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1 Introduction

Rotations on the circle T = R/Z are the prototype of quasiperiodic dynamics.
They also constitute the starting point in the study of smooth dynamics on
the circle, as attested by the concept of rotation number and the celebrated
Denjoy theorem. In these two cases, it is important to distinguish the case
of rational and irrational rotation number. But, if one is interested in the
deeper question of the smoothness of the linearizing map, one has to solve
a small divisors problem where the diophantine approximation properties of
the irrational rotation number are essential. The classical continuous fraction
algorithm generated by the Gauss map G(z) = {z~'} (where z € (0,1) and
{y} is the fractional part of a real number y) is the natural way to analyze
or even define these approximation properties. The modular group GL(2,Z)
is here of fundamental importance, viewed as the group of isotopy classes of
diffeomorphisms of T?, where act the linear flows obtained by suspension from
rotations.

* to appear in “Frontiers in Number Theory, Geometry and Physics”, proceedings
of the Spring School at Les Houches, France, March 2003
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There is one obvious and classical way to generalize linear flows on the
2-dimensional torus : linear flows on higher dimensional tori. One can still de-
fine the classical diophantine approximation properties and obtain KAM-type
linearization results. However, we are far from understanding these approxi-
mation properties as well as in the classical case, basically because for n > 3
the group GL(n,Z) is far from hyperbolic and we cannot hope for a continuous
fraction algorithm having all the wonderful properties it has for n = 2.

A less obvious way to generalize linear flows on the 2-dimensional torus,
but one which has received a lot of attention in recent years, is to consider
linear flows on compact surfaces of higher genus called translation surfaces.
We refer to Zorich’s paper in this volume for a precise definition and an
introduction to these very natural geometrical structures.

Linear flows on translation surfaces may be obtained as singular suspen-
sions of one-dimensional maps of an interval called interval exchange maps
(i.e.m). Such a map is obtained by cutting the interval into d pieces and re-
arranging the pieces ; when d = 2, this is nothing else than a rotation if the
endpoints of the interval are identified to get a circle ; for d = 3, one is still
quite close to rotations (see Section 2.7 below) ; for d > 4, one can already ob-
tain surfaces of genus > 2. Interval exchange maps (and translation surfaces)
occur naturally when analyzing the dynamics of rational polygonal billiards.

An early important result is the proof by Katok-Stepin [4] that almost
all i.e.m with d = 3 are weakly mixing. Somewhat later, Keane began a sys-
tematic study of i.e.m and discovered the right concept of irrationality in
this setting ([Kel]). He also conjectured that almost all i.e.m are uniquely
ergodic. One should here beware that minimality is not sufficient to guaran-
tee unique ergodicity, as shown by examples of Keynes-Newton [8], see also
[1] and Keane [6]. Keane’s conjecture was proved by Masur [11] and Veech
[17] independently, see also Kerckhoff [7] and Rees [15]. The key tool devel-
oped by Veech, and also considered by Rauzy [14], is a continuous fraction
algorithm for i.e.m which has most of the good properties of the classical
Gauss map. However, the unique absolutely continuous invariant measure for
the elementary step of this algorithm is infinite. In order to be able to ap-
ply powerful ergodic-theoretical tools such as Oseledets multiplicative ergodic
theorem, one needs an absolutely continuous invariant probability measure ;
this was achieved by Zorich [22] by considering an appropriate acceleration of
the Rauzy-Veech continuous fraction algorithm.

Our aim in the following is to present the basic facts on the continuous frac-
tion algorithm and its acceleration. After defining precisely interval exchange
maps (Section 2), we introduce Keane’s condition (Section 3), which guaran-
tees minimality and is exactly the right condition of irrationality to start a
continuous fraction algorithm. The basic step of the Rauzy-Veech algorithm is
then introduced (Section 4). It appears that unique ergodicity is easily char-
acterized in terms of the algorithm, and we give a proof of the Mazur-Veech
theorem (Section 4.4). Next we explain how to suspend i.e.m to obtain linear
flows on translation surfaces (Section 5). The continuous fraction algorithm
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extends to this setting and becomes basically invertible in this context. In the
last chapter, we introduce Zorich’s accelerated algorithm (Section 6.2) and the
absolutely continuous invariant probability measure. However, we stop short
of making use of this probability measure and develop the ergodic-theoretic
properties of i.e.m and the continuous fraction algorithm. We refer the reader
for these to [19, 20, 21, 23, 24, 25, 3].

Coming back to small divisors problems, there does not exist today a
KAM-like theory of non linear perturbations of i.e.m. However, as far as the
linearized conjugacy equation (also known as the cohomological equation, or
the cocycle equation, or the difference equation) is concerned, Forni has ob-
tained [2] fundamental results (in the continuous time setting) which leave
some hope that such a theory could exist. Forni solves the cohomological
equation (under a finite number of linear conditions) for an unspecified full
measure set of i.e.m. In a jointwork with Marmi and Moussa [12], we use the
continuous fraction algorithm to formulate an explicit diophantine condition
(Roth type i.e.m) of full measure which allows to solve the cohomological
equation (with slightly better loss of differentiability than Forni).

One last word of caution : one of the nice properties of the algorithm is
its invariance under the basic time-reversal involution. However, the usual
notations do not reflect this and lead by forcing an unnatural renormalization
to complicated combinatorial formulas. We have thus chosen to depart from
the usual notations by adopting from the start notations which are invariant
under this fundamental involution. This may cause some trouble but the initial
investment should be more than compensated later by simpler combinatorics.

2 Interval exchange maps

2.1 An interval exchange map (i.e.m) is determined by combinatorial data
on one side, length data on the other side.

The combinatorial data consist of a finite set A of names for the intervals
and of two bijections 7y, w1 from A onto {1,...,d} (where d = #.A); these
indicate in which order the intervals are met between and after the map.

The length data (Ay)aca give the length A, > 0 of the corresponding
interval.

More precisely, we set

o = [0,Aa) X {a},
A= 4 Aa s
I :=10,1).

We then define, for € = 0,1, a bijection j. from |_|Ia onto I :
A
Je(z, o) =x + Z A3 -

me (B) <me (@)
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The i.e.m T associated to these data is the bijection T = j; 0 j5! of I.

2.2 If A, mg, T, A are as above and X : A" — A is a bijection, we can define
a new set of data by

ml=mo0X,e=0,1,
)\IO/ :)\X(a/) ,O/EA/.

Obviously, the “new” i.e.m T’ determined by these data is the same, ex-
cept for names, than the old one. In particular, we could restrict to consider
normalized combinatorial data characterized by

A:{l,...,d}, 7T0:idA.

However, this leads later to more complicated formulas in the continu-
ous fraction algorithm because the basic operations on i.e.m do not preserve
normalization.

2.3 Given combinatorial data (A, g, 1), we set, for a, 3 € A

+1if mo(B) > mo(e), m1(8) < m1 () ,
245 =1 —1if 71(B) < mo(a), m(B) > m1 () ,
0 otherwise.

The matrix 2 = (£24,5)(a,3)c.A2 is antisymmetric.
Let (Aa)aca be length data, and let T be the associated i.e.m. For a €
A,y € jo(Ia), we have

T(y)=y+da,

where the translation vector § = (44 )ac.a is related to the length vector
A= (Aa)aca by :

0= 02\

2.4 There is a canonical involution 7 acting on the set of combinatorial

data which exchange 7y and ;. For any set (Ay)aeca of length data, the

interval I, are unchanged, but jo,j1 are exchanged and T is replaced by

T—!. The matrix {2 is replaced by —2 and the translation vector § by —é.
Observe that Z does not respect combinatorial normalization.

2.5 In the following, we will always consider only combinatorial data

(A, m,m1) which are admissible, meaning that for all k = 1,2,...,d — 1,
we have

a1, kD A LKD)
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Indeed, if we had 75 ' ({1,...,k}) = 7y *({1,...,k}) for some k < d, for
any length data (A )aca, the interval T would decompose into two disjoint
invariant subintervals and the study of the dynamics would be reduced to
simpler combinatorial data.

2.6 Assume that #A4 =2, 4 = {A, B}. Without loss of generality, we have
mo(A) = m(B) = 1,m(A) = mo(B) = 2. When we identify I = [0, \*) with
the circle R/A\*Z, the i.e.m T becomes the rotation by Ap.

2.7 Assume that #A = 3, A = {A, B, C'}. Without loss of generality, we may
also assume that mo(A4) = 1, m9(B) = 2, m(C) = 3. Amongst the 6 bijections
from A onto {1, 2,3}, there are 3 choices for 7 giving rise to admissible pairs
(7o, 1), namely :

(i) m(A)=2,m(B)=3,m(C)=1;
(ii)) m(A) =3, m(B) =1, m(C) =2;
(iii) m (A) =3, m(B) =2, m(C) =1

In case (i) and (ii), we obtain again a rotation on the circle R/A\*Z iden-
tified to I. In case (iii), consider I = [0,\* + Ap) and T : I — I defined
by

. y+ Ao+ Ag fory €0, 4 + Ap)
T(y) =

Y—Aa— AB fOI‘yG[AAﬁL/\B,)\*‘F/\B)

ThenAT is an i.e.m on I. For y € [0, ) or y € [Aa + Ap, "), we have
T(y) = T(y) ; for y € [Aa,Aa + Ap), we have T'(y) ¢ I and T(y) = T?(y).
Therefore, T appears as the first return map of T in I.

Thus, all i.e.m with #.A4 < 3 are rotations or are closely connected to
rotations.

3 The Keane’s property

3.1 Let T be an i.e.m defined by combinatorial data (A, mg,71) and length
data A = (A\a)acAa-

DEFINITION — A connexion for T is a triple (o, 3, m) where o, 5 € A, m(3) >
1, m is a positive integer and T™ (j0(0, @)) = jo(0, 5).

We say that T has Keane’s property if there is no connexion for T'.
EXERCICE 1 - For d = 2, T has Keane’s property iff A4, Ap are rationally
independent.

EXERCICE 2 - For d = 3, in case (i) of 2.7 above, we have T'(y) = y +
Ac mod \*Z.

Show that T has Keane’s property iff the two following conditions are

satisfied
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1. T is an irrational rotation, i.e Ac/A* is irrational ;
2. the points 0 and A4 are not on the same T-orbit, i.e there are no relations

Aa = mAc + n\*

with m,n € Z.

3.2  THEOREM - (Keane [Kel]) An i.e.m T with the Keane’s property is
minimal, i.e all orbits are dense.
Proof — Let T be an i.e.m with the Keane’s property.

1. We first show that 7" has no periodic orbits. Otherwise, there exists m > 0
st P (T) = {y, T™y = y} is non-empty. Then y* := inf P,,(T") belongs
to Py (T). If y* > 0, there exists k € {0,...m — 1} and o € A such that
T*(y*) = jo(0,a) > 0 and (o, ,,m) is a connexion. If y* = 0,7 (y*) =
Jo(0, @) > 0 for some o € A and (o, @, m) is again a connexion.

2. Assume now by contradiction that there exists y € I such that (7" (y))n>0
is not dense in I. Then there exists an half-open interval J = [y, y1) which
does not contain any accumulation point of (7" (y))n>0, nor any jo(0, «).
Let D be the finite set consisting of yo,y1 and the jo(0,); let D* be
the set consisting of the points § € J such that there exists m > 0 with
T™(9) € D but T'(y) ¢ J for 0 < I < m. There is a canonical injective
map § — T™(g) from D* to D thus D* is a finite set. Cut J along D*
into half open intervals Jy, ..., Ji.

For each r € {1, ..., k}, there is by Poincaré recurrence a smallest n, > 0
such that T (J.) NJ # 0. But then, by definition of D*, we must have
T (J.) C J. We conclude that

r=Urmon= U 10

n>0 r 0<n<n,

is a finite union of half-open intervals, is fully invariant under T (because
J =, T" (J,)) and does not contain any accumulation point of (7" (y))n>0-

Because A* cannot be the only accumulation point of (77" (y))n>0, we can-
not have J* = I. Because the combinatorial data are admissible (an obvious
consequence of Keane’s property), J* cannot be of the form [0,7),0 < § < A*.

Therefore, there exists y* € J* N 9J* with y* > 0. If T'(y*) # jo(0, )
for all | < 0,a € A, then T!(y*) € J* N AJ* for all | < 0 and y* is periodic.
Similarly, if T%(y*) # jo(0, ) for all | > 0,a € A. Both cases are impossible
by the first part of the proof. Thus there exists I; < 0,l3 > 0 and oy, € A
with Th (y*) = jo(0,a1), T (y*) = 7jo(0,az2). Taking lo minimal, we have
Jo(0,a2) > 0 and (a1, e,ls — 1) is a connexion. O

3.3 Irrationality and Keane’s property
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PROPOSITION - (Keane [Kel]). If the length data (Ay)aca are rationally in-
dependent and the combinatorial data are admissible, then T has Keane’s
property.

Proof — Assume on the opposite that there is a connexion (g, ay,, m). For
0 <1< m,let a; € A such that T'(jo(0,a0)) € jo(Is,). Denote by (8a)aca
the translation vector. We have

which, in view of 2.3, gives

DY )\a:Z( Y o Y )\a).

Toa<Tom To <o o<l<m T1a<lmT] g Toa<ToQy

Setting, for o € A :

no = #{1 € [0,m), 71 (ar) > mi ()} — #{1 € (0,m], mo(c) > mo(a)}

we obtain > naAq = 0 and therefore n, = 0 for all & € A from rational
independence.

Let d be the highest value taken by the 71 (), 1 € [0,m) or the mo(a;),l €
(0, m]. Because the combinatorial data are admissible, there must exists & € A
with 7o (&) > d but 7 (&) < d. Then mo(cy) < (&) for I € (0,m]. As ng = 0,
we must have 7 (oy) < m1(&) < d for all I € [0,m). In a symmetric way, we
also prove that mo(a;) < d for all I € (0,m]. This contradicts the definition of
d. (]

3.4 A continuous version of interval exchange maps

The construction which follows is completely similar to the construction of
Denjoy counter examples, i.e C! diffeomorphisms of the circle with no periodic
orbits and a minimal invariant Cantor set.

Let T be an i.e.m with combinatorial data (A, mg, ) ; for simplicity we
assume that T has Keane’s property.

For n > 0, define

Do(n) = {T7"(jo(0,a)), € A, mo(cr) > 1},
Di(n) = {T*"(j1(0,a)), 0 € A, 71 () > 1} .

It follows from the Keane’s property that these sets are disjoint from each
other and do not contain 0.
Define an atomic measure p by

SN S

n>0  Dg(n)UDi(n)
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and then increasing maps i*,7~ : I — R by

i~ (y) =y + u(0,y))
it (y) = y+ p((0,y]) .

We therefore have

it(y) <i~ () fory <y’
it(y) =i"(y) fory ¢ | | (Do(n)UDi(n)),

it(y) =4 (y) + 27" for y € Do(n) L D1(n) .
We also define

() = N+ 4(d—1)

= lim i*(y),

Y/ A

and
K=i"(Huit(D)u{i=(\*)}
=i~ (I)=4t(I).
As T is minimal, K is a Cantor set whose gaps are the intervals

(i~ w),i" W), ve |J D).

n>0 €

PROPOSITION — There is a unique continuous map T : K — K such that
Toit =it oT onI. Moreover, T' is a minimal homeomorphism.

Proof — T is unique because it(I) is dense in K. Let us check that T is
uniformly continuous on it (I) : if y < 3/ satisfy it (y") <iT(y) + 1, it is easy
to check that we have

Toit(y)—Toit(y) =i (Ty') —i*(Ty)

<20t (y") —i*(y)) .

The first statement of the proposition follows. That T is an homeomor-
phism follows from the observation that our setting gives symmetrical roles
to T and T~!. We leave the minimality as an exercice for the reader. (I

4 The continuous fraction algorithm

4.1 The basic operation (Rauzy [Ra], Veech [V1], [V2])

Let T be an i.e.m defined by combinatorial data (A, m, 1) and length data
(Aa)aca. We assume as always that the combinatorial data are admissible.
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We denote by ag, a; the (distinct) elements of A such that

Fo(ao) = 7T1(CY1) =d.
Observe that if Ay, = Ao, the triple (a1, ap, 1) is a connexion and T has
not the Keane’s property.
We now assume that A, # Ao, and define € € {0,1} by
Aa. = max(Aag, Aoy ) -
We set

A=A = Ay
I=[0, )cI,

and define T : I — I to be the first return map of 7 in 1.
When € = 0, we have

L T iy ¢ do(la,)
I(y) = {TZ(y) if ye jz(fm) :

When € = 1, we have similarly

1 T y)if y ¢ j1(La,)
) = {T-2<y> ity i (lo)

In both case, it appears that T is again an interval exchange map which
can be defined using the same alphabet A. The length data for 7" are given
by

5\a = Ao if a#a;
Aae = Aa. — Aay_. -

AB
1(: A :)0

d=2

ACB _ly ABC _0y ABC
0 1
CCBA €T CBA €, CAB S,

d=3
Fig. 1. Rauzy diagrams d =2 and d =3
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The combinatorial data (7, #) for T are given by 7. = 7. and

m-c(a) if m_e(a) < mi-c(ae)
fi—e(a) =< m—c(a)+1 if m_(ae) < mi—c(a) <d
m—e(ae) + 1if m_c(a) =d

We rewrite the relation between old and new length data as

A=V,

where V =1+ E,,
to SL(ZH).
We also write

.o,_. has now non negative integer coeflicients an belongs

(70, 71) = Re(mo, 1)

and observe that these new combinatorial data are admissible.

4.2 Rauzy diagrams

Let A be an alphabet. We define an oriented graph, as follows. The vertices
are the admissible pairs (mg, 7). Each vertex (mg, m1) is the starting point of
exactly two arrows with endpoints at Ro(mo,m1) and Ry (7o, 71). The arrow
connecting (7o, 1) to Re(mo, 1) is said to be of type e.

The operations Ry, Ry are obviously invertible. Therefore each vertex is
also the endpoint of exactly two arrows, one of each type.

To each arrow in the graph, we associate a name in A : it is the element
a. such that 7. (a.) = d (where (7, 71) is the starting point of the arrow and
¢ is its type). The element a;_. will then be called the secondary name of
this arrow.

A Rauzy diagram is a connected component in this oriented graph.

ACDB ABCD
0 DCBA DBAC 83
1 0
\\ ABCD 7
o POBA NS

ADBC 0 ADBC ABCD _15 ABDC
DCAB —0> DCBA DACB <1— DACB
1 0

Fig. 2. Rauzy diagram d = 4, first case
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Obviously, the Rauzy operations Ry, R; commute with change of names
(cf. 2.2).

Up to change of names, there is only one Rauzy diagram with d = #.A4 = 2,
and one with d = #A = 3 (see figure 1), where the pair (mg, 1) is denoted
by the symbol

o t(1) ... 7wy H(d)
) ..o Nd) .

For d = #A = 4, there are 2 distinct Rauzy diagrams (see figures 2 and

3).

In each of these diagrams, the symmetry with respect to the vertical axis
corresponds to the action of the canonical involution.

0 1

) )

ACBB; _ AB,CB,_’ AB,CBol_AB,B,C_ AB,B,C
% e
CBoBlA 1 CBoBlA 0 CB()AB1 1 CBoABl 0 CAB1B0

AB,B,C AB,B,C
CB,B,A CB,B,A
ABoB,C ? AB;B,CL AB,CB,_0,AB,CB, ' ACB,B,

% e
CAB,B; CBIAB0_1> CBIAB[)(O_CBIBOA CB;B,A

U ()

1 0

Fig. 3. Rauzy diagram d = 4, second case

In the last diagram, there is a further symmetry with respect to the center
of the diagram, which corresponds to the exchange of the names By, By . This is
a monodromy phenomenon : to each admissible pair (7, 71 ), one can associate
the permutation 7 := m o W&l of {1,...,d}, which is invariant under change
of names. When we identify vertices with the same permutation, we obtain
a reduced Rauzy diagram and we have a covering map from the Rauzy
diagram onto the reduced Rauzy diagram.

In the first three examples above, the covering map is an isomorphism. In
the last exemple, the degree of the covering map is 2 and the reduced Rauzy
diagram is shown in figure 4, where 7 is denoted by (7=1(1),...71(d)).
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1¢ 4123 > 4312

Fig. 4. Reduced Rauzy diagram d = 4 (second case)

4.3 Dynamics in parameter space

Let D be a Rauzy diagram on an alphabet A ; denote by V(D) the set of
vertices of D. For (mg, 1) € V(D), let

Cmo,m) = (R} x {(mo,m)},

C*(mo,m1) = {((Aa); 0, ™) € C(T0,71), Aag 7 Aas } s
A(mo,m) = {((Aa), 70, m1) € C(m0, 1), XAe = 1},
A*(mo,m1) = A(mg, m1) NC*(mp, m1) -

For ¢ € {0,1}, we also write A®(my,m),C%(mo,m1) for the subsets of
A*(mg, 1), C*(mg, m1) defined by Mg, > Mgy _.-

The basic operation of 4.1 defines a 2 to 1 map from C*(D) := LIC*(mg, 71)
onto C(D) := UC(mg, 1) ; its restriction to C%(mg, 71) is an isomorphism onto
C(R(mp,m1)) given by the matrix V = 1 4+ F,_n,_. of 4.1. We denote this
map by R. In other terms, in the context of Section 4.1, we set

R(T)="T.

Because T' is a first return map for 7', if T has the Keane’s property, the
same will be true for 7". This means that for such maps we will be able to
iterate infinitely many times R.

There is a canonical projection from C(mp,m) onto A(mg,m) which
sends C*(mg, 1) onto A*(m,m1). We define A(D) = UA(m,m1), A*(D) =
UA*(mg,m1), and we get a quotient map which we still denote by R and
which is 2 to 1 from A*(D) onto A(D).

Let (Aa)aca,m,m1) € C(D) be data defining an i.e.m T ; assume that T
satisfies the Keane’s property. Iterating R, we get a sequence (T(), > of
i.e.m with 7(© = T. The data for T+ are related to the data of T by
formulas :

(rg" V) = By ()

A — y(n+1) \(n+1)
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Denote by v+ the arrow in D which connects the pair (wé"),ﬂ”)) to

(xS 7MY The sequence (7(™),50 determines an infinite path in D
: (0) _(0)

starting at (my’, 7 ).

PROPOSITION - Fach name in A is taken infinitely many times by the sequence
(’y(n))n>0-

Proof — Let A’ be the set of names which are taken infinitely many times and
let A” = A— A’. Replacing T by some T™), we can assume that names in A"
are not taken at all. Then the length )\(an), a € A”, do no depend on n. But then
elements o € A” can only appear as secondary names at most finitely many

times. Replacing again T by some TN) | we can assume that secondary names

)

are never in A”. Then the sequences (wé’” (@))n>0, for e € {0,1}, a0 € A", are
non decreasing and we can assume (replacing again T by T™)) that they are
constant.

We now claim that we must have 7"’ (") < ﬁgo)(o/) forall o’ € A", o/ €
A" and ¢ € {0,1}. Because the pair (ﬂéo),ﬂ£0)> is admissible, this implies
A = A.

To prove the claim, assume that there exist o’ € A',a” € A" e € {0,1}
with 7" (o) < 7w (o).

As ﬂé") (") = 7r§0) (o) for all n > 0, we can never have wﬁ”’ (o) = d for

some n > 0. By definition of A’, there must exist n > 0 such that 7r§71)6 (o) =

d ; but then 7T£n+1)(04” ) # ¥ ("), which gives a contradiction. O
COROLLARY 1 - Fach type and each secondary name is taken infinitely many
times.

Proof — The first assertion is obvious (we do not need the proposition here).
The second follows from the proposition and the following fact : if (™), ~(7+1)
h?v)e not the same name, the secondary name of 4("*+1) is the (main) name of
™. O
COROLLARY 2 - The length of the intervals I goes to 0 as n goes to cc.
Proof — All sequences ()\(an))nzo are non increasing and we want to show that
they go to 0. Let Aﬁ;’o) be the limit. Given € > 0, let N > 0 such that
)\&N) < )\&oo) + ¢ for all & € A. For each o € A, there exists n > N such
that « is a secondary name for v : this implies that A < A% < ¢ and
concludes the proof. O
COROLLARY 3 - Let T be an i.e.m with admissible combinatorial data which does
not have the Keane’s property. Then the continuous fraction algorithm stops
because at some point the equality /\(OZ) =\ (with W(()n) (o) = ﬂgn) (1) =4d)
holds.

Proof — Let (a, 3,m) a connexion for T = T®). We show by infinite descent
that the algorithm has to stop. Set yo = Jjo((0,03)) ; set y1 = 71((0,)) if
mi(a) # 1,y1 = T(0) if m1(a) = 1. We have T™(y1) = yo with m = m — 1 if
mi(a) #1,m=m—2if m(a) = 1, and m > 0 in both cases, with yo,y1 > 0.
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Assume by contradiction that the algorithm never stops. Observe that the
proposition and the corollaries 1 and 2 hold, because the Keane’s property
was not used in their proof. Let n be the largest integer such that

|I(n)| > ma’X(yanl) )

where I(") is the domain for T(™. Such an n exists by Corollary 2. If we had
Yo = Y1, the equality case would happen at the next step of the basic operation.
We therefore have m > 0, yo # y1. Assume for instance that y; > yo (the other
case is symmetric). First, because T(™) is the first return map of T" into ("),
there exists 0 < 7i2 < 7 such that (7)™ (y;) = yo. Second, by the definition
of the basic operation, i} = T (y;) is equal to j; (0, ;) at step n+ 1, where
ﬂ'gn)(al) = d. Then (T™)™1(y}) = yo and therefore (as T+ is a first
return map of 7)) there exists m’ < 1 — 1 < m such that T (y]) = yo.
We have completed one step of the descent argument, and this concludes the
proof. O
COROLLARY 4 — For each m > 0, there exists n > m such that the matriz
Q =Vt V) satisfies Qup > 0 for all a, 3 € A.

Proof — Write @ = Q(n). Let o, 8 € A ; if Qup(ng) > 0 for some ng, then
Qap(n) > 0 for all n > ng : indeed the diagonal terms of the V matrices are
equal to 1. It therefore suffices to prove that for all a, 8 € A there exists ng
such that Qq5(ng) > 0. Fix o, 8 € A. If « = 3, we already have Qq5(m+1) =
1. Assume a # 3. Let ny > m the smallest integer such that the arrow ~(™)
has name «. Set a; := « and let as be the secondary name of 7(”1) ; we have
Qaya;(n1) > 0for i =1,2.If § = g, we are done. Otherwise, d > 3 and there
exists a smallest integer n} > ny such that the name of 'y(”,l) is not oy or ao.
There also exists a smallest integer ny > n/ such that the name of (") is
ai or ay. Then, the secondary name as of 4(2) is the name of 4(">~1) and
therefore is different from oy or as. We have Vé?;; =1 for some j € {1,2},
and therefore Qq,q,(n2) > 0fori € {1,2,3}. If 5 = ag we are done. Otherwise
d > 4 and we define n}, > ng,ng > nh, a4 ¢ {1, a2, a3} as above ... At some
point we must have 8 = a;. O
COROLLARY 5 - Define a decreasing sequence of open simplicial cones in R4

by
C(O) _ (Ri)A,C(n+1) _ V(n+1)c(n)

and let C©>) =N C™. Then C(>) U {0} is a closed simplicial cone, of dimen-
sion < d = #A.

Proof — From Corollary 4 it follows that for all m > 0 there exists n > m such
that the closure of C(™) is contained in ™ U {0}. This shows that C(>*) U {0}
is closed. For n > 0,a € A, let e = V) . V(™ (e,), where (ea)aca is the
canonical base of R4, Let nj, be an increasing sequence of integers such that
el ||e&"’€) | ~! converge towards a limit el for every a € A. Then we must
have
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CIU{0} ={D tael? ta > 0} .
A

The limits eg’o) cannot be all distinct, because all coefficients of V(D) .. V()
go to oo as n goes to oo (by Corollary 4), and these matrices are unimodular.
Thus C(>) U{0} is closed, polyhedral of dimension < d. Indeed it is simplicial
because, as we will see in the next section, it can be interpreted as a cone of
invariant measures. O

4.4 Unique ergodicity and the continuous fraction algorithm

Recall that a transformation is uniquely ergodic if it has exactly one in-
variant probability measure.

For an i.e.m T, (normalized) Lebesgue measure is invariant, hence there
should be no other invariant probability measure.

Let T be an i.e.m with the Keane’s property. In particular, 7" is minimal.
Therefore, every finite invariant measure p is continuous and supported by
the whole of I. For such a measure, we set

Hy(z) = p([0,2)) .
This defines an homeomorphism from I onto I, := [0, u(I)). Let

T,=H,oToH,".

This is a one-to-one transformation of I,,. Actually, T}, is immediately seen
to be an i.e.m on I,, whose combinatorial data are the same as for 7', and
whose length data (Aq(1t))aca are given by

Aa(p) = p(jo(Ia)) = n(j1(1a)) -

Obviously, the image of 4 under the conjugacy H,, is the Lebesgue measure
on I,.
PROPOSITION - The map p — (Ao (tt))aca s a linear homeomorphism from
the set of T-invariant finite measures onto the cone C() of Corollary 5 In
particular, T is uniquely ergodic if and only if C(>) is a ray.
Proof — The map is obviously linear and continuous ; as T" and 7}, are topolog-
ically conjugated, T}, has also the Keane’s property ; moreover, the restriction
of H, to I™ is an homeomorphism on I\ which conjugates T and T\™.
Thus, the length vector (A, (1t))ae4 belongs to C(™ for every n > 0 and there-
fore to C(>). Conversely, let (S\Q)QEA be a length vector in C(°°). Let T be the
i.e.m defined by this length vector and the same combinatorial data than T
The continuous fraction algorithm for T never stops (with the same path in
the Rauzy diagram than for T'), hence T has the Keane’s property ; the same
is true for the i.e.m. T; whose length vector is (1 —t)A+tA € C(*). Therefore,
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for each t € [0,1], the points (T}(0))x>0 are distinct, form a dense set in I,
and we have

TF(0) > T} (0) <= T/ (0) > T} (0)
for all k,1>0,t,¢' € [0,1]. If we set

H(T*(0)) = T*(0) ,

for all £ > 0, the map H extends in a unique way to an homeomorphism from
I onto I which conjugates T and T. If p is the image of Lebesgue measure
under H~!, then p is a finite T-invariant measure on I and T = T,. O
For d < 3, interval exchange maps are rotations or first return maps of
rotations and thus are uniquely ergodic if minimal. On the other hand, Keane
has constructed ([Ke2], see also [KN], [Co]) i.e.m with d = 4 which are minimal
but not uniquely ergodic. Nevertheless, we have the following fundamental
result :
THEOREM - (Mazur [Ma], Veech [V2]) Let (Q, mo, 1) be any admissible combi-
natorial data. Then, for almost all length data (Ao)aca, the associated i.e.m
is (minimal and) uniquely ergodic.
Proof — We will give a slightly simplified version of the proof of Kerchkoff
([Ker]). Let D be the Rauzy diagram which contains the combinatorial data
(A, 70, 7T1).
For any finite path v = (V(i))oqgn in D starting at (g, 71), let (V(i))0<i§n
be the associated matrices ; let

Q) = vy
C(y) = QINIRL)AM x {(mo,m)}
A(y) = C(y) N A(mo, 1) -

For 8 € A, we also write

Qs(y) = Z Qas(7) -

LEMMA 1 - We have
vola—1(A(7)) = (][ @s(%) " vola—1(A(mo, m)) -
B

Proof — Indeed, Q(7) is unimodular and we have, for A(9) = Q(y)A(™) :

YA =D Qe
o 8

LEMMA 2 - Let C' > 1 a constant such that

max Qn(y) < Cmin Qn(7) .
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There exists a constant ¢ € (0,1), depending only on C' and d, and a path
~' extending vy such that

volg—1(A(Y)) > ¢ voly—1(A(Y)) ,
diam (A(®")) < (1 — ¢) diam (A(%)) .
Proof — Choose a path 4 starting from the endpoint of y such that Qag(y) > 0

for all o, 6 € A. We have Qq3(%¥) < C1, with Cy depending only on d. Let
~' =~ %4. We have, for 3 € A

Qs(v) = Qa(1)Qas(7) ,

and thus, by Lemma 1

volg_1(A(Y)) > (CC1d)~ volg_1(A(7)) .

It is also clear, considering orthogonal projections on 1-dimensional lines,
that we have

2

diam (A(7')) < (1 TCid-1)+1

) diam(A0)

O
LEMMA 3 — Let (W(()n), ﬂ%n)) be the vertex of D endpoint of v ; define ag, a1 € A

by wé”’(aa) =d,e =0,1. Fore = 0,1, let A%(y) be formed of those length
data in A(vy) for which the (n + 1)** arrow has type . Then

__ Qa .(¥)
Qao(7) + Qay (7)

Proof — Clear from Lemma 1. (I

Let T be an i.e.m in A(y) satisfying Keane’s condition, and let (v(9(T));>o
be the associated path ; we therefore have v (T) = v for 0 < i < n. Let
(V@(T));>0 be the associated matrices ; define

volg—1(A%(7)) volg—1(A(v)) -

Q,T)=vO(T)...vi(T).

Fix a € A, and define Q. (T) = Qu(n(a,T),T), where n(a,T) is the
smallest integer m > n such that the name of v(™)(T) is a (this is well
defined by the proposition in 4.3). We then have :

LEMMA 4 - For any C > 1, we have :

voly—1({T € A7), Qo (T) > CQa(7)}) < €7 vola—1(A(7)) -

Proof — We will show the slightly stronger result that the inequality of the
lemma holds even after conditioning by the value 7 of n(a,T') — n. We show
this last result by induction on 7.
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We have n = 1 iff the name of 7("+1)(T) is « ; in this case, we have
Q! (T) = Qu(7) and the estimate holds for all C > 1.

If ﬂé") (a) < dand ﬂ”)(a) < d, we divide A(y) into A%(y) and Al(y) and
apply the induction hypothesis to both simplices to conclude.

Assume on the other hand that ﬂ'(()n)(a) < d, Fin) () =d;if i > 1, the

name of 4"+ (T') is the element ag € A such that F(()n) (ap) = d and we have

Qa(n + 17T) = Qa('}/) + an(’Y) s

volg_1(A°(7)) = g vola_1(A(7))

by Lemma 3. We will have Q' (T) > Qa(n+1,T).If1 < C < (Qa (7)) ' Qa(n+
1,T), the estimate of the lemma holds immediately. For C > (Q4 (7)) 1Qa(n+
1,T), we set

C'=CQu(M(Qaln+1,T)7",
v =y (T,

and use the induction hypothesis to conclude. The case F(()n) (o) =d > ﬂ”) (@)
is symmetric. Il
LEMMA 5 — Let Cy > 1 a constant and a non trivial non empty subset Ag C A,
Ao # A, such that

max Qq(y) < Co o?elgllo Qa(v),

acAy
< .
max Qa(y) < max Qa(7)

There exist a constant C1 > 1, a constant ¢; € (0,1), depending only on
Co and d, and paths (v(1))1<i<r extending v such that

(i) the simplices A(y(1)) have disjoint interiors and
vola—1(UA(y(1))) = e1 vola—1 (A(7)) ;

(ii) for everyl € [1, L], there exists a subset A; of A strictly larger than Ay
such that

n}fx Qa(v()) <4 HELH Qa(v(1)),

1

max Qa(v(1) < max Qa(v(1)) -

Proof — We first extend -y to a path 4 such that the name of the last arrow of
4 does not belong to Ag ; we can do this having
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mjx Qa(y) < C{mj‘%x Qa(7);

vola—1(A(7)) = ¢; vola—1(A(7)) ,
C1, ¢} depend only on d.
We then apply Lemma 4, for every a € Ag, to 5 with C = 2#.A4,. We
obtain that the volume of those T € A(%) for which Q. (T) < 2#.A40Q (%) for
every a € Ay is at least half the volume of A(%). For such a T', let m > n =

length (%) the smallest integer such that the name @ of (") (T) belongs to
Ap. We define (for those T') a finite path (7T') as follows :

1. If for some m € (n,m), some o € A — Ap, we have

Qa(m,T) > max Qa(7) ,

we let ¥(T') = (Y)(T))o<i<sm, where 7 is the smallest such integer.

2. Otherwise, (T) = (Y(T))o<i<m.
We select finitely many such Ty, ..., Ty, such that, setting v(I) = v(T7),
we have

vol (UAG()) 2 7 vol AR)

and the A(y(1)) have disjoint interiors. Let [ € [1, L] ; if T} is as in case
a), we take A; to be the union of Ag and all @ € A — Ag satisfying
Quo(m,T)) > max, Qn (7). If T} is as in case b), by definition of m, the
name (3 of 4"~ (T}) does not belong to Ay and we have

Q5@ = QY V(@) + Q")
where a is the name of 4™~V (T}). It follows that

Q5”(T) > G5 max Qa(v) -

We take A; = Ag U {f} in this case. We obtain the conclusions of the
lemma with ¢; = 1¢} and C1 = Co(1 + 2(#A0)CY).

O
Iterating Lemma 5, we obtain
LEMMA 6 — There exists a constant C, depending only on d, and paths
(v(D)1<i<r extending v such that

(i) the simplices A(y(l)) have disjoint interiors and

volg—1 (WA(y(1))) = C™F vol(A(v)) ;
(il) for every 1 <1< L, we have

max Qq(7(1)) < € min (Qa(y(1))) -
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The proof of the theorem is now clear : for almost every i.e.m T, with
associated path (7(9);s, it follows from Lemma 6 that there are infinitely
many integers ny such that the path (V(i))oqgnk satisfy the hypothesis of
Lemma 2. It follows then from Lemma 2 that the intersection of the simplices
A((YD)g<i<n) is reduced to a point. O

5 Suspension of i.e.m

5.1 Suspension data

Let (A, mp, m1) be admissible combinatorial data, and let 7' be an i.e.m of this
combinatorial type, determined by length data (Ay)aca.

We will construct a Riemann surface with a flow which can be considered as
a suspension of T'. In order to do this, we need data which we call suspension
data.

We will identify R? with C. Consider a family 7 = (74)aca € R4, To this
family we associate

Ca
&= Y (s,acA, {01}

meB<Tex

A +iTa, a€e A

We always have Ego = &L, where as before m.(a.) = d. We say that 7

defines suspension data if the following inequalities hold :
Imél >0foralla € A,a# g,
Imél <Oforalla € A a # a; .
We also set
0o =€~ acA.

We then have
0=9C¢,

Ref =46,

and define h = —Imf = — 7.
One has hy > 0 for all a € A, because of the formula

O = (€2 — Ca) — (€2 = Ca) -

One has also
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Im &, =Im&, € [—hay, ha,) -

5.2 Construction of a Riemann surface

Let (A, 7o, m1) and (Co = Ao + i7a)aca as above. For a € A, consider the
rectangles in C = R? :

RY = (Re€® — Mo, Re€) x [0, ha] ,
Rl

«

= (Re€l — \o, Re€l) x [~ha, 0],

and the segments
Sa = {Re&0} x [0,Im&) , a # ao
S ={Re€l} x (Im&L,0], a# a .

Let also SO, = S, be the half-open vertical segment [A*, &0 ) = [A*,&L)).
Define then

rRe=JUR UU s:

The translation by 6, sends RY, onto RY. If & = &L =0,85 = S, is
empty, Egl is the top right corner of qu and féo is the bottom right corner
of Rao. If fgo = Eil > 0, the translation by 6,, sends the top part 5*31 =
{Re€d,} X [ha,, ImE,) of S5, onto S} . If £ =&, <0, the translation by
0, sends S onto the bottom part S} = {Re€l } x (Im&L,, —hq,] of SE .

We use these translations to identify in R¢ each RY to each R, and
See = Sa, (if non empty) to either S or S . Denote by M the topological
space obtained from R; by these identifications.

Observe that M inherits from C the structure of a Riemann surface, and
also a nowhere vanishing holomorphic 1-form w (given by dz) and a vertical
vector field (given by 6%).

5.3 Compactification of M}

Let A be the set with 2d—2 elements of pairs («, L) and (a, R), except that we
identify (ao, R) = (a1, R) and (ag, L) = (a4, L), where me(a.) = d, me(ol) =
1.

Let o be the permutation of A defined by

U(Q7R> = (ﬂo,L) )
U(a’L) = (BlaR) )

with mo(80) = mo(a) + 1,m1(61) = m1(a) — 1 ; in particular, we have
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(a0, R) = (my ! (mo(en) + 1), L),

o(ay, L) = (7 (mi(ap) — 1), R) -

The permutation describes which half planes are met when one winds
around an end of M¢. Denote by > the set of cycles of 0. To each ¢ € X' is
associated in a one-to-one correspondance an end ¢, of Mg‘ From the local

structure around ¢, it is clear that the compactification M¢ = M¢ U{qc} will
z

be a compact Riemann surface, with the set of marked points {g.} = M¢—M¢
in canonical correspondence with Y. Moreover, the 1-form w extends to a
holomorphic 1-form on M; ; the length of a cycle c is an even number 2n, ;
the corresponding marked point ¢. is a zero of w of order n, — 1.

Let v = #2X, and let g be the genus of M,. We have

d—1=2%Xn,

2g—2=X(n.—1)

hence

d=2g+v—1.

Example : Suppose that mg, m; satisfy

mo(a) + m(a) =d+1, foralla e A

If d is even, there is only 1 cycle ; we have d = 2g and the only zero of w
has order 2g — 2. If d is odd, there are two cycles of equal length d — 1 ; we
have d = 2g 4+ 1, and each of the two zeros of w has order g — 1.

The vertical vector field on M does not extend (continuously) to M¢ when
g > 1, unless one slows it near the marked points (which we will not do here).
Nevertheless, it can be considered as a suspension of T : starting from a point
(x,0) on the bottom side of RO, one flows up till reaching the top side where
the point (z, hy) is identified with the point (z + dq,0) = (T'(x),0) in the top
side of R}. The return time is h,. The vector field is not complete, as some
orbits reach marked points in finite time.

5.4 The basic operation of the algorithm for suspensions

Let (A, mp,m1) and ((o = Ao +i7Ta)ac.A as above. Construct R¢, M, as in 5.2,
5.3. With 7. (ae) = d as above, assume that

Aag # Aay -

Then the formula A\,, = max(Ay,, Ao, ) defines uniquely ¢ € {0,1} and
determines uniquely the basic step of the continuous fraction algorithm ; this
step produces new combinatorial data (A, 7, 71) and length data (S\Q)aeA
given by
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j\a =Ao , QF Qg

5\045 = Aaa - A0‘175

For suspension data, we just define in the same way

6& = Coz , & 7é Qe
éaa = Caa - Calfa

This has a nice representation in terms of the corresponding regions R, R ¢

One cuts from R the part where z > A* = X\*— \,, ; it is made of RL ¢ and
a right part of R, _. We glue back lei to the free horizontal side of R;E,

(e
and the right part of Rf,_to R __ : see figure 5.
It is easy to check that the new suspension data satisfy the inequalities

required in 5.1 ; if for instance € = 0, one has

=€ a+#ag

with g = 7wy on one hand and

gé:é-é) a # ag, o
F1 ¢l

(a5} «Qp?

F1 _ ¢l

ap — Sap Cﬂél'

The last formula gives

_£g¢0 = Cal - éo
= Cﬂél - go - 9040
= Cﬂtl - él - 9040
_gél - eao )

with 7m1(61) = d — 1. We therefore have

—Imél, = —Im€}, +ha >0..
We also see that (still with e = 0), if &; € A is such that &1 (&1) = d (we
have &1 = ay if &1 # ag, &1 = aq if &1 = ), one has
Iméél = Im&él <0
Conversely, given (A, m,m1) and ((o = Ao + 74 )aca as above, assume
that
Im&, =1Img&l #0,
and define € as 0 if Im&}, <0, 1if Im&l, > 0. Set
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L4
A Rp Re 50
1 ®
RD A A
Rl R:
lnA C B ¢—

Fig. 5. The Rauzy-Veech operation for suspensions

N
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éa:Coz for 047&048’

étag = gaa + Calfa ;

and define appropriately new combinatorial data ; this operation is the inverse
of the one above. Thus the dynamics of the continuous fraction algorithm at
the level of suspensions is invertible (on a full measure set) and can be viewed
as the natural extension of the dynamics at the level of i.e.m.

It is clear that the Riemann surfaces M¢, M ¢ are canonically isomorphic,
and the isomorphism respects the holomorphic 1-form and the vertical vector
field.

5.5 Cohomological interpretation of 2

Consider the following homology classes :

e ¢, € Hi(M,X,Z) is defined by a path in R joining £2 — (, to £ (or by
a path joining & — ¢, to &) ;

o (€ Hi(M;— X,Z) is defined by a path in R¢ joining the center of R
to the center of R.

Then (cq)aca is a basis of Hy(M¢, X, Z), and (c})aca is a basis of
Hy(M; — 2, 7Z).

For the intersection pairing on Hy (M — X,Z) x Hi(M¢, X, Z), (c},) and
(ca) are dual bases.

We have canonical maps

Hy(M¢ — ¥,Z) — Hi(M¢,Z) — Hi(M¢, X, 7Z)

where the first map is surjective and the second injective ; the image of ¢, in
Hy (M, X,Z) is equal to Z 245 cs.
B
The 1-form w determines a cohomology class [w] in H'(M¢, X, C) : we

have
/ w = Ca

HY(M,%,C) — H"(M;,C) — H(M; — £,C)

We have the dual sequence

where the first map is surjective and the second injective. The image of [w] in
H'(M¢ — ¥, C) satisfies
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/c*wzeaz(ng)a.

fe

Thus {2 is the matrix of the composition

HY(M¢,%,C) — H' (M — £,C).
The image of {2 is equal to the image of H'(M¢, C) into H'(M,; — X, C).
When one performs the basic operation of the continuous fraction algo-

rithm and one identifies M, with M & the relation between the old and new
bases is given by

{éaca if a# ae,

Ca. = Ca, — Cay_.

Ak *

¢h=cr if a#ai_.

A%k % *
ca17€ - Ca175 + caa

At the cohomological level, we have an isomorphism of H!(M, C) given
by

éa =0, if a# a1,

9&175 = eal—s + eas

(these formulas determine an isomorphism from I'mf2 onto Imf2). This is the
discrete version of the so-called Kontsevich-Zorich cocycle.

5.6 The Teichmiiller flow

Fix combinatorial data (A, m, 7). Given length data (A,) and suspension
data (7, ), one defines for t € R

U\, 71) = (et/QA,eft/QT)

This flow is called the Teichmiiller flow. Observe that the conditions on
the length data (A, > 0) and on the suspension data (cf. 4.1) are preserved
under the flow.

It is also obvious that the flow commutes with the basic operation of the
continuous fraction algorithm. In particular, the inequality Ao, > Ao, . is
preserved.

The surface M, is canonically equipped with an area form (coming from
C) for which its area is

A = area (M¢) = Z Aaha
acA
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The area is preserved by the Teichmiiller flow, and also by the basic oper-
ation of the continuous fraction algorithm.

The Lebesgue measure d\ dr on the domain of R4 x R#4 defined by the
restrictions on length and suspension data is preserved by the Teichmiiller
flow, and by the basic operation of the continuous fraction algorithm.

6 Invariant measures

6.1 The case d =2

We have seen in 2.6 that i.e.m in this case are just rotations on the circle.

Let (A4, Ap) be the length data. The basic step of the continuous fraction
algorithm sends these data on (Ay —Ap, Ag) (resp. (Aa, Ap—A4)) if Aa > Ap
(resp. Aa < >\B) Set z = >\B/>\A if Ap < )\A,:C = >\A/>\B if Aga < Ag. We
obtain the well-known map

= for 0 <z <1/2
g(x) =

g(l—2) =12 for 1/2<2 <1,

with a parabolic fixed point at 0. This map has % as a unique (up to a mul-
tiplicative constant) invariant measure absolutely continuous w.r.t Lebesgue
measure, but this measure is infinite !

Instead, the Gauss map

Gla) = {7}
dx

has %% as a unique (up to a multiplicative constant) invariant measure ab-
solutely continuous w.r.t Lebesgue measure, but the density is now analytic
on [0, 1].

The map G is related to g as follows : we have G(z) = ¢™(z), where n is
the smallest integer > 0 such that ¢"~!(x) € [1/2,1).

For a general Rauzy diagram (with admissible combinatorial data), Veech
has shown ([V2]) that there exists a unique (up to a multiplicative constant)
measure absolutely continuous w.r.t Lebesgue measure which is invariant un-
der the normalized continuous fraction algorithm. But again, this measure is
infinite.

Following Zorich, it is however possible to accelerate the Rauzy-Veech
algorithm, concatenating several successive steps in a single one (as the Gauss
map does). For the new algorithm, there will exist an invariant absolutely
continuous probability measure, which is very useful for ergodic - theoretic
considerations.

6.2 The accelerated algorithm ([Z1])
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Let (A, 7, m1) be admissible combinatorial data and (Ay)ae.4 be length data.
Assume for simplicity that the i.e.m T defined by these data satisfies the
Keane property.

The continuous fraction algorithm applied to T gives an infinite path in the
Rauzy diagram of (A, o, 71), starting at the vertex (mp, 1), that we denote
by (Yn(T))n>0- To each arrow =, is associated a type (0 or 1) and a name (a
letter in A) ; it is obvious from the definitions of type and name that ~,,, Vn+1
have the same type iff they have the same name. We also know that each
name is taken infinitely many times (proposition in 4.3); the same assertion
for types is actually obvious.

In the accelerated algorithm, one performs in a single step the consecutive
steps of the (slow) algorithm for which the associated arrows have the same
type (or name).

Assume for instance that Ao, > Aa,. Write m(ag) = d —d < d and
1 (agl)) =d —i for 0 <i < d. The accelerated algorithm makes the following
“euclidean division” : one substracts from A, in turn )\a§o>, )\agl) e )\aggpl),

A, A, ... stopping just before the result becomes negative. This is a
1 1

single step for the accelerated algorithm. When d = 1, for instance when
d = 2, it just amounts to ordinary euclidean division with remainder.

We can extend the definition of the accelerated algorithm at the level of
suspension data. Recall that at this level, the dynamics of the slow algorithm
are essentially invertible (i.e modulo a set of codimension one). The dynamics
of the accelerated algorithm is a first return map of the dynamics of the
slow one. Indeed, for fixed combinatorial data (A, g, 1), the simplicial cone
of length data is divided into the two simplicial subcones {Aq, > Ao, } and
{Aas > Aap ; according to the type 0 or 1 of the basic step. On the other hand,
we have seen in 5.4 that the polyhedral cone of suspension data is divided into
{Im ¢!, < 0} and {Im &} > 0} according to the type 0 or 1 of the prior
basic step.

Therefore, we set

ZO = {)‘ao > )\al , Imggo >0},
Z1 ={day > Aoy s Im L <0},

Z =ZUZ ..

The accelerated algorithm is the first return map to Z of the slow algo-
rithm.

Till now, we have considered \* := Y\, = 1 as the natural normalization
for the length data. Actually, in the sequel, a different normalization seems
preferable. As in 4.1, for Ao, > Aq,__, set

Ao = Ag if a # a.,

Ao = Ao — Aay_, -
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Define then \* := Zj\a = A\* — Aa,_. ; we will normalize by {\* = 1}.

6.3 The absolutely continuous invariant measure

Consider the accelerated algorithm acting on the region Z of the (A, 7) space.
It is invertible (up to a codimension one subset) and acts by unimodular
matrices. Therefore the restriction mg of Lebesgue measure to Z is invariant.
The area function A = Z)\aha is also invariant, where h = —(27.
(e

We now use the Teichmiiller flow U? to have the horizontal length A* also
invariant. More precisely, let (1o, 71, A, 7) € Z, with image (7o, 71, A, 7) under
the accelerated algorithm. Set

t(\) = 2(log \* — log j\*) ,

G(Tro, 1, )‘7 7_) = (7_T0, m, Ut()\) (Xa 7_—)) )
and call G the normalized basic step for (the natural extension of) the accel-
erated algorithm. The measure myg is still invariant under G because mg is
invariant under the Teichmiiller flow and ¢ is constant along the orbits of the
flow. The area function A is still invariant. The length function A* is now also
invariant by construction. Define
zW =zn{4<1},
and denote by m; the restriction of mg to Z(1). We now project to C(D) (cf.
4.3) : we obtain a map
G(mo, m1, \) = (7o, 71, €2V N)
and a measure mg, image of m; by the projection, which is invariant under G.
As A" is still invariant under G, we can restrict, by homogeneity, the measure
mz to {\* = 1} and get the measure m invariant under G, that we are looking
for. We will now check its properties.

6.4 Computation of a volume

The density of the measure msy (w.r.t Lebesgue measure in A space) is given
by the volume of the fiber of the projection sending m; onto ms. Therefore,
we have to compute the volumes of

I.n{A<1}
where
Lo={Im& >0, Vac A, Im&L <0, Va#a},

={Im& >0,Vatay, Imé&: <0, Vaec A},
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and Ao, > Aoy, -

The computation is symmetric and we only consider the case ¢ = 0. We
write the polyhedral cone Iy in 7-space as a union of finitely many disjoint
simplicial cones I' up to a codimension 1 subset ; for each I', we choose a
basis 7V, ..., 7(® of RA with volume 1 which generates I :

d
r={> t;79, t;>0}.
j=1

We have

d
Vola(I' (1 {2 Aa ha < 11) = ()7 [[(2 0 1)
1

where h(9) = —270), This gives for the density X’ of ms the formula

d
() Xrgm (V) = (@) Z Z H(Z Aa hg))_l .
€ r 1
To estimate further the density, we write, when ¢ =0 :

5‘040 = )‘ao - )\al )
iLOq = hcm + hoq )

and A\, = Mg, iLa = h, otherwise. We have
> A h§T =" A hY
and define

W, ={aeA b £0}.

6.5 The key combinatorial lemma ([V2], [Z1])

PROPOSITION - Let X be a subset of A, non empty and distinct from A. Let
Ex be the subspace of R4 generated by the T € Iy such that h = —$27 satisfies
ha =0 for all o € X. Then the codimension of Ex is > #X.
COROLLARY - #{j,W; N X =0} + #X < d.
Proof of corollary— One has W;NX = () iff ) € Ex, and the 7() are linearly
independent. (I
Proof of proposition — As usual, we denote by wg, a1, o, @] the elements
such that m.(a.) = d,m.(a) = 1. We write the hy in terms of those
(—1)* Im &<, (e, ) which are nonnegative, i.e. with (g, ) # (1, a1).

We have
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ho =Im € — Im €} = Im&Y, — Im &},

for a # @, @1, a ; we have denoted by So, 51 the elements such that 7.(5;) =
7e () — 1. The same formula still holds for « = &3 and o = @ # a1, with the
convention that I'm £} = 0 if @ = ag and I'm &5 = 0 if o = @;. For a = o,
we have

hay, = Im € + Imé&l,
— Im €}, = Im &}, + Im &5, + Im¢,

with 7. (8:) = me(a1) — 1, me(7e) = me () — 1.
From these formulas, we define subsets A(e,a) C A, (with A(1,a) C

A — {a1}) such that ke = 0 implies Iméj; = 0 for B € A(e,a) : we have

A0, @) = {Bo, a} if o # G, a1
A0, a0) = {ao} if ap # a1,
A0,01) = {70, B0, 1 }

A0,a0) = A(l,on) ={vw, a0 =0a1} ifas=a;
A1, a) = {p1,a} if o # o,
AL an) = {aa}

{7, P10} if ag # an,
A(l 1) =
{B1, 00 = a1} if ag = &y .

CLAIM - One has

U A(,0) > X

and equality holds only if X = {a, mo(a) < k} for some k < mp(aq) or k = d.
Similarly, one has, if a; ¢ X

U A(La) o X
X

and equality holds only if X = {a, m(a) < k}, for some k < d.

The assertions of the claim are immediate from the definitions of A(e, «v).
We can now conclude the proof of the proposition. If he = 0 for all a € X,
we have Im &5 = 0 for all 3 € Uy A(e, ). When either (Jy A(0,a) or
Uy A(1, @) is strictly larger than X, we obtain the conclusion of the proposi-
tion. Otherwise, by the first half of the claim, we must have X = {«, mp(a) <
k} for some k < mo(ay) or k = d. If k < mp(a1), a1 ¢ X and the second
part of the claim would give X = {a, 71 (a) < k}, contradicting admissibility.
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Finally, in the remaining case X = A — {ao}, one has h, = 0 for all & € A
(because hy, = hay + hay) and 7 = 0. O

6.6 Checking integrability

From the formula (*) in section 5.4

Xrrg,m1 (>‘) - Z XF(A) )

d
Xr(\) = (@) A A

we deduce the estimate, for each I :

d
< ap(\) H(Z Ao) < e (1)

W;

When we restrict to {5\* = 1}, the density up to a constant factor is given
by the same formula. Let us decompose the simplex A := {\, A, > 0, \* =1}
in the following way : the set of indices is

N ={n=(na)aca € N4 minn, =0} .

For each n € A/, denote by A(n) the set of (Ay)aca € A such that Ao > 2—1d
if n, =0, and

1 “ 1
— 217 S ) > — 27"
2d “ = 2d

if no, > 0. We have a partition

A=| | Awm).

N
Clearly, we have, for n € N

¢! < (vol A(n)) 2" < c. (2)
On the other hand, for A € A(n) and I" as above, one obtains from (1)
that

d

2 g

J

cl<ar(n)2 =t <c. (3)

With fixed n, let 0 = n® < n! < ... be the values taken by the n, and
Vi C A the set of indices with n, > nf. On one side, one has
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dona =) nHVI V)
a >0
_ Z (nz o nifl)#vi ]
>0
On the other side, let V' be the set of j such that W, C V' ; one has

min ng = n' iff j € VV — Vit hence
i

d
. _ i T Tritl
va}/lfl no =Y n'(#VI - V)
=1 i>0

= Z (ni — n“‘l)#f/i .
i>0

By the Corollary of 6.5, one has

HV < H#V?
as long as 0 < #V* < d. This shows that

d
Z na—z I%}]n Ne > 1o = max ng -
a Jj=1
The last estimate, introduced into (2), (3), gives
(vol A(n)) Iil(a))( Xp < c2 Il (4)

The integrability of X1 over A now follows from the fact that the number
of n € N with |n|, = N is of order N472.
At the same time, we can see that the matrix Z € SL(Z*) such that

A= Z\

is such that log||Z|| is integrable for the invariant measure m. We use as a
norm the supremum of the coefficients. We have, for all £ € N (when ¢ = 0;
the case e = 1 is symmetric)

1Z] > k<= dao >k Y Ao,

MT1A>T1QQ

and therefore

1Z] > @d)2" ' =xe | Am).
[n[ec >N

This implies that

/ Xr < cN9—29-N
| Z||>2N
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for all N > 0. Therefore || Z||” for p < 1 and a fortiori log || Z|| are integrable
for the invariant measure m.

This integrability property puts us in position of applying Oseledets the-

orem and start studying the ergodic properties of the continuous fraction
algorithm. However, we will restrain us to do that here.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

J. Coffrey “Some remarks concerning an example of a minimal, non uniquely
ergodic interval exchange map” Math. Z. 199 (1988) 577-580.

G. Forni “Solutions of the cohomological equation for area-preserving flows on
compact surfaces of higher genus” Annals of Mathematics 146 (1997) 295-344.
G. Forni “Deviation of ergodic averages for area-preserving flows on surfaces of
higher genus” Annals of Mathematics 155 (2002) 1-103.

A. Katok and A.M. Stepin “Approximations in Ergodic Theory” Russ. Math.
Surv. 22 (1967) 77-102.

M. Keane “Interval exchange transformations” Math. Z. 141 (1975) 25-31.

M. Keane “Non-ergodic interval exchnage transformations” Isr. J. Math. 26
(1977) 188-196.

S.P. Kerckhoff “Simplicial systems for interval exchange maps and measured
foliations” Ergod. Th. Dynam. Sys. 5 (1985) 257-271.

H.B. Keynes and D. Newton “A “Minimal”, Non-Uniquely Ergodic Interval
Exchange Transformation” Math. Z. 148 (1976) 101-105.

R. Krikorian “Déviations de moyennes ergodiques, d’apres Forni, Kontsevich,
Zorich” Séminaire Bourbaki 2003-2004, 56&me année, exposé n° 927, novembre
2003.

M. Kontsevich and A. Zorich “Connected components of the moduli spaces
of Abelian differentials with prescribed singularities” Inv. Math. 153 (2003)
631-678.

H. Masur “Interval exchange transformations and measured foliations” Annals
of Mathematics 115 (1982) 169-200.

S. Marmi, P. Moussa and J-C. Yoccoz “On the cohomological equation for
interval exchange maps”, C. R. Math. Acad. Sci. Paris 336 (2003) 941-948.

S. Marmi, P. Moussa and J-C. Yoccoz “The cohomological equation for Roth
type interval exchange maps”, preprint.

G. Rauzy “Echanges d’intervalles et transformations induites” Acta Arit. (1979)
315-328.

M. Rees “An alternative approach to the ergodic theory of measured foliations”
Ergod. th. Dyn. Sys. 1 (1981) 461-488.

W. Veech “Interval exchange transformations” Journal d’Analyse Mathémati-
que 33 (1978) 222-272.

W. Veech “Gauss measures for transformations on the space of interval exchange
maps” Ann. of Math. 115 (1982) 201-242.

W. Veech “The Teichmuller geodesic flow” Ann. of Math. 124 (1986) 441-530.
W. Veech “The metric theory of interval exchange transformation I. Generic
spectral properties” Amer. J. of Math. 106 (1984) 1331-1359



20.

21.

22.

23.

24.

25.

Continued Fractions and Interval Exchange Maps 35

W. Veech “The metric theory of interval exchange transformation II. Approxi-
mation by primitive interval exchanges ” Amer. J. of Math. 106 (1984) 1361—
1387

W. Veech “The metric theory of interval exchange transformation III. The Sah
Arnoux Fathi invariant 7 Amer. J. of Math. 106 (1984) 1389-1421

A. Zorich “Finite Gauss measure on the space of interval exchange transfor-
mations. Lyapunov exponents” Annales de l’Institut Fourier Tome 46, fasc. 2
(1996) 325-370.

A. Zorich “Deviation for interval exchange transformations” Ergod. th. Dyn.
Sys. 17 (1997), 1477-1499.

A. Zorich “On Hyperplane Sections of Periodic Surfaces” Amer. Math. Soc.
Translations 179 (1997) 173-189.

A. Zorich “How Do the Leaves of a Closed 1-form Wind Around a Surface ?”
in Pseudoperiodic Topology, V. Arnold, M. Kontsevich and A. Zorich editors,
Amer. Math. Soc. Translations 197 (1999) 135-178.



