xn + uδn, δn)du

which gives, in view of the properties of Df , for r > 0

||en+1||r 6 ||en||r + Cr(||δn||r0(||xn||r+r0 + ||δn||r+r0) + ||δn||r+r0).

Using ||δn||r0 6 C, we get

(6) ||en+1||r 6 ||en||r + C ′r(||xn||r+r0 + ||δn||r+r0).

This crude estimate will be useful in complement to the one coming from

f(xn + δn) = f(xn) +Df(xn, δn) +

∫ 1

0

(1− u)D2f(xn + uδn, δn, δn)du.

Here, from the definition of δn we get

en+1 = Df(xn, (1−S(tn))L(xn, en))−
∫ 1

0

(1−u)D2f(xn+uδn, δn, δn)du = e′n+1−e′′n+1

The properties of D2f give, for any r > 0

||e′′n+1||r 6 Cr(||δn||2r0(||xn||r+r0 + ||δn||r+r0) + ||δn||r+r0 ||δn||r0).

Using again ||δn||r0 6 C, we get

(7) ||e′′n+1||r 6 C ′′r (||δn||2r0 ||xn||r+r0 + ||δn||r+r0 ||δn||r0).

To estimate e′n+1, we will use the approximation property of S(tn).

4. CONVERGENCE OF THE ITERATION SCHEME

Lemma 4.1. Let r > r0. There exists a constant A = A(r) such that, for every n > 0
such that xn+1 is defined, one has

||δ̃n||r−r0 6 A t5r0n ||y||r,(8)

||δn||r+r0 6 A t7r0n ||y||r,(9)

||xn+1||r+r0 6 A t7r0n ||y||r,(10)

||en+1||r 6 A t7r0n ||y||r(11)
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Proof. We have x0 = 0 and e0 = y. For n > 0, we write

||δ̃n||r−r0 = A1(n, r) t
5r0
n ||y||r,

||δn||r+r0 = A2(n, r) t
7r0
n ||y||r,

||xn+1||r+r0 = A3(n, r) t
7r0
n ||y||r,

||en+1||r = A4(n, r) t
7r0
n ||y||r.

We write Cr for various constants depending only on r.
From (1), we have A1(0, r) 6 Cr. From (4), we have

(12) A2(n, r) 6 Cr A1(n, r)

Next we have A3(0, r) = A2(0, r) and, for n > 0

(13) A3(n, r) 6 A2(n, r) +A3(n− 1, r)(tn−1t
−1
n )7r0 ,

with tn−1t−1n = t
−1/3
n . From (6), we have also

(14) A4(n, r) 6 Cr(A2(n, r) + t−7r0/3n (A3(n− 1, r) +A4(n− 1, r))).

Finally, from (1), we get, for n > 0

(15) A1(n, r) 6 Crt
−7r0/3
n (A3(n− 1, r) +A4(n− 1, r)).

Whatever the values of the constants Cr, the inequalities (12)-(15) imply that the se-
quences Ai(n, r), 1 6 i 6 4, are bounded from above by a constant depending only on
r. �

Lemma 4.2. There exists a constant A∗, and, for any r > 8 r0, a constant A∗(r), such
that, for all n > 0 such that xn+1 is defined, one has

(16) ||en+1||r0 6 A∗t3r0n ||en||2r0 +A∗(r)t8r0−rn ||y||r.

Proof. Write en+1 = e′n+1 − e′′n+1 as above. We have, from (7), (4), (1)

||e′′n+1||r0 6 C||δn||r0 ||δn||2r0 6 C ′t3r0n ||δ̃n||20 6 A∗t3r0n ||en||2r0
On the other hand, from the properties of Df , S(tn) and L, we have

||e′n+1||r0 6 C||(1− S(tn))L(xn, en)||2r0
6 C ′(r)t3r0−rn ||L(xn, en)||r−r0
6 C ′′(r)t3r0−rn (||xn||r + ||en||r)
6 A∗(r)t8r0−rn ||y||r,

where the last inequality follows from Lemma 4.1. The proof of the lemma is complete.
�

We now take r1 := 17r0.

Lemma 4.3. There exists a constant C∗ such that, if ||y||r1 is small enough, we have

(17) ||en||r0 6 C∗t−6r0n ||y||r1 .
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Proof. This clearly holds for n = 0 if C∗ > 1 . We then proceed by induction, using the
previous lemma with r = r1 :

||en+1||r0 6 A∗t3r0n ||en||2r0 +A∗(r1)t
−9r0
n ||y||r1

6 A∗(C∗)2t−9r0n ||y||2r1 +A∗(r1)t
−9r0
n ||y||r1

= C∗ t−6r0n+1 ||y||r1(A∗C∗||y||r1 +
A∗(r1)

C∗
).

It is therefore sufficient to take C∗ > 2A∗(r1) and then ||y||r1 < 1
2A∗C∗ . �

Lemma 4.4. If ||y||r1 is small enough, the sequence (xn) is defined for all n > 0 and we
have, with appropriate constants C and any 0 6 k 6 5

||δ̃n||0 6 C t−6r0n ||y||r1 ,(18)

||δn||kr0 6 C t(k−6)r0n ||y||r1 ,(19)

||en||2r0 6 C t−5r0n ||y||r1 .(20)

Proof. The first inequality follows from (1) and Lemma 4.3. Then the second inequal-
ity follows from (4). This proves in particular that ||xn||2r0 remains very small. From
Hadamard interpolation inequalities and Lemmas 4.1 and 4.3, we have

||en||2r0 6 C ||en||15/16r0 ||en||1/16r1 6 C t−5r0n ||y||r1 .
Therefore, ||f(xn)||2r0 = ||y − en||2r0 remains also very small. This proves that the
sequence (xn) is defined for all n > 0. �

We now assume that ||y||r1 < ε∗, with ε∗ small enough so that the conclusions of the
last lemma are satisfied.

Lemma 4.5. The sequence (xn) converge in E to a limit x such that f(x) = y.

Proof. Let r > r0. We have

||δn||3r 6 A t7r0n ||y||3r−r0 , A = A(3r − r0),
from Lemma 4.1 and

||δn||0 6 Ct−6r0n ||y||r1
from Lemma 4.4, hence

||δn||r 6 Crt
−5r0/3
n ||y||1/33r−r0 ||y||

2/3
r1

by interpolation. This proves the convergence of (xn) to a limit x. A similar estimate is
obtained from ||en||r, which proves that (en) converge to 0 in F . As f is continuous, this
proves that f(x) = y. �

We have thus constructed a map g : B∗ → B which satisfies f ◦ g(y) = y for y ∈ B∗.

It remains to prove that g ◦f(x) = x for x close to 0, that g is continuous and tame, and
that g is Gateaux differentiable with Dg(y, v) = L(g(y), v) . . . This is left to the reader.


