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Introduction

Let T be a 2-dimensional torus equipped with a flat Riemannian metric and a vector field
which is unitary and parallel for that metric. Then there exists a unique lattice Λ ⊂ R2 such
that T is isometric to R2/Λ and the vector field on T corresponds to the vertical vector field
∂
∂y

on R2/Λ. The corresponding “Teichmüller space” (classification modulo diffeomorphisms

isotopic to the identity) is thus GL(2,R), viewed as the space of lattices equipped with a basis;
the “moduli space” (classification modulo the full diffeomorphism group) is the homogeneous
space GL(2,R)/GL(2,Z), viewed as the space of lattices in R2.

The dynamics of the vertical vector field on R2/Λ can be analyzed through the return map
to a non vertical closed oriented geodesic S on R2/Λ ; in the natural parameter on S which
identifies S with T = R/Z (after scaling time), the return map is a rotation x 7→ x + α on T
for some α ∈ T. When α /∈ Q/Z, all orbits are dense and equidistributed on R2/Λ : the rota-
tion and the vectorfield are uniquely ergodic (which means that they have a unique invariant
probability measure, in this case the respective normalized Lebesgue measures on S and R2/Λ).

In the irrational case, an efficient way to analyze the recurrence of orbits is to use the continu-
ous fraction of the angle α. It is well-known that the continuous fraction algorithm is strongly
related to the action of the 1-parameter diagonal subgroup in SL(2,R) on the moduli space
SL(2,R)/SL(2,Z) of “normalized” lattices in R2. It is also important in this context that the
discrete subgroup SL(2,Z) of SL(2,R) is itself a lattice, i.e. has finite covolume, but is not
cocompact.

Our aim is to explain how every feature discussed so far can be generalized to higher genus
surfaces. In the first ten sections, we give complete proofs of the basic facts of the theory,
which owes a lot to the pionneering work of W. Veech [Ve1]-[Ve5], with significant contribu-
tions by M. Keane [Kea1][Kea2], H. Masur [Ma], G. Rauzy [Rau], A. Zorich [Zo2]-[Zo4], A.
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Eskin, G.Forni [For1]-[For3] and many others. In the last four sections, we present without
proofs some more advanced results in different directions.

The reader is advised to consult [Zo1] for an excellent and very complete survey on trans-
lation surfaces. See also [Y1] for a first and shorter version of these notes.

In Section 1 we give the definition of a translation surface, and introduce the many geo-
metric structures attached to it. Section 2 explains how translation surfaces occur naturally
in connection with billiards in rational polygonal tables. In Section 3, we introduce interval
exchange maps, which occur as return maps of the vertical flow of a translation surface. We
explain in Section 4 Veech’s fundamental zippered rectangle construction which allow to ob-
tain a translation surface from an interval exchange map and appropriate suspension data.
The relation between interval exchange maps and translation surfaces is further investigated in
Section 5, which concludes with Keane’s theorem on the minimality of interval exchange maps
with no connection. Section 6 introduces the Teichmüller spaces and the moduli spaces; the
fundamental theorem of Masur and Veech on the finiteness of the canonical Lebesgue measure
in normalized moduli space is stated. In Section 7, we introduce the Rauzy-Veech algorithm
for interval exchange maps with no connection, which is a substitute for the continuous frac-
tion algorithm. The basic properties of this algorithm are established. Invariant measures
for interval exchange maps with no connection are considered in Section 8. In Section 9, the
dynamics in parameter space are introduced, whose study lead ultimately to a proof of the
Masur-Veech theorem. Almost sure unique ergodicity of interval exchange maps, a related
fundamental result of Masur and Veech, is proven in Section 10.

In Section 11, we introduce the Kontsevich-Zorich cocycle, and present the related results
of Forni and Avila-Viana. In section 12, we consider the cohomological equation for an interval
exchange map and present the result of Marmi, Moussa and myself, which extend previous
fundamental work of Forni. In Section 13, we present the classification of the connected
components of the moduli space by Kontsevich and Zorich. In the last section, we discuss the
exponential mixing of the Teichmüller flow proved by Avila, Gouezel and myself.

1 Definition of a translation surface

1.1 We start from the following combinational data :

• a compact orientable topological surface M of genus g > 1 ;

• a non-empty finite subset Σ = {A1, . . . , As} of M ;

• an associated family κ = (κ1, . . . , κs) of positive integers which should be seen as ram-
ification indices.

Moreover we require (for reasons that will be apparent soon) that κ and g are related through

2g − 2 =
s∑
i=1

(κi − 1) .(1)
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The classical setting considered in the introduction corresponds to g = 1, s = 1, κ1 = 1.

Definition : A structure of translation surface on (M,Σ, K) is a maximal atlas ζ for
M − Σ of charts by open sets of C ' R2 which satisfies the two following properties :

(i) any coordinate change between two charts of the atlas is locally a translation of R2 ;

(ii) for every 1 6 i 6 s, there exists a neighbourhood Vi of Ai, a neighbourhood Wi of 0 in R2

and a ramified covering π : (Vi, Ai)→ (Wi, 0) of degree κi such that every injective restriction
of π is a chart of ζ.

1.2 Because many structures on R2 are translation-invariant, a translation surface (M,Σ, κ, ζ)
is canonically equipped with several auxiliary structures:

• a preferred orientation ; actually, one frequently starts with an oriented (rather than
orientable) surface M and only considers those translation surface structures which are
compatible with the preferred orientation ;

• a structure of Riemann surface ; this is only defined initially by the atlas ζ on M − Σ,
but is easily seen to extend to M in a unique way : if Vi is a small disk around Ai ∈
Σ, Vi − {Ai} is the κi- fold covering of Wi − {0}, with Wi a small disk around 0 ∈ C,
hence is biholomorphic to D∗ ;

• a flat metric on M − Σ ; the metric exhibits a true singularity at each Ai such that
κi > 1; the total angle around each Ai ∈ Σ is 2πκi ;

• an area form on M − Σ, extending smoothly to M ; in the neighbourhood of Ai ∈ Σ, it
takes the form κ2

i (x
2 + y2)κi−1dx ∧ dy in a natural system of coordinates ;

• the geodesic flow of the flat metric on M − Σ gives rise to a 1-parameter family of
constant unitary directional flows on M − Σ, containing in particular a vertical flow
∂/∂y and a horizontal flow ∂/∂x.

We will be interested in the dynamics of these vector fields. By convention (and symmetry)
we will generally concentrate on the vertical vector field.

1.3 Together with the complex structure on M , a translation surface structure ζ also pro-
vides an holomorphic (w.r.t that complex structure) 1-form ω, characterized by the property
that it is written as dz in the charts of ζ. In particular, this holomorphic 1-form does not
vanish on M − Σ. At a point Ai ∈ Σ, it follows from condition (ii) that ω has a zero of order
(κi−1). The relation (1) between g and κ is thus a consequence of the Riemann-Roch formula.

We have just seen that a translation surface structure determine a complex structure on M
and a holomorphic 1-form ω with prescribed zeros. Conversely, such data determine a trans-
lation surface structure ζ : the charts of ζ are obtained by local integration of the 1-form ω.

The last remark is also a first way to provide explicit examples of translation surfaces. Another
very important way, that will be presented in Section 5, is by suspension of one-dimensional
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maps called interval exchange maps. A third way, which however only gives rise to a restricted
family of translation surfaces, is presented in the next section.

2 The translation surface associated to a rational polyg-

onal billiard

2.1 Let U be a bounded connected open subset in R2 ' C whose boundary is a finite union
of line segments ; we say that U is a polygonal billiard table. We say that U is rational if
the angle between any two segments in the boundary is commensurate with π.

The billiard flow associated to the billiard table U is governed by the laws of optics (or me-
chanics) : point particles move linearly at unit speed inside U , and reflect on the smooth parts
of the boundary ; the motion is stopped if the boundary is hit at a non smooth point, but this
only concerns a codimension one subset of initial conditions.

The best way to study the billiard flow on a rational polygonal billiard table is to view it as
the geodesic flow on a translation surface constructed from the table ; this is the construction
that we now explain.

2.2 Let Û be the prime end compactification of U : a point of Û is determined by a
point z0 in the closure U of U in C and a component of B(z0, ε) ∩ U with ε small enough (as
U is polygonal, this does not depend on ε if ε is small enough).

Exercise : Define the natural topology on Û ; prove that Û is compact, and that the natural
map from U into Û is an homeomorphism onto a dense open subset of Û .

Exercise : Show that the natural map from Û onto U is injective (and then a homeomor-
phism) iff the boundary of U is the disjoint union of finitely many polygonal Jordan curves.

A point in Û −U is regular if the corresponding sector in B(z0, ε)∩U is flat ; the non regular

points of Û − U are the vertices of Û .

Exercise : Show that every component of Û − U is homeomorphic to a circle and contain
at least two vertices. Show that there are only finitely many vertices.

A connected component of regular points in Û − U is a side of Û . The closure in Û of a side
C of Û is the union of C and two distinct vertices called the endpoints of C. A vertex is the
endpoint of exactly two sides.

2.3 The previous considerations only depend on U being a polygonal billiard table ; we now
assume that U is rational. For each side C of Û , let σC ∈ O(2,R) the orthogonal symmetry
with respect to the direction of the image of C in U ⊂ R2 . Let G be the subgroup of O(2,R)
generated by the σC .
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As U is rational, G is finite. More precisely, if N is the smallest integer such that the angle
between any two sides of Û can be written as πm/N for some integer m, G is a dihedral group
of order 2N , generated by the rotations of order N and a symmetry σC .

For any vertex q ∈ Û , we denote by Gq the subgroup of G generated by σC and σC′ , where

C and C ′ are the sides of Û having q as endpoint ; if the angle of C and C ′ is π mq/Nq with
mq ∧Nq = 1, Gq is dihedral of order 2Nq.

We now define a topological space M as the quotient of Û × G by the following equivalence
relation : two points (z, g), (z′, g′) are equivalent iff z = z′ and moreover

• g−1g′ = 1G if z ∈ U ;

• g−1g′ ∈ {1G, σC} if z belongs to a side C of Û ;

• g−1g′ ∈ Gz if z is a vertex of Û .

We also define a finite subset Σ of M as the image in M of the vertices of Û .

Exercise : Prove that M is a compact topological orientable surface.

To define a structure of translation surface on (M,Σ) (with appropriate ramification indices),
we consider the following atlas on M − Σ.

• for each g ∈ G, we have a chart

U × {g} → R2

(z, g) 7→ g(z) ;

• for each z0 belonging to a side C of Û , and each g ∈ G, let z̃0 be the image of z0 in
U, ε be small enough, V be the component of B(z̃0, ε) ∩ U corresponding to z0, V̂ be

interior of the closure of the image of V in Û ; we have a map

V̂ × {g, g σc} → R2

sending (z, g) to g(z) and (z, gσc) to g(σ̃c(z)), where σ̃c is the affine orthogonal symmetry
with respect to the line containing the image of C in R2. This map is compatible with
the identifications defining M and defines a chart from a neighbourhood of (z, g) in M
onto an open subset of R2.

One checks easily that the coordinate changes between the charts considered above are trans-
lations. One then completes this atlas to a maximal one with property (i) of the definition of
translation surfaces.

Exercise : Let q be a vertex of Û , and let πmq/Nq be the angle between the sides at q
and Gq the subgroup of G as above. Show that property (ii) in the definition of a translation
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surface is satisfied at any point (q, g Gq) ∈ Σ, with ramification index mq (independent of the
coset g Gq under consideration).

We have therefore defined the ramification indices κi at the points of Σ and constructed a
translation surface structure on (M,Σ, κ).

2.4 The relation between the trajectories of the billiard flow on U and the geodesics on
M − Σ is as follows.

Let z(t), 0 6 t 6 T be a billiard trajectory ; let t1 < . . . < tN be the successive times in (0, T )

where the trajectory bounces on the sides of Û (by hypothesis, the trajectory does not go
through a vertex, except perhaps at the endpoints 0 and T ). Denote by Ci the side met at
time ti and define inductively g0, . . . , gN by

g0 = 1G ,

gi+1 = gi σCi+1
.

For any g ∈ G, the formulas

zg(t) =


(z(t), gg0), for 0 6 t 6 t1,

(z(t), ggi), for ti 6 t 6 ti+1 (1 6 i < N),

(z(t), ggN), for tN 6 t 6 T,

define a geodesic path on M . Conversely, every geodesic path on M (contained in M − Σ
except perhaps for its endpoints) defines by projection on the first coordinate a trajectory of
the billiard flow on U .

2.5 The left action
g0(z, g) = (z, g0 g)

of G on Û × G is compatible with the equivalence relation defining M and therefore defines
a left action of G on M . The corresponding transformations of M are isometries of the flat
metric of M but not isomorphisms of the translation surface structure (except for the iden-
tity !). The existence of such a large group of isometries explain why the translation surfaces
constructed from billiard tables are special amongst general translation surfaces.

2.6 On the other hand, when a billiard table admits non trivial symmetries, this gives rise
to isomorphisms of the translation surface structures. More precisely, let H be the subgroup
of G formed of the h ∈ G such that h(U) is a translate U + th of U . The group H acts on the
left on M through the formula

h(z, g) = (h(z)− th, g h−1),
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which is compatible with the equivalence relation defining M . Each h ∈ H acts through an
isomorphism of the translation surface structure (permuting the points of Σ). This allows to
consider the quotient under the action of H to get a reduced translation surface (M ′,Σ′, κ′, ζ ′)
and a ramified covering from (M,Σ) onto (M ′,Σ′).

2.7 To illustrate all this, consider the case where U is a regular n-gon, n > 3. The angle
at each vertex is then π n−2

n
.

Exercise : Show that G = Gq for every vertex q and that G has order n if n is even, 2n if n is
odd. Show that Σ has n points, each having ramification index n−2 if n is odd, n−2

2
if n is even.

Conclude that the genus of M is (n−1)(n−2)
2

if n is odd, (n
2
− 1)2 if n is even.

Exercise : Show that the subgroup H of subsection 2.6. is equal to G if n is even, and is
of index 2 if n is odd. Show that the reduced translation surface satisfies #Σ′ = 2 if N − 2 is
divisible by 4, #Σ′ = 1 otherwise. Show that the corresponding ramification index is n− 2 if
n odd, (n−2)

2
if n is divisible by 4, (n−2)

4
if n− 2 is divisible by 4. Conclude that the genus g′

is (n−1)
2

if n is odd, n
4

if n is divisible by 4 , (n−2)
4

if n− 2 is divisible by 4.

3 Interval exchange maps : basic definitions

3.1 Let (M,Σ, κ, ζ) be a translation surface and let X be one of the non zero constant
vector fields on M − Σ defined by ζ.

Definitions An incoming (resp. outgoing) separatrix for X is an orbit of X ending
(resp. starting) at a marked point in Σ. A connection is an orbit of X which is both an
incoming and outgoing separatrix.

At a point Ai ∈ Σ, there are κi incoming separatrices and κi outgoing separatrices.

Let S be an open bounded geodesic segment in M−Σ, parametrized by arc length, and trans-
verse to X. Consider the first return map TS to S of the flow generated by the vectorfield X.

As X is area-preserving, the Poincaré recurrence theorem guarantees that the map TS is de-
fined on a subset DTS of S of full 1-dimensional Lebesgue measure. The domain DTS is open
because S itself is open and the restriction of TS to each component of DTS is a translation
(because the flow of X is isometric). Also, the return time is constant on each component of
DTS .

We now show that DTS has only finitely many components. Indeed, let x ∈ S be an endpoint
of some component J of DTS , and let tJ the return time to S of points in J . Either there
exists T ∈ (0, tJ) such that the orbit of X starting at x stops at time T at a point of Σ without
having crossed S, or the orbit of X starting at x is defined up to time tJ and is at this moment
at one of the endpoints of S, also without having crossed S. This leaves only a finite number
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of possibilities for x, which gives the finiteness assertion.

The return map TS is thus an interval exchange map according to the following definition.

Definition Let I ⊂ R be a bounded open interval. An interval exchange map (i.e.m) T on
I is a one-to-one map T : DT → DT−1 such that DT ⊂ I,DT−1 ⊂ I, I −DT and I −DT−1 are
finite sets (with the same cardinality) and the restriction of T to each component of DT is a
translation onto some component of DT−1 .

3.2 Markings, combinatorial data

Let T : DT → DT−1 be an interval exchange map. Let d = #π0(DT ) = #π0(DT−1). Then T
realizes a bijection between π0(DT ) and π0(DT−1). To keep track of the combinatorial data,
in particular when we will consider below the Rauzy-Veech continuous fraction algorithm for
i.e.m, it is convenient to give names to the components of DT (and therefore through T also
to those of DT−1). This is formalized as follow.

A marking for T is given by an alphabet A with #A = d and a pair π = (πt, πb) of one-to-one
maps

πt A → {1, . . . , d}
πb

such that, for each α ∈ A, the component of DT in position πt(α) (counting from the left) is
sent by T to the component of DT−1 in position πb(α). We summarize these combinatorial
data by writing just (

π−1
t (1) . . . π−1

t (d)
π−1
b (1) . . . π−1

b (d)

)
expressing how the intervals which are exchanged appear before and after applying T .

Two markings (A, πt, πb), (A′, π′t, π′b) are equivalent if there exists a bijection i : A → A′ with
πt = π′t ◦ i, πb = π′b ◦ i.

Clearly T determines the marking up to equivalence.

3.3 Irreducible combinatorial data

We say that combinatorial data (A, πt, πb) are irreducible if for every 1 6 k < d = #A, we
have

π−1
t ({1, . . . , k}) 6= π−1

b ({1 . . . k}).

The condition is invariant under equivalence of markings. We will always assume that the
i.e.m under consideration satisfy this property. Otherwise, if we have

π−1
t ({1, . . . , k}) = π−1

b ({1 . . . k})
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T is the juxtaposition of an i.e.m with k intervals and another with d− k, and the dynamics
of T reduce to simpler cases.

3.4 Terminology and notations

Let T : DT → DT−1 be an i.e.m on an interval I ; let (A, πt, πb) a marking for T .

The points ut1 < ut2 < . . . < utd−1 of I − DT are called the singularities of T ; the points
ub1 < ub2 < . . . < ubd−1 of I −DT−1 are called the singularities of T−1.

For each α ∈ A, we denote by I tα or just Iα the component of DT in position πt(α) (counting
from the left), and by Ibα its image by T which is also the component of DT−1 in position πb(α).

We denote by λα the common length of I tα and Ibα. The vector λ = (λα)α∈A in RA is the
length vector and will be considered as a row vector.

On the other hand, let δα be the real number such that Ibα = I tα + δα. The vector δ = (δα)α∈A
is the translation vector and will be considered as a column vector.

The length vector and the translation vector are related through the obvious formulas

δα =
∑

πb(β)<πb(α)

λβ −
∑

πt(β)<πt(α)

λβ =
∑
β

Ωαβλβ

where the antisymmetric matrix Ω is defined by

Ωαβ =


+1 if πb(β) < πb(α) and πt(β) > πt(α),

−1 if πb(β) > πb(α) and πt(β) < πt(α),

0 otherwise.

4 Suspension of i.e.m : the zippered rectangle construc-

tion

4.1 We have seen in subsection 3.1 that we come naturally to the definition of an inter-
val exchange map by considering return maps for constant vector fields on translation surfaces.

Conversely, starting from an interval exchange map T , we will construct, following Veech [Ve2]
a translation surface for which T appears as a return map of the vertical vector field. However,
as the case of the torus for rotations already demonstrates, supplementary data such as return
times are needed to specify uniquely the translation surface.
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Let T : DT → DT−1 be an i.e.m on an interval I, equipped with a marking (A, πt, πb) as above.

A vector τ ∈ RA is a suspension vector if it satisfies the following inequalities

(Sπ)
∑

πt(α)<k

τα > 0 ,
∑

πb(α)<k

τα < 0 for all 1 < k 6 d .

Define
τ canα = πb(α)− πt(α) , α ∈ A .

Then the vector τ can satisfies (Sπ) iff the combinatorial data are irreducible (an hypothesis
that we will assume from now on). When the combinatorial data are not irreducible, no vector
τ ∈ RA satisfies (Sπ).

4.2 A simple version of the construction

Let T as above ; we assume that the combinatorial data are irreducible and use the notations
of subsection 3.4. Let also τ ∈ RA be a suspension vector.

We will construct from these data a translation surface (M,Σ, κ, ζ). We first give a simple
version of the construction that unfortunately is not valid for all values of the data.

We identify as usual R2 with C and set ζα = λα + iτα for α ∈ A.

Consider the “top” polygonal line connecting the points 0, ζπ−1
t (1), ζπ−1

t (1) + ζπ−1
t (2), . . .,

ζπ−1
t (1) + ζπ−1

t (2) + . . .+ ζπ−1
t (d) and the “bottom” polygonal line connecting the points 0, ζπ−1

b (1),

ζπ−1
b (1) + ζπ−1

b (2), . . . , ζπ−1
b (1) + ζπ−1

b (2) + . . . + ζπ−1
b (d). Observe that both lines have the same

endpoints and that, from the suspension condition (Sπ), all intermediary points in the top
(resp. bottom) line lie in the upper (resp. lower) half-plane.

When the two lines do not intersect except from their endpoints, their union is a Jordan curve
and we can construct a translation surface as follows : denoting by W the closed polygonal
disk bounded by the two lines, we identify for each α ∈ A the ζα side of the top line with
the ζα side of the bottom line through the appropriate translation and define M to be the
topological space obtained from W with this identifications. The finite subset Σ is the image
of the vertices of W .

Exercise : Check that M is indeed a compact oriented topological surface.

The atlas defining the translation surface structure is obvious : besides the identity map on
the interior of W , we use charts defined on neighbourhoods of the interiors of the ζα sides
which have been identified.
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Condition (ii) in the definition of a translation surface and ramification indices will be dis-
cussed below.

This construction is very easy to visualize, and the non intersection condition is frequently

satisfied : for instance when
∑
α

τα = 0 (in particular for τ = τ can), or when λπ−1
t (d) = λπ−1

b (d).

Unfortunately, it is not always satisfied. For instance, taking for combinatorial data (with
A = {A,B,C,D}),

π = (πt, πb) =

(
A B D C
D A C B

)
,

we may have ζA = 1 + i, ζB = 3 + 3i, ζC = ε+ i, ζD = 3−3i with ε > 0. Then the suspension
condition (Sπ) is satisfied but the two lines intersect non trivially when 0 < ε < 1.

4.3 Zippered rectangles

Let T, λ, τ, ζ = λ + iτ as above. The length vector and the translation vector δ are related
through.

δ = Ωtλ .

We define
h = −Ωtτ ,

θ = δ − ih = Ωtζ .

We consider here λ, τ as row vectors in RA, ζ as a row vector in CA, δ, h as column vectors in
RA and θ as a column vector in CA.

Exercise : Check that in the construction of subsection 4.2, the ζα side of the “top line”
was identified to the ζα side of the “bottom line” through a translation by θα.

We observe that for all α ∈ A we have

hα =
∑

πtβ<πtα

τβ −
∑

πbβ<πbα

τβ

and therefore, from the suspension condition (Sπ) :

hα > 0 .

Indeed, the first sum on the right-hand side is > 0 except if πtα = 1 when it is 0 and the
second sum is < 0 except if πbα = 1 when it is 0. By irreducibility, we cannot have both
πtα = 1 and πbα = 1.

Define the rectangles in R2 = C :

Rt
α = I tα × [0, hα] ,
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Rb
α = Ibα × [−hα, 0] ,

Let ut1 < ut2 < . . . < utd−1 be the singularities of T, ub1 < ub2 < . . . < ubd−1 those of T−1. Write
also I = (u0, ud). Define, for 1 6 i 6 d− 1 :

Sti = {uti} × [0,
∑
πtα6i

τα),

Sbi = {ubi} × (
∑
πbα6i

τα, 0].

Define the points

C0 = (u0, 0), Cd = (ud,
∑
α

τα),

Ct
i = C0 +

∑
πtα6i

ζα, Cb
i = C0 +

∑
πbα6i

ζα , for 0 < i < d.

Finally, let S∗ be the closed vertical segment whose endpoints are (ud, 0) and Cd.
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Let M̂ be the union of all the elements just defined : the Rt
α, Rb

α, (α ∈ A), Sti , S
b
i , (0 < i < d),

C0, Cd, C
t
i , C

b
i , (0 < i < d) and S∗.

We use translations by θα, α ∈ A to identify some of these elements :

• We identify Rt
α and Rb

α = Rt
α + θα .

• We identify Ct
πt(α) and Cb

πb(α) = Ct
πt(α)+θα, and also Ct

πt(α)−1 and Cb
πb(α)−1 = Ct

πt(α)−1+θα;

here, we have by convention Ct
0 = Cb

0 = C0, C
t
d = Cb

d = Cd.

• finally, if Σα τα > 0, we identify by θπ−1
b (d) the top part of St

πtπ
−1
b (d)

with S∗ ; if Σα τα < 0,

we identify S∗ with the bottom part of Sb
πbπ
−1
t (d)

by θπ−1
t (d).

We denote by M the topological space deduced from M̂ by these identifications. We denote
by Σ the part of M which is the image of {C0, Cd, C

t
i , C

b
i } .

One easily checks that M is compact and that M−Σ is a topological orientable surface. Every
point in M − Σ, except those in the image of S∗ when Σ τα 6= 0, has a representative in the
interior of M̂ ; for those points, a local continuous section of the projection from M̂ onto M
provides a chart for the atlas defining the translation surface structure. We leave the reader
provide charts around points in the image of S∗.

In the next section, we complete the construction by investigating the local structure at points
in Σ : this means checking that M is indeed a topological surface, that condition (ii) in the
definition of translation surfaces is satisfied, and computing the ramification indices.

Let us however observe right now that we have indeed a suspension for the i.e.m. T on I.
The return map on the horizontal segment I × {0} (or rather its image in M) of the vertical

vector field
∂

∂y
is exactly T . The return time of I tα is equal to hα.

4.4 Ramification indices

Let C the set {Ct
i , C

b
i ; 0 < i < d} with 2d − 2 elements ; turning around points of Σ in an

anticlockwise manner, we define a “successor” map σ : C → C :

• σ(Ct
i ) = Cb

πbπ
−1
t (i+1)−1

, except if πbπ
−1
t (i+ 1) = 1 in which case σ(Ct

i ) = Cb
πbπ
−1
t (1)−1

;

• σ(Cb
j ) = Ct

πtπ
−1
b (j)

except if πtπ
−1
b (j) = d in which case σ(Cb

j ) = Ct
πtπ
−1
b (d)

.

We see that σ is a permutation of C, exchanging the Ct
i and the Cb

j . Therefore every cycle
of σ has even length.

From the very definition of σ, points of Σ are in one-to-one correspondance with the cycles of
σ. Moreover, one checks that small neighbourhoods of points of Σ are homeomorphic to disks,
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and that condition (ii) in the definition of a translation index is satisfied, the ramification
index being half the length of the corresponding cycle.

Summing up :

• The number s of points in Σ is the number of cycles of the permutation σ.

• The ramification indices κj are the half lengths of the cycles ; in particular, we have

d− 1 =
s∑
j=1

κj .

If g is the genus of the compact surface M , we also must have

2g − 2 =
s∑
i=1

(κi − 1) .

We therefore can relate d, g, s by
d = 2g + s− 1 .

4.5 Homology and cohomology of M

Consider the homology groups H1(M,Z), H1(M − Σ,Z), H1(M,Σ,Z). The first one has rank
2g, the last two have rank 2g + s− 1 = d. They are related through maps

H1(M − Σ,Z)→ H1(M,Z)→ H1(M,Σ,Z)

where the first map is onto and the second is injective.

The zippered rectangle construction provides natural bases for H1(M−Σ,Z) and H1(M,Σ,Z).

For α ∈ A, let [θα] be the image in H1(M − Σ,Z) of a path joining in the interior of M̂ the
center of Rt

α to the center of Rb
α ; and let [ζα] be the image in H1(M,Σ,Z) of a path joining

in Rt
α ∪ {Ct

πt(α)−1, C
t
πt(α)} the point Ct

πt(α)−1 to Ct
πt(α) (if πt(α) = d and Σατα < 0, the path

should be allowed to go through S∗ also).

The intersection form establishes a duality between H1(M −Σ,Z) and H1(M,Σ,Z). Now we
clearly have, for α, β ∈ A :

< [θα], [ζβ] >= δαβ ,

which shows that ([θα])α∈A, ([ζβ])β∈A are respectively bases of H1(M−Σ,Z), H1(M,Σ,Z) dual
to each other.
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Considering [θα] as classes in H1(M,Z), the intersection form now reads :

< [θα], [θβ] >= Ωβα ,

Indeed, writing [θα] for the image of [θα] in H1(M,Σ,Z), we have

[θα] =
∑
β

Ωαβ[ζβ]

which shows in particular that
rk Ω = 2g .

Going to cohomology, we have maps

H1(M,Σ,Z)→ H1(M,Z)→ H1(M − Σ,Z)

(and similar maps with real and complex coefficients) where the first map is onto and the
second is injective.

The holomorphic 1−form ω associated to the translation surface structure determines by
integration a class [ω] ∈ H1(M,Σ,C) (this will be studied in more details and generality in
section 6 below). One has

< [ω], [ζα] >= ζα ,

< [ω], [θα] >= θα ,

where [ω] is the image of [ω] in H1(M − Σ,C).

Therefore the vectors λ, τ can be considered as elements of H1(M,Σ,R), the vector ζ = λ+ iτ
as an element of H1(M,Σ,C). The vectors δ, h can be considered as elements of H1(M−Σ,R) ;
they actually belong to the image of H1(M,R) into H1(M −Σ,R) because they vanish on the
kernel of the map from H1(M −Σ,Z) to H1(M,Z). Similarly, θ = δ− ih belongs to the image
of H1(M,C) into H1(M − Σ,C).

Finally, the area of the translation surface M is given by

A =
∑
α

λα hα = τ Ω tλ .
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5 Representability, minimality, connections

5.1 We have seen in subsection 3.1 that for any translation surface, the return map of the
vertical vector field on any horizontal segment is an interval exchange map. In the zippered
rectangle construction, the horizontal segment I × {0} is wide enough to intersect all orbits
of the vertical vector field.

Already in the case of the torus, when the vertical vectorfield has rational slope with respect
to the lattice, it is clear that a short enough horizontal segment will not intersect all orbits. In
higher genus, the same can happen even when the vertical vector field has no periodic orbits,
as the following construction shows.

Let Λ1,Λ2 be two lattices in R2 with no non zero vertical vectors ; let Ti = R2/Λi ; choose
on each Ti two vertical segments [Ai, Bi] of the same length. Slit Ti along [Ai, Bi] and glue
isometrically the left side of [A1, B1] to the right side of [A2, B2] and vice-versa. We obtain a
compact oriented surface M of genus 2, with two marked points A (image of A1, A2) and B
(image of B1, B2) ; the canonical translation surface structures on T1, T2 generate a translation
surface structure on (M, {A,B}) with ramification indices κA = κB = 2. The vector field has
no periodic orbit in view of the hypothesis on Λ1,Λ2 but obviously any small horizontal seg-
ment in T1 not intersecting [A1, B1] will only intersect the orbits of the vectorfield contained
in T1.

Even when an horizontal segment intersects all orbits of the vertical vectorfield, the number
of intervals in the i.e.m obtained as return map depends on the segment.

Exercise For a torus with one marked point and a minimal vertical vectorfield, show that
the return map on a horizontal segment starting at the marked point is an i.e.m with 2 or
3 intervals. Find necessary and sufficient conditions for the return map to have only 2 intervals.

5.2 In order to understand which translation surfaces can be obtained via the zippered
rectangle construction, the following lemma is useful.

Let (M,Σ, κ, ζ) be a translation surface. Denote by (ΦV
t ), resp. (ΦH

t ), the flow of the vertical,
resp. horizontal, vectorfield.

Let x0 ∈M − Σ a point of period T for the vertical vectorfield.

Lemma There exists a maximal open bounded interval J around 0 such that for s ∈ J , the
vertical flow ΦV

t (ΦH
s (x0)) is defined for all times t ∈ R. One has

ΦV
t+T (ΦH

s (x0)) = ΦV
t (ΦH

s (x0)),

for s ∈ J, t ∈ R, and the map
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J × R/TZ→M

(s, t) 7→ ΦV
t (ΦH

s (x0))

is injective. The compact set

Z+ = lim
s↗sup J

{ΦV
[0,T ](Φ

H
s (x0))}

is a finite union of points of Σ and vertical connections between them. The same holds for

Z− = lim
s↘inf J

{ΦV
[0,T ](Φ

H
s (x0))}.

The image ΦV
[0,T ](Φ

H
J (x0)) is called the cylinder around the periodic orbit of x0. Its bound-

ary in M is Z+ ∪ Z−.

Proof : Let J be an open bounded interval around 0 such that ΦH
s (x0) is defined for s ∈ J

and ΦV
t (ΦH

s (x0)) is defined for all t ∈ R, s ∈ J . Any J small enough will have this property.
Moreover, we must have

ΦV
T (ΦH

s (x0)) = ΦH
s (x0)

for all s ∈ J because the set of s with this property contains 0 and is open and closed in J .
The map

J × R/TZ→M
(s, t) 7→ ΦV

t (ΦH
s (x0))

must be injective : if we had

ΦV
t0

(ΦH
s0

(x0)) = ΦV
t1

(ΦH
s1

(x0)),

then either s0 = s1 , 0 < t1 − t0 < T would contradict that T is the minimal period of x0 or
s0 < s1 would imply that

ΦV
[0,T ](Φ

H
[s0,s1](x0))

is open and closed in M , hence equal to M , contradicting that Σ is non empty.

The injectivity gives a bound on the length of J , namely

|J | 6 AT−1
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where A is the area of M . This bound means that there exists indeed a maximal bounded
open interval with the required properties. The maximality in turn implies that the set Z+

must meet Σ (otherwise ΦH
sup J(x0) is defined and of period T for the vertical flow), and thus

is a finite union of points of Σ and vertical connections between them. Similarly for Z−.
�

5.3 Proposition Let (M,Σ, κ, ζ) be a translation surface, and S be an open bounded hor-
izontal segment in M . Assume that S meets every vertical connection (if any). Then, either
every infinite half-orbit of the vertical vectorfield meets S, or there is a cylinder containing
every (infinite) orbit of the vertical vectorfield not meeting S.

Proof : Denote by TS the return map of the vertical vectorfield to S, by Φt the flow of the
vertical vectorfield. Let ut be a singularity of TS, J the component of the domain of TS to the
left of ut, tJ the return time to S in J . For 0 6 t 6 tL(ut) := tJ , let

ΦL
t (ut) = lim

x↗ut
Φt(x).

In the same way we define a right-limit ΦR
t (ut), 0 6 t 6 tR(ut), and, for a singularity ub of T−1

S ,
we define left and right limits ΦL

t (ub),ΦR
t (ub) (for negative time intervals 0 > t > tL(ub), 0 >

t > tR(ub) respectively).

Claim The sets XL = [
⋃
ut ΦL

[0,tL(ut)](u
t) ]

⋃
[
⋃
ub ΦL

[tL(ub),0]
(ub) ] and

XR = [
⋃
ut ΦR

[0,tR(ut)] (ut) ]
⋃

[
⋃
ub ΦR

[tR(ub),0]
(ub) ] are equal.

Proof : Let ut be a singularity of TS. We prove that ΦL
[0,tL(ut)](u

t) is contained in XR. The
claim then follows by symmetry. We distinguish two cases.

a) Assume first that lim
x↗ut

TS(x) is not the right endpoint of S. Then, it is a singularity ub of

T−1
S . As S meets every vertical connection, the set ΦL

[0,tL(ut)] (ut) contains exactly one point

of Σ, say ΦL
t∗(u

t). Then ΦL
[0,t∗] (ut) is equal to ΦR

[0,t∗] (ut), and ΦL
[t∗,tL(ut)] (ut) is contained in

ΦR
[tR(ub),0]

(ub).

b) Assume now that lim
x↗ut

TS(x) = u∗ is the right endpoint of S. Then ub = lim
x↗u∗

TS(x) is a sin-

gularity of T−1
S . Again, as S meets every vertical connection, the union

ΦL
[0,tL(ut)] (ut) ∪ ΦL

[tL(ub),0]
(ub) contains at most one point of Σ, and it is contained in

ΦR
[0,tR(ut)] (ut) ∪ ΦR

[tR(ub),0]
(ub) . �

End of proof of proposition : Let X be the union, over the components J of the domain pf TS,
of the Φ[0,tJ ](J) (with tJ the return time to S on J) ; let X̂ be the union of X and XL = XR.

As XL = XR, X̂ ∩ (M − Σ) is open in M − Σ. There are now two possibilities.

a) the return map TS does not coincide with the identity in the neighbourhood of either end-

point of S. Then, the set X̂ is easily seen to be also closed in M . Therefore X̂ = M and every
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infinite half-orbit of the vertical vectorfield meets S.

b) The return map TS coincides with the identity in the neighbourhood of at least one of the
endpoints of S. Let Y be the cylinder containing the corresponding periodic orbits. As the
boundary of Y is made of vertical connections and points of Σ, it is contained in X̂. Then
X̂ ∪ Y must be equal to M and the second possibility in the statement of the proposition
holds. �

5.4 Corollary If the vertical vectorfield on a translation surface has no connection, it is
minimal : every infinite half orbit is dense.

Proof : Otherwise there exists an open bounded horizontal segment S which does not meet
every infinite vertical half-orbit. By the proposition, there would exist a cylinder containing
these orbits ; but this is also not possible, since the boundary of a cylinder contains a vertical
connection. �

5.5 Corollary Let (M,Σ, κ, ζ) be a translation surface and S be an open bounded horizontal
segment. Assume that
(H1) S meets every vertical connection (if any).
(H2) The left endpoint of S is in Σ.
(H3) The right endpoint of S either belongs to Σ, or to a vertical separatrix segment which
does not meet S.

Then the translation surface is isomorphic to the one constructed from the return map TS by
the zippered rectangle construction with appropriate suspension data.

Proof : Applying the proposition in 5.3, we see that the second possibility in the statement of
the proposition is forbidden by the hypothesis (H2) and therefore S meets every infinite half-
orbit of the vertical vectorfield. Therefore, every ingoing separatrix of the vertical vectorfield
meets S ; the intersection point which is closest (on the separatrix) to the marked point is a
singularity of TS and we obtain in this way a one-to-one map between ingoing separatrices of
the vertical vectorfield and singularities of TS ; in the same way, there is a natural one-to-one
correspondence between outgoing separatrices and singularities of T−1

S . The vertical lengths
of the corresponding separatrices segments determine the suspension data. It is now a di-
rect verification, which we leave to the reader, to check that our translation surface is indeed
isomorphic to the one obtained from these suspension data by the zippered rectangle construc-
tion. �

5.6 Proposition Let (M,Σ, κ, ζ) be a translation surface and let S∞ be an outgoing sep-
aratrix of the horizontal vectorfield. If either the horizontal or the vertical vectorfield has no
connection, then some initial segment S of S∞ satisfies the hypotheses (H1), (H2), (H3) of
Corollary 5.5

Proof : First assume that there is no vertical connection. Then any initial segment S of S∞
satisfies (H1) and (H2).Let S̃ be some initial segment of S∞, and S ′ be some vertical separa-

19



trix ; as there is no vertical connection, S ′ is dense, and therefore intersects S̃. Let B be the
intersection point closest along S ′ to the point of Σ at the end of S ′ ; the initial segment S of
S∞ with right endpoint B satisfies (H1) , (H2) and (H3).

Assume now that there is no horizontal connection. Then S∞ is dense. As there are only
finitely many vertical connections, every initial segment S of S∞ which is long enough satisfies
(H1), and also (H2). Let S ′ be a short enough vertical separatrix segment ; if the initial

segment S̃ of S∞ is long enough it will intersect S ′, but only after having met all vertical
connections ; again we cut S̃ at the intersection point with S ′ which is closest to the marked
point at the end of S ′. We get an initial segment S of S∞ which satisfies (H1), (H2) and
(H3). �

5.7 We reformulate Corollary 5.4. in the context of i.e.m.

Definition A connection for an i.e.m. T on an interval I is a triple (m,ut, ub) where m is a
non negative integer, ut is a singularity of T , ub is a singularity of T−1, such that

Tm(ub) = ut .

Theorem (Keane [Kea1]) If an i.e.m. has no connection, it is minimal : every half-
orbit is dense.

Proof : Choose suspension data, construct a translation surface by the zippered rectangle con-
struction ; the vertical vectorfield has no connection because the i.e.m. does not have either ;
thus it is minimal and the same holds for the i.e.m. �

5.8 In this context, the following result of Keane is also relevant.

Proposition If the coordinates of the length vector of an i.e.m. are rationally independent,
it has no connection.

Proof : Choose suspension data, construct a translation surface by the zippered rectangle con-
struction. We use the notations of 4.5. If the i.e.m. had a connection, the vertical vectorfield
on the translation surface would have a connection which we could express as a linear combi-
nation Σ nα[ζα] in H1(M,Σ,Z) with integer coefficients. Integrating against the holomorphic
1-form, we have Σ nα λα = 0 but Σ nατα 6= 0, a contradiction. �

Exercise For d = 2 , T is minimal iff there is no connection, anf iff the lengths of the
intervals are rationally independent. For d > 3, show that there exists T minimal but having
a connection, and also T with no connection but lengths data rationally dependent.

6 The Teichmüller space and the Moduli space

6.1 The Teichmüller space
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Let M be a compact orientable topological surface, Σ a finite non-empty subset, κ a set of
ramification indices.

We denote by Diff(M,Σ) the group of homeomorphisms of M fixing each point of Σ, by
Diff+(M,Σ) the subgroup of index 2 formed of orientation preserving homeomorphisms, by
Diff0(M,Σ) the neutral component of Diff(M,Σ), by Mod(M,Σ) the modular group (or
mapping class group) Diff(M,Σ)/Diff0(M,Σ), and by Mod+(M,Σ) the subgroup (of index 2)
Diff+(M,Σ)/Diff0 (M,Σ) .

The group Diff(M,Σ) acts on the set of translation surface structures on (M,Σ, κ) : if ζ = (ϕα)
is an atlas defining such a structure, f∗ζ is the atlas (ϕα ◦ f−1) (for f ∈ Diff(M,Σ)).

Definition The Teichmüller space Q(M,Σ, κ) is the set of orbits of the action of Diff0(M,Σ)
on the set of translation surface structures on (M,Σ, κ).

6.2 Topology on Q(M,Σ, κ)

We will fix once and for all a universal cover

p : (M̃, ∗)→ (M,A1)

where A1 is the first point of Σ.

Given a translation surface structure ζ on (M,Σ, κ), we define an associated developing map

Dζ : (M̃, ∗)→ (C, 0)

by integrating from ∗ the 1-form p∗ω, where ω is the holomorphic 1-form determined by ζ.

Conversely, the developing map determines ζ. The set of translation surface structures on
(M, ζ, κ) can therefore be considered as a subset of C(M̃,C) ; we equip this set with the
compact-open topology, the set of translation surface structures with the induced topology,
and the Teichmüller space Q(M,Σ, κ) with the quotient topology.

6.3 The period map

Let ζ be a translation surface structure on (M,Σ, κ), ω be the associated holomorphic 1-form,
γ a relative homology class in H1(M,Σ,Z). As ω is closed, the integral

∫
γ
ω is well-defined.

Moreover, if f is an homeomorphism in Diff0(M,Σ), f acts trivially on H1(M,Σ,Z), therefore
the map

ζ 7→ (γ →
∫
γ

ω)

is constant on orbits of Diff0(M,Σ) and defines a map
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Θ : Q(M,Σ, κ)→ Hom(H1(M,Σ,Z),C)

called the period map. Here, we will generally identify in the right-hand side Hom(H1(M,Σ,Z),C)
with the cohomology group H1(M,Σ,C).

The importance of the period map lies in the following property.

Proposition The period map is a local homeomorphism.

The proposition will be proved in section 6.5

6.4 Action of GL(2,R) on Teichmüller space

Let ζ = (ϕα) be an atlas defining a translation surface structure on (M,Σ, κ), and let g be an
element of GL(2,R) acting on R2 ' C.

Consider the atlas g∗ζ = (g ◦ ϕα) ; because the conjugacy of a translation by an element
of GL(2,R) is still a translation, the atlas g∗ζ defines another translation surface structure
on (M,Σ, κ) and we have thus a left action of GL(2,R) on the space of translation surface
structures.

It is clear that this action commutes with the action of the group Diff(M,Σ). In particular,
it defines a left action of GL(2,R) on the Teichmüller space Q(M,Σ, κ).

One easily checks that this action is continuous.

Regarding the period map Θ, the groupGL(2,R) acts on the right-hand side Hom(H1(M,Σ,Z),C)
by acting on the target C = R2. The period map is then covariant with respect to the actions
of GL(2,R) on the source and the image.

It is to be noted that the subgroup SO(2,R) preserves some of the auxiliary structures asso-
ciated to a translation surface structure : the complex structure is invariant, the holomorphic
1-form is replaced by a multiple of modulus 1, the flat metric is preserved as is the associ-
ated area. The group SO(2,R) acts transitively on the set of constant unitary vectorfields ;
therefore, every result proved for the vertical vectorfield is valid for a non constant unitary
vectorfield. Actually, if we use the full action of GL(2,R), we see that in section 5 we can re-
place the vertical and horizontal vectorfield by any two non-proportional constant vectorfields
on the translation surface.

6.5 Proof of proposition 6.3

We first observe that the period map is continuous : this follows immediately from the defini-
tion of the topology on Teichmüller space. To study the properties of Θ in the neighbourhood
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of a point [ζ] in Q(M,Σ, κ), we may assume that the translation structure ζ has no vertical
connection ; otherwise, we could replace ζ by R∗ζ for some appropriate R ∈ SO(2,R) and use
the covariance of the period map.

Then we know that the translation surface structure ζ can be obtained by the zippered rect-
angle construction from some i.e.m. T on some interval I.

Because the conditions on the length data λ and the suspension data τ in the zippered rect-
angle construction are open, the period map, expressed locally by (λ, τ), is locally onto.

It remains to be seen that the period map is locally injective, with continuous inverse.

In the zippered rectangle construction, we will always assume (by choosing the horizontal
separatrix S∞ appropriately in proposition 5.6) that the first marked point A1 of Σ is the left
endpoint of the interval I. The surface M was obtained in section 4.3 from some explicitly
defined subset M̂ of C, depending only on π, λ and τ . We can lift M̂ to a (connected) subset

M̂ζ of M̃ (with the left endpoint of I lifted to ∗) with the property that the developing map

Dζ is an homeomorphism from M̂ζ onto M̂ .

If ζ0, ζ1 are two translation surface structures close to ζ with the same image by the period
map, the subset M̂ of C will be the same for ζ0 and ζ1. There will be a unique homeomorphism
h : M̂ζ0 → M̂ζ1 such that Dζ0 = Dζ1 ◦ h on M̂ζ0 . It is easily checked that h extends uniquely

as a homeomorphism of (M̃, ∗) still satisfying Dζ0 = Dζ1 ◦ h, and that extension is the lift of
an homeomorphism of M . This proves that [ζ0] = [ζ1] in Teichmüller space. This proves local
injectivity of the period map ; the continuity of local inverses is proven along the same lines
and left to the reader. �

6.6 Geometric structures on Teichmüller space

First, we can use the locally injective restrictions of the period map as charts defining a struc-
ture of complex manifold of complex dimension d = 2g + s− 1.

This complex manifold will also be equipped with a canonical volume form. Indeed, we can nor-
malize Lebesgue measure on Hom(H1(M,Σ,Z),R2) by asking that the lattice
Hom(H1(M,Σ,Z),Z2) has covolume 1. We then lift by the period map this canonical vol-
ume to Teichmüller space.

6.7 Examples and remarks

Let us consider the case g = s = 1 of the torus T with a single marked point {A1}. Fix a
basis [ζ1], [ζ2] for the homology group H1(T, {A1},Z).

In this case, the period map is injective and allows to identify the Teichmüller space with its
image. The image of the period map is
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Q(T, {A1}, 1) = {(ζ1, ζ2) ∈ (C∗)2, ζ2/ζ1 /∈ R} .

The two components of Q(T, {A1}, 1) correspond to the two possible orientations. Restrict-
ing to Im ζ2/ζ1 > 0, the map (ζ1, ζ2)→ ζ2/ζ1 presents Q(T, {A1}, 1) as fibered over the upper
half-plane H (representing the classical Teichmüller space of T ) with fiber C∗ (representing
the choice of a non-zero holomorphic 1-form).

Remarks 1. For g > 2, the period map is not injective. Indeed, let γ be a loop on M which
is homologous but not homotopic to 0. We assume that γ ∩ Σ = ∅. Let then f be a Dehn
twist along γ ; this can be constructed fixing each point of Σ and thus defining an element of
Diff(M,Σ).

If ζ is any translation surface structure on (M,Σ, κ), f∗ζ and ζ will have the same image by
the period map because f induces the identity on H1(M,Σ,Z). On the other hand, ζ and f∗ζ
represent different points in Teichmüller space : indeed, we will see that [fn∗ ζ] goes to ∞ in
Teichmüller space as n goes to ±∞ in Z.

2. Regarding the relation to “classical” Teichmüller theory classifying the com-
plex structures on compact surfaces, consider the two extremal cases.

Take first s = 2g − 2, κ1 = κ2 = . . . = κs = 2 ; this means that the holomorphic 1-form
associated with the translation surface structure has only simple zeros, the generic situation
for an holomorphic 1-form. The Teichmüller space Q(M,Σ, κ) of dimension 2g+s−1 = 4g−3
is fibered over the “classical” Teichmüller space of dimension 3g − 3 ; the fiber of dimension
g corresponds to the choice of the holomorphic 1-form (which form a g-dimensional vector
space; however, one has to exclude the zero form and those having multiple zeros).

Consider now the case s = 1, κ1 = 2g − 2 ; this means that the holomorphic 1-form has a
single zero of maximal multiplicity ; when g > 3, not all Riemann surfaces of genus g admit
such an holomorphic 1-form. Indeed the Teichmüller space has dimension 2g+ s− 1 = 2g and
the scaling of the holomorphic 1-form corresponds to 1 dimension, hence Q(M,Σ, κ) is fibered
over a subvariety of “classical” Teichmüller space of codimension > g − 2.

6.8 Normalizations

6.8.1 Normalization of orientation

It is generally convenient to fix an orientation of the orientable topological surface M and then
to consider only those translation surface structures ζ on (M,Σ, κ) which are compatible with
the given orientation. The groups Diff+(M,Σ) and GL+(2,R) act on this subset. We denote
by Q+(M,Σ, κ) the corresponding subset of Teichmüller space.

6.8.2 Normalization of area

24



Given a translation surface structure ζ compatible with a chosen orientation, let A(ζ) be the
surface of M for the area-form ( on M − Σ ) induced by ζ. It is clear that the function A is
invariant under the action of Diff+(M,Σ) and therefore induces a function still denoted by A
on the Teichmüller space Q+(M,Σ, κ).

We will write Q(1)(M,Σ, κ) for the locus {A = 1} in Q+(M,Σ, κ)). As A is a smooth submer-
sion, Q(1)(M,Σ, κ) is a codimension 1 real-analytic submanifold of Q+(M,Σ, κ).

If [ζ] ∈ Q+(M,Σ, κ) and g ∈ GL+(2,R), we have

A(g∗[ζ]) = detg A([ζ]) .

In particular, Q(1)(M,Σ, κ) is invariant under the action of Diff+(M,Σ) and SL(2,R).

Let µ be the canonical volume form on Q+(M,Σ, κ). We write

µ = µ1 ∧
dA

A
;

then µ1 induces on Q(1)(M,Σ, κ) a canonical volume form which is invariant under the action
of Diff+(M,Σ) and SL(2,R).

6.9 The moduli space

The discrete group Mod(M,Σ) acts continuously on the Teichmüller space Q(M,Σ, κ).

Definition The moduli space is the quotient

M(M,Σ, κ) := Q(M,Σ, κ) / Mod(M,Σ) .

The normalized moduli space is the quotient

M(1)(M,Σ, κ) := Q(1)(M,Σ, κ) / Mod+(M,Σ) .

The action of the modular group Mod(M,Σ) on Q(M,Σ, κ) is proper but not always free, as
we explain below. This means that the moduli space is an orbifold (locally the quotient of a
manifold by a finite group) but not (always) a manifold.

To see that the action is proper, consider as above a universal cover p : (M̃, ∗) → (M,A1).

Let Σ̃ = p−1(Σ). Given a translation surface structure ζ, we can lift the flat metric defined by

ζ to M̃ and consider the distance dζ on Σ̃ induced by this metric (as length of shortest path).
It is clear that this distance only depends on the class of ζ in Teichmüller space. If ζ, ζ ′ are
two translation surface structures, the distances dζ , dζ′ on ζ̃ are quasiisometric : there exists
C > 1 such that
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C−1dζ(B,B
′) 6 dζ′(B,B

′) 6 C dζ(B,B
′)

for all B,B′ ∈ Σ̃. We write C(ζ, ζ ′) for the best constant C.

Exercise Prove that a subset X ⊂ Q(M,Σ, κ) is relatively compact iff (given any
ζ0 ∈ Q(M,Σ, κ)) the quantities C(ζ, ζ0), ζ ∈ X, are bounded.

The distances dζ have the property that any ball of finite radius only contain finitely many

points. On the other hand, the modular group Mod(M,Σ) acts on Σ̃, and there exists a finite

subset Σ̃0 of Σ̃ such that, for any finite subset Σ̃1 of Σ̃, the set {g ∈ Mod(M,Σ), g(Σ̃0) ⊂ Σ̃1}
is finite. Using the compactness criterion given by the exercise, it is easy to conclude that the
action is proper.

To see that the action is not always free, it is sufficient to construct a translation surface with
a non trivial group of automorphisms.

Start with an integer k > 2 and k copies of the same translation torus T with two marked
points A,B. Denote by Ti, Ai, Bi the ith copy, 1 6 i 6 k. Slit Ti along a geodesic segment
AiBi (the same for all i). For each i, glue isometrically the left side of AiBi in Ti to the right
side of Ai+1Bi+1 ( with (Tk+1, Ak+1, Bk+1) = (T1, A1, B1)). One obtains a translation surface
of genus k with 2 marked points of ramification index k and an obvious automorphism group
cyclic of order k.

6.10 Marked translation surfaces and marked moduli space

From the point of view of the zippered rectangles construction, it is more convenient to con-
sider translation surfaces with an additional marking.

Indeed, if the construction starts from an i.e.m. T on an interval I, we have said above that
we always take the left endpoint of I as the first marked point A1 of the set Σ on the surface
M . But the interval I itself appears on the surface as an outgoing separatrix of the horizontal
vector field.

Definition A marked translation surface is a translation surface (M,Σ, κ, ζ) with a
marked outgoing horizontal separatrix coming out of A1.

Obviously, we require that an isomorphism between marked translation surfaces should re-
spect the marked horizontal separatrices. We can then define a Teichmüller space Q̃(M,Σ, κ)
of marked translation surfaces. It is a κ1-fold cover of Q(M,Σ, κ), because there are κ1 possi-
ble choices for an horizontal separatrix out of A1. In particular, when κ1 = 1, the marking is
automatic and Q̃(M,Σ, κ) = Q(M,Σ, κ).

On the other hand, it is quite obvious that a marked translation surface cannot have an auto-
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morphism distinct from the identity. Therefore, the modular group Mod(M,Σ) acts freely on

Q̃(M,Σ, κ) and the quotient space, that we denote by M̃(M,Σ, κ), is now a complex manifold.
This moduli space is a κ1-fold ramified covering of the moduli spaceM(M,Σ, κ). Normalizing

orientation and area gives a codimension 1 real-analytic submanifold M̃(1)(M,Σ, κ).

6.11 In the following sections, we will present the proofs of the following results, ob-
tained independently by H. Masur [Ma] and W. Veech [Ve2].

Theorem 1 Almost all i.e.m. are uniquely ergodic.

The combinatorial data are here fixed and “almost all” refer to the choice of length data ac-
cording to Lebesgue measure.

Theorem 2 The normalized moduli space M̃1(M,Σ, κ) has finite volume. The action of
the group SL(2,R) on it is ergodic.

We will follow the approach of W. Veech [Ve5]. The Teichmüller flow on the moduli space

M̃(1)(M,Σ, κ) is the restriction of the action of SL(2,R) to the 1-parameter diagonal subgroup(
et 0
0 e−t

)
. The ergodicity of the action will follow from the ergodicity of this flow (stronger

properties of this flow will be presented in later sections).
Let us consider what happens in the simple case g = s = 1. Then, the normalized Te-

ichmüller space is Q(1)(M,Σ, κ) = SL(2,R), the modular group Mod+(M,Σ) is SL(2,Z), the
normalized moduli space is the space of normalized lattices SL(2,R) / SL(2,Z) which has unit
area and on which SL(2,R) obviously acts transitively. The Teichmüller flow is essentially the
geodesic flow on the modular surface. It is well known that this flow is closely related to the
classical continuous fraction algorithm. G. Rauzy and W. Veech, introduced a renormalization
algorithm for i.e.m., later refined by A. Zorich, which plays the role of the classical contin-
uous fraction algorithm for more than 2 intervals. This will be the subject of the next sections.

7 The Rauzy-Veech algorithm

7.1 The aim of the Rauzy-Veech algorithm ([Rau],[Ve1],[Ve2]), to be defined below, is to
understand the dynamics of an i.e.m. by looking at the return map on shorter and shorter
intervals. What makes this general “renormalization” method available is the fact that the
return maps are still i.e.m. with bounded combinatorial complexity : actually, by choosing
the small intervals carefully, they have the same number of singularities than the i.e.m. we
started with.

7.2 Definition of one step of the algorithm

Let T be an i.e.m. on an interval I, with irreducible combinatorial data (A, πt, πb).
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Let d = #A; let ut1 < . . . < utd−1 be the singularities of T , ub1 < . . . < ubd−1 be the singularities
of T−1.

The step of the algorithm is defined for T if utd−1 6= ubd−1. Observe that if utd−1 = utd−1, then
(0, utd−1, u

b
d−1) is a connection for T (see subsection 5.7).

When utd−1 6= ubd−1, we define Ĩ to be the open interval with the same left endpoint than I
and right endpoint equal to max(utd−1, u

b
d−1).

Let T̃ be the return map of T to Ĩ.
To understand T̃ , let us introduce the letters αt, αb satisfying πt(αt) = πb(αb) = d which
correspond to the intervals at the right of I before and after applying T . The hypothesis
utd−1 6= ubd−1 corresponds to λαt 6= λαb . We distinguish two cases.

1) ubd−1 > utd−1 ⇐⇒ λαt > λαb .

We say that αt is the winner and αb is the loser of this step of the algorithm, and that the
step is of top type.

We have in this case

T̃ (x) =

{
T (x) if x /∈ I tαb
T 2(x) if x ∈ I tαb

We use the same alphabet to label the intervals of T̃ ; we define :

Ĩ tα = I tα for α 6= αt ,

Ĩ tαt = I tαt ∩ Ĩ = (utd−1, u
b
d−1) ,

Ĩbα = Ibα for α 6= αb, αt ,

Ĩbαb = T (Ibαb) ,

Ĩbαt = Ibαt/Ĩ
b
αb
.

The new length data are given by

λ̃α =

{
λα if α 6= αt

λαt − λαb if α = αt .

The new combinatorial data are given by

π̃t = πt ;
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π̃b(α) =


πb(α) if πb(α) 6 πb(αt),

πb(αt) + 1 if α = αb ,

πb(α) + 1 if πb(αt) < πb(α) < d .

2) utd−1 > ubd−1 ⇐⇒ λαb > λαt .

We now say that αb is the winner, αt the loser, and the step is of bottom type. We have

T̃−1(x) =

{
T−1(x) if x /∈ Ibαt

T−2(x) if x ∈ Ibαt

(we could also write the formulas for T̃ ; we prefer to write them for T̃−1 in order to keep
more obvious the bottom/top time symmetry of the setting). The new labelling is

Ĩbα = Ibα for α 6= αb ,

Ĩbαb = Ibαb ∩ Ĩ = (ubd−1, u
t
d−1) ,

Ĩ tα = I tα for α 6= αt, αb ,

Ĩ tαt = T−1(I tαt) ,

Ĩ tαb = I tαb/Ĩ
t
αt .

The new length data are given by

λ̃α =

{
λα if α 6= αb

λαb − λαt if α = αb .

The new combinatorial data are given by

π̃b = πb ;

π̃t(α) =


πt(α) if πt(α) 6 πt(αt),

πt(αb) + 1 if α = αt ,

πt(α) + 1 if πt(αb) < πt(α) < d .
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Exercise Show that the combinatorial data (π̃t, π̃b) for T̃ are irreducible.

Exercise Show that if T has no connection, then T̃ also has no connection.

This means that for i.e.m. with no connections, it is possible to iterate indefinitely the
algorithm ; the converse is also true, see below.

Exercise Check that the return map of T on an interval I ′ with the same left endpoint
than I and |Ĩ| < |I ′| < |I| is an i.e.m with d+ 1 intervals.

In the case of 2 intervals, there is only one possible set of irreducible combinatorial data and
the algorithm is given by

(λA, λB) 7−→

{
(λA − λB, λB) if λA > λB,

(λA, λB − λA) if λB > λA .
,

the iteration of which gives the classical continued fraction algorithm.

7.3 Rauzy diagrams

Let A be an alphabet. For irreducible combinatorial data π = (πt, πb) , we have defined in the
last section new combinatorial data π̃ = (π̃t, π̃b) depending only on (πt, πb) and the type (top
or bottom) of the step ; we write π̃ = Rt(π) or π̃ = Rb(π) accordingly.

A Rauzy class on the alphabet A is a set of irreducible combinatorial data π = (πt, πs) which
is invariant under both Rt and Rb and minimal with this property. The associated Rauzy
diagram has the elements of this set as vertices. The arrows of the diagram join a vertex to
its images by Rt and Rb and are of top and bottom type accordingly.

The winner of an arrow of top type (resp. bottom type) starting at (πt, πb) is the letter αt
(resp. αb) such that πt(αt) = d (resp. πb(αb) = d). The loser is the letter αb (resp. αt) such
that πb(αb) = d (resp. πt(αt) = d).

Exercise Show that the maps Rt, Rb are invertible and that each vertex is therefore the
endpoint of exactly one arrow of top type and an arrow of bottom type.

Exercise Let γ, γ′ be arrows in a Rauzy diagram of the same type such that the endpoint of
γ is the starting point of γ′ ; show that γ, γ′ have the same winner.

For d = 2 or 3, there is, up to equivalence, only one Rauzy diagram pictured below.
For d = 4, there are two non-equivalent Rauzy diagrams pictured below. They correspond
respectively (see next section) to the cases g = 2, s = 1 and g = 1, s = 3.
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7.4 The basic step for suspensions

Recall from section 4.1 that for combinatorial data π = (πt, πb), suspension data (τα)α∈A must
satisfy

(Sπ)
∑

πt(α)<k

τα > 0 ,
∑

πb(α)<k

τα < 0 for all 1 < k 6 d .

We denote by Θπ the convex open cone in RA defined by these inequalities.

The main reason to consider Θπ is the following property. Set π̃ = Rt(π). Define also, for
τ ∈ RA

τ̃α =

{
τα if α 6= αt

ταt − ταb if α = αt .
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where πt(αt) = πb(αb) = d .

Lemma The linear map τ → τ̃ sends Θπ onto Θπ̃ ∩ {
∑

α τ̃α < 0} .

There is a symmetric statement exchanging top and bottom.

Proof: Let τ ∈ Θπ. As π̃t = πt, and τ̃α = τα for πt(α) < d, the first half of the conditions for
(Sπ̃) are satisfied. Let ` = πb(αt) ; for k 6 `, we have∑

π̃b(α)<k

τ̃α =
∑

πb(α)<k

τ̃α =
∑

πb(α)<k

τα < 0 .

Next we have∑
π̃b(α)6`

τ̃α =
∑

πb(α)<`

τα + ταt − ταb =
∑

πb(α)<`

τα −
∑

πt(α)<d

τα +
∑

πb(α)<d

τα < 0 ,

and for ` < k 6 d ∑
π̃b(α)6k

τ̃α =
∑

πb(α)6k−1

τα < 0 .

Conversely, let τ̃ ∈ Θπ̃ ∩ {
∑
τ̃α < 0}. Again the first half of (Sπ) is satisfied. For the second

half, we have ∑
πb(α)<k

τα =


∑

π̃b(α)<k τα if 1 < k 6 `,∑
π̃b(α)6k τα if ` < k 6 d .

Thus, condition (Sπ) is satisfied. �

Let then T be an i.e.m. on an interval I, with (irreducible) combinatorial data π = (πt, πb)
on an alphabet A. Assume that the condition λαt 6= λαb (with πt(αt) = πb(αb) = d) for

32



one step of the algorithm is satisfied. Let τ ∈ Θπ be suspension data satisfying the required
conditions (Sπ).

If the step is of top type, we define

τ̃α =

{
τα if α 6= αt

ταt − ταb if α = αt .

If the step is of bottom type, we define

τ̃α =

{
τα if α 6= αb

ταb − ταt if α = αb .

(The formulas are the same than for the length data).

We have explained in Section 4 how to construct a translation surface M(π, λ, τ) from the
given data by the zippered rectangle construction. Writing π̃ = Rt(π) or Rb(π) according to

the type of the step and writing λ̃ for the length data of T̃ as above, we construct another
translation surface M(π̃, λ̃, τ̃) from these new data.

An easily checked but fundamental observation is that M(π, λ, τ) and M(π̃, λ̃, τ̃) are canon-
ically isomorphic. This is best seen by contemplating the picture below :

M(π, λ, τ) M(π̃, λ̃, τ̃)

The canonical bases of the homology groups H1(M,Σ,Z), H1(M−Σ,Z) are related as follows :
If α0 is the winner and α1 is the loser of the step of the algorithm, one has, with the notations
of section 4.5

[ζ̃α] = [ζα] if α 6= α0 ,
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[ζ̃α0 ] = [ζα0 ]− [ζα1 ] ,

[θ̃α] = [θα] if α 6= α1 ,

[θ̃α1 ] = [θα1 ] + [θα0 ] .

7.5 Formalism for the iteration of the algorithm

Given an i.e.m. T0 on an interval I(0) with no connection and irreducible combinatorial data
(A, π(0)), the iteration of the Rauzy-Veech algorithm will produce a sequence of i.e.m. Tn on
shorter and shorter intervals I(n) with combinatorial data π(n) (on the same alphabet A ). The
sequence (π(n))n>0 represents an infinite path in the Rauzy diagram D containing π(0) which
is determined by its starting vertex π(0) and the types of the successive arrows.

To relate the length vectors and the translation vectors, as well as the suspension data that
we could associate to the i.e.m., we introduce the following matrices in SL(ZA).

Let γ be an arrow of D, with winner α and loser β. We define

Bγ = I + Eβα

where I is the identity matrix and Eβα is the elementary matrix with only one non-zero
coefficient, equal to 1, in position β α. We extend the definition to a path γ = (γ1, · · · , γn)
defining

Bγ = Bγn · · ·Bγ1 .

The matrices Bγ belong to SL(ZA) and have nonnegative coefficients.

For n > 0, let λ(n) be the length vector for Tn (considered as a row vector), let δ(n) be the
translation vector (considered as a column vector) ; for m 6 n, let γ(m,n) the finite path in
D from π(m) to π(n) determined by the algorithm. The following formulas are trivially checked
when n = m+ 1 and then extended by functoriality :

λ(m) = λ(n) Bγ(m,n) ,

δ(n) = Bγ(m,n) δ(m) .

The following interpretation of the coefficients of the matrices Bγ(m,n) is also immediately
checked by induction on n−m : for α, β ∈ A, the coefficient of Bγ(m,n) in position αβ is the

time spent in I
(m)
β by a point in I

(n)
α under iteration by Tm before coming back to I(n). In

particular, the sum over β of the row of the matrix of index α gives the return time under Tm
of I

(n)
α in I(n).

7.6 Symplecticity of Bγ
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Let γ be a finite path in a Rauzy diagram D, starting at a vertex π and ending at a vertex π′.
Let Ωπ,Ωπ′ be the matrices associated to π, π′ as in subsection 3.4. We have seen in subsection
4.5 that rk Ωπ = rk Ωπ′ = 2g, where g is the genus of the translation surface obtained by the
zippered rectangle construction from any vertex in D (and any choice of length and suspension
data).

From the relation between length and translation vectors given in subsection 3.4 and in the
last section, we obtain

Ωπ′ = Bγ Ωπ
tBγ .

From this we see that :

• B−1
γ , acting on row vectors, sends the kernel of Ωπ onto the kernel of Ωπ′ ;

• Bγ, acting on column vectors, sends the image of Ωπ onto the image of Ωπ′ ;

• if we equip the quotients RA/Ker Ωπ ' ImΩπ, RA/Ker Ωπ′ ' ImΩ′π of the symplectic
structures determined by Ωπ,Ωπ′ respectively, then Bγ (acting on column vectors) is
symplectic w.r.t these structures.

Proposition One can choose, for each vertex π of D, a basis of row vectors for Ker Ωπ such
that, for all γ : π → π′, the matrix of the restriction of B−1

γ w.r.t. the selected bases of Ker Ωπ,

Ker Ωπ′ is the identity.
In particular, if γ is a loop at π, the restriction of B−1

γ to the kernel of Ωπ is the identity.

Proof : We construct, for each vertex π of D, an isomorphism iπ from Ker Ωπ onto the same
subspace K of RA, such that iπ′ ◦ tB−1

γ = iπ for any arrow γ : π → π′. Choosing a basis for
K and transferring it to each Ker Ωπ via iπ then achieves the required property.

For 0 6 k < d, let utk, u
b
k be the linear forms on the space of row vectors defined by

utk(λ) =
∑
πtα6k

λα ,

ubk(λ) =
∑
πbα6k

λα .

For each vertex π, define linear maps itπ, ibπ of RA into itself by

itπ(λ) = (utπt(α)−1)α∈A, ibπ(λ) = (ubπb(α)−1)α∈A.

Then the map (itπ, i
b
π) : RA → RA × RA is injective and Ker Ωπ is the inverse image by this

map of the diagonal of RA×RA. Let Kπ be the image of Ker Ωπ by itπ; it is also the image by
ibπ. Let iπ be the common restriction of itπ, ibπ to Ker Ωπ.
When we perform a single step of the algorithm, corresponding to an arrow γ : π → π′, of top
type for instance, the λα with πt(α) < d and πt itself do not change, hence the utk for 0 6 k < d
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stay the same. This means that Kπ = Kπ′ and iπ′ ◦ tB−1
γ = iπ. �

7.7 Complete paths

Definitions A (finite) path in a Rauzy diagram is complete if every letter in A is the
winner of at least one arrow in the path. An infinite path in a Rauzy diagram is∞-complete
if every letter in A is the winner of infinitely many arrows in the path. Equivalently, an
∞-complete path is one can be written as the concatenation of infinitely many complete
paths.

This is a relevant notion because of the following characterization of paths associated to an
i.e.m.

Proposition 1 An infinite path in a Rauzy diagram is associated to some i.e.m. iff it is
∞-complete.

We prove first that a path associated to an i.e.m. is∞-complete, then an important auxiliary
result, and then that an ∞-complete path is associated to some i.e.m .

Proof Let A′ be the set of letters which are the winners of at most finitely many arrows
in the path γT associated to an i.e.m. T = T0.

Let (Tn)n>0 be the sequence of i.e.m. obtained from T by iterating the Rauzy-Veech algorithm,
λ(n), π(n) the length and combinatorial data of Tn.

There exists n0 such that no letter in A′ is a winner for n > n0. Then the lengths λ
(n)
α for

α ∈ A′, n > n0, are independent of n.

At each step, the length of the loser is subtracted from the length of the winner. As lengths
are always positive, there must exist n1 > n0 such that no letter in A′ is a loser for n > n1.
This means that, for α ∈ A′, both π

(n)
t (α) and π

(n)
b (α) are non-decreasing with n for n > n1,

hence there exists n2 > n1 such that these quantities are independent of n for n > n2.

Let α ∈ A′, β ∈ A − A′. We claim that π
(n2)
t (α) < π

(n2)
t (β) and π

(n2)
b (α) < π

(n2)
b (β). As

A − A′ is not empty and π(n2) is irreducible, this implies that A′ is empty, and therefore γT
is ∞-complete.

Assume by contradiction, for instance, that π
(n2)
t (β) < π

(n2)
t (α). We have π

(n)
t (α) = π

(n2)
t (α)

for n > n2, hence also π
(n)
t (β) = π

(n2)
t (β) for n > n2. Thus β is not the winner of an arrow

of top type for n > n2. As β ∈ A −A′, β is the winner of an arrow of bottom type for some
n > n2, which gives

π
(n+1)
t (α) = π

(n)
t (α) + 1,
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a contradiction. The claim is proved; this completes the proof of the first part of the proposi-
tion.

Before proving the second half of Proposition 1, we give some Corollaries of the first half.

Corollary 1 The length of the interval I(n) on which Tn acts goes to zero as n goes to +∞.

Proof : Each length λ
(n)
α is a non-increasing function of n hence has a limit λ

(∞)
α . Let ε > 0,

n0 such that λ
(n)
α 6 λ

(∞)
α + ε for all n > n0, α ∈ A.

Let β ∈ A. There exists n1 > n0 such that β is the winner of the arrow of index n1 − 1 but
not of the next arrow of index n1. Then β is the loser of the arrow of index n1. Let α be the
winner of this arrow. We have

λ(n1)
α = λ(n1−1)

α − λ(n1−1)
β ,

hence λ
(∞)
β 6 λ

(n1−1)
β 6 ε. As ε is arbitrary, we have λ

(∞)
β = 0 for all β ∈ A. �

Corollary 2 The Rauzy-Veech algorithm stops iff the i.e.m. has a connection.

Proof : We already know that the algorithm does not stop if the i.e.m. has no connection.
Assume that T has a connection (m,ut, ub) ; here ut is a singularity of T , ub a singularity of T−1

and m is a nonnegative integer such that Tm(ub) = ut. Assume that one can apply the algo-

rithm once to get an i.e.m. T̃ on an interval Ĩ ; the intersection {ub, T (ub), . . . Tm(ub) = ut}∩ Ĩ
will produce a connection (m̃, ũt, ũb) for T̃ with m̃ 6 m, and m̃ = m iff {ub, T (ub), . . . , Tm(ub)} ⊂
Ĩ. When we iterate the algorithm, the length of the interval goes to zero unless the algorithm
stops ; this must therefore happen at some point. �

Proposition 2 ([MsMmY],[Y1]) Let γ be a finite path in a Rauzy diagram that can be
written as the concatenation of 2d − 3 complete paths (where d = #A). Then all coefficients
of Bγ are positive.

Proof : Write γ = γ
1
∗ . . .∗γ

2d−3
, with each γ

i
complete, and let γ(i) = γ

1
∗ . . .∗γ

i
. Recall that

the diagonal coefficients of Bγ (for any path γ) are always positive. It is therefore sufficient
to show that, for any distinct letters α1, α0 in A, we have (Bγ(i))α0α1 > 0 for some i.

As α1 is the winner of an arrow in γ
1
, the loser of which we call α2, we have

(Bγ(1))α2α1 > 0.

When d = 2, we must have α2 = α0 and the result is achieved. Assume d > 2 and α2 6= α0.
Because γ

2
and γ

3
are complete, there exists in γ

2
∗ γ

3
an arrow with winner α3 6= α1, α2

immediately followed by an arrow with winner α1 or α2. This leads to

(Bγ(3))α3α1 > 0 .
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If d = 3, we must have α0 = α3 and we are done. If d > 3 and α3 6= α0, we go on in the same
way : there exists in γ

4
∗ γ

5
an arrow with winner α4 6= α1, α2, α3 immediately followed by an

arrow with winner α1, α2 or α3. This leads to

(Bγ(5))α4α1 > 0 .

and we go on . . . �

End of proof of Proposition 1 : We want to show that if an infinite path γ can be written as
the concatenation γ

1
∗ γ

2
∗ γ

3
. . . of complete paths, then γ is associated to some i.e.m. with

no connection by the Rauzy-Veech algorithm.

Define the convex open cone

Cn = (R∗+)ABγ
n
Bγ

n−1
. . . Bγ

1

This is the set of length data (for i.e.m having the starting point of γ as combinatorial data)
which lead to a path starting with γ

1
∗ . . . ∗ γ

n
. The set of length data corresponding to γ is

therefore
C(γ) =

⋂
n>0

Cn .

By Proposition 2, the closure of Cn+2d−3 is contained in Cn ∪ {0}. Therefore

{0} ∪ C(γ) =
⋂
n>0

Cn .

which shows that C(γ) is not empty. �

We will describe more precisely C(γ) in the next section.

8 Invariant measures

8.1 Invariant measures and topological conjugacy

Let T be an i.e.m on an interval I, with combinatorial data π = (πt, πb) on an alphabet A.
We assume that T has no connection and denote by γ = γT the infinite path associated to T
in the Rauzy diagram D of π.

Let C(γ) be the convex cone considered above ; its elements are the length data of the i.e.m
with combinatorial data π which have no connection and γ as associated path.

Let M(T ) be the set of finite measures on I invariant under T .

The sets C(γ) and M(T ) are in one-to-one correspondence as follows.
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Let λ ∈ C(γ) and let Tλ be an i.e.m with these length data (and combinatorial data π) on an
interval Iλ. Let u (resp. uλ) be the largest singularity of T−1 (resp. T−1

λ ). The sets (T n(u))n>0

and (T nλ (uλ))n>0 are dense in I and Iλ respectively because T and Tλ are minimal, having no
connection. The bijection

H : T nλ (uλ) 7−→ T n(u)

is increasing because T and Tλ have the same path for the Rauzy-Veech algorithm. Therefore
H extends uniquely to an homeomorphism from Iλ onto I, which obviously satisfies

H ◦ Tλ = T ◦H

Thus, Tλ and T are topologically conjugated. The image under H∗ of the Lebesgue measure
on Iλ is a measure on I (of total mass |Iλ|) which is invariant under T .

Conversely, let µ be a finite measure invariant under T . We set, for α ∈ A

λα = µ(I tα) = µ(Ibα) .

We also define, for x ∈ I
K(x) = µ({y ∈ I ; y < x}) .

As T is minimal, µ has no atom and the support of µ is I ; therefore, K is an homeomor-
phism from I onto (0, µ(I)) =: Iµ.

Define then
Tµ = K ◦ T ◦K−1 .

Then Tµ preserves the Lebesgue measure and it is easy to check that Tµ is an i.e.m on Iµ with
combinatorial data π and length data λ.

It is immediate to check that the two maps C(γ) → M(T ), M(T ) → C(γ) just defined are
inverse to each other.

8.2 Number of invariant ergodic probability measures.

Let T be an i.e.m on an interval I. Let g be the genus of the translation surfaces that can be
constructed from T by the zippered rectangle construction. Let M(T ) be the cone of finite
invariant measures for T , which can be identified with the cone C(γ) determined by the infinite
path γ associated to T by the Rauzy-Veech algorithm.

Proposition The cone C(γ) ∪ {0} is a closed simplicial cone of dimension 6 g. The
number of invariant ergodic probability measures is therefore 6 g.

Proof : We have seen in the second part of the proof of Proposition 1 in Section 7.7 that
C(γ) ∪ {0} is a closed cone. That this closed cone is simplicial follows from the identifica-
tion of C(γ) with M(T ) : extremal rays of C(γ) correspond to ergodic invariant probability
measures and invariant probability measures can be written in a unique way as convex com-
bination of ergodic ones.

39



It remains to be seen that the subspace E of RA generated by C(γ) has dimension 6 g. Let
(A, π) be combinatorial data for T , let Ω be the corresponding antisymmetric matrix.

We first claim that E ∩Ker Ω = {0}. Indeed, let v, v′ ∈ C(γ) such that v − v′ ∈ Ker Ω.
Write γ(n) for the initial part of γ of length n. According to the Proposition in Section 7.6, the
vector (v− v′)B−1

γ(n) depends only on the endpoint of γ(n). On the other hand, from Corollary

1 in Section 7.7, we have that v B−1
γ(n) and v′ B−1

γ(n) go to zero. Hence v = v′, proving the claim.

We now show that the image of E in RA/Ker Ω is isotropic for the symplectic form determined
by Ω. Otherwise, there would exist v, v′ ∈ C(γ) with

v Ω tv′ > 0 .

Again, v B−1
γ(n), v

′B−1
γ(n) go to zero. But according to Section 7.6 we have

v B−1
γ(n) Ωn

tB−1
γ(n)

tv′ = vΩ tv′ ,

where Ωn is the matrix associated to the endpoint of γ(n). This gives a contradiction ; as
rk Ω = 2g, we conclude that dim E 6 g. �

In the next Section, we see that the bound in the proposition is optimal. However, as men-
tioned in Section 6.11, a theorem of Masur and Veech guarantees that C(γ) is a ray for almost
all i.e.m.

8.3 Examples of non uniquely ergodic i.e.m. [Kea1],[KeyNew]

We will construct in a Rauzy diagram of genus g an infinite path γ which is an infinite con-
catenation of complete paths but has the property that the subspace generated by C(γ) has
dimension g.

Let d > 2. Define A(d) = {1, . . . , d} and

π
(d)
t (k) = k , π

(d)
b (k) = d+ 1− k ,

for 1 6 k 6 d. Let R(d) be the Rauzy class for π(d) = (π
(d)
t , π

(d)
b ), D(d) the associated Rauzy

diagram. From Section 4.4 , we check that the translation surfaces constructed from these
combinatorial data through the zippered rectangle construction satisfy :

• if d is even, d = 2g, s = 1, k1 = 2g − 1 ;

• if d is odd, d = 2g + 1 , s = 2 , k1 = k2 = g .

The diagrams D(d) for d = 2, 3, 4 have been pictured in Section 7.3. Their structure can be
described as follows.
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There is a canonical involution i of D(d) defined on vertices by i(π) = π̂ with

π̂t(k) = πb(d+ 1− k) ,

π̂b(k) = πt(d+ 1− k) .

The unique fixed point of i is π(d), and i changes the type of arrows from top to bottom and
back. If one defines

Dt(d) = {π ∈ R(d) , πt(2) = 2}

Db(d) = {π ∈ R(d) , πb(d− 1) = 2}

then i(Dt(d)) = Db(d) , i(Db(d)) = Dt(d) , Dt(d) ∩ Db(d) = {π(d)} and any arrow has both
endpoints in Dt(d) or both endpoints in Db(d). Moreover, if one defines, for 3 6 k 6 d

Db,k(d) = {π ∈ R(d) ; πb(d− 1) = 2 , πt(k) = 2} ,

then Db,k(d) is isomorphic to Dt(k − 1) through an isomorphism which respects type, winner
and loser.

A cycle of length d− 1 of arrows of bottom type starting at π(d) connects together the vertex
in Db,k(d) corresponding to π(k−1) in Dt(k − 1).

Let us now assume that d = 2g is even. Consider, for positive integers m1, . . . ,mg, the
loop γ(m1, . . . ,mg) at π(d) in D(d) whose successful winners are (in exponential notation for
repetition)

(1d−22m11)d21(dd−44m23)d2 . . . ((d− 3)2(d− 2)mg−1(d− 3))d2(d− 1)mg .

This is a complete loop in D(d).

Assume that 0 � m1 � m2 . . . � mg and let e1, . . . , ed be the canonical basis of Rd. One
checks that

• e1Bγ and e2Bγ have size ∼ m1 in the approximate direction of f1 := e2 ;

• e3Bγ and e4Bγ have size ∼ m2 in the approximate direction of f2 := e4 + e1 ;

• e5Bγ and e6Bγ have size ∼ m3 in the approximate direction of f3 := e6 + e3 + 2e1 ;
...

• ed−3Bγ and ed−2Bγ have size ∼ mg−1 in the approximate direction of fg−1 := ed−2 +
ed−5 + . . .+ 2g−3e1 ;

• ed−1Bγ and edBγ have size ∼ mg in the approximate direction of fg := ed−1 + ed−3 +
. . .+ 2g−2e1.
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Observe that f1, . . . , fg are linearly independent.

Now take a sequence (m`)`>0 increasing very fast, define

γi = γ(mig+1,mig+2, . . . ,mig+g−1),

γ(i) = γ0 ∗ γ1 . . . ∗ γi−1,

γ = γ0 ∗ γ1 ∗ . . .

One checks that for all i > 0 and 1 6 k 6 g, the vectors e2k−1 Bγ(i) and e2k Bγ(i) have
approximate directions fk ; more precisely, as i → ∞, their directions converge to the same
limit fk(∞) which can be chosen arbitrarily close to fk. In particular, if the sequence (m`)`>0

increases fast enough, the limit directions fk(∞), 1 6 k 6 g, are linearly independent, which
implies that the vector space spanned by C(γ) has dimension g.

9 Rauzy-Veech dynamics and Teichmüller flow

We establish in this section a relation between the Rauzy-Veech continued fraction algorithm
and the Teichmüller flow on the moduli space M(M,Σ, κ) that generalizes the classical case
of the usual continued fraction and the geodesic flow on the modular surface.

This will also exhibit the moduli space in a form which allows to check that its volume is finite.

Throughout this section, we fix an alphabet A, a Rauzy class R and denote by D the
associated Rauzy diagram.

9.1 Rauzy-Veech dynamics

With
∆ = {λ ∈ RA; λα > 0, ∀ α ∈ A },

we set
∆(D) = R× P(∆).

We denote by V+ : ∆(D)→ ∆(D) the map induced by one step of the Rauzy-Veech algorithm.
More precisely, let γ : π → π′ be an arrow of D. Let α0 be the winner of γ and let α1 be the
loser of γ. Define

∆γ = {λ ∈ ∆; λα0 > λα1 }.

Then the domain of V+ is the union, over all arrows γ, of the {π}×P(∆γ) and the restriction
of V+ to this set is induced by

(π, λ) 7→ (π′, λB−1
γ ).

Each simplex in ∆(D) (identified by a vertex π of D) contains two components of the
domain of V+ (associated to the two arrows starting at π), each being sent to a full simplex of
∆(D) (corresponding to the endpoint of the arrow). The map V+ is therefore essentially 2-to-1.
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Introducing the suspension variables τ leads to a map V which is essentially the natural
extension of V+. Let

S(D) =
⊔
R

({π} × P(∆)× P(Θπ)),

where we recall from subsection 7.4 that

Θπ = {τ ∈ RA;
∑

πt(α)<k

τα > 0,
∑

πb(α)<k

τα < 0, ∀ 1 < k 6 d}.

For an arrow γ : π → π′ of D, we set

Θγ = {τ ∈ Θπ′ ; ε
∑
α

τα > 0},

where ε = −1 (resp.ε = +1) if γ is of top type (resp. bottom type). Define then

Sγ(D) = {π} × P(∆γ)× P(Θπ),

Sγ(D) = {π′} × P(∆)× P(Θγ).

The domain of V : S(D)→ S(D) is the (disjoint) union, over all arrows of D, of the Sγ(D);
the image of V is the (disjoint) union of the Sγ(D), the restriction of V to Sγ(D) sends this
set in a one-to-one way onto Sγ(D) through the map induced by

(π, λ, τ) 7→ (π′, λB−1
γ , τB−1

γ ).

The map V is therefore, up to codimension one sets, invertible.

9.2 Rauzy diagrams and Teichmüller spaces

Let π be an element of R. Recall that the canonical length and suspension data are given
by

λcanα = 1, τ canα = πb(α)− πt(α), ∀ α ∈ A.

With these data, we construct (using the zippered rectangle construction of subsection 4.3, or
the simplified version of subsection 4.2) a translation surface (Mπ,Σπ, κπ, ζπ).

On the other hand, starting from data (λ, τ) ∈ ∆×Θπ, the zippered rectangle construction
produces a translation surface which is a deformation of (Mπ,Σπ, κπ, ζπ), i.e homeomorphic
to (Mπ,Σπ, κπ) through an homeomorphism whose isotopy class is canonically defined. We
therefore obtain a canonical embedding

iπ : ∆×Θπ −→ Q̃(Mπ,Σπ, κπ)

in the marked Teichmüller space. This is an embedding because it is a local section of the
period map.

Let now γ : π → π′ be an arrow of D. The data λ = λcanBγ, τ = τ can produce a trans-
lation surface (Mπ,Σπ, κπ, ζ

0
π); the data λ = λcan, τ = τ canB−1

γ with the combinatorial data

43



π′ produce a translation surface (Mπ′ ,Σπ′ , κπ′ , ζ
1
π′). As observed in subsection 7.4, these two

translation surfaces are canonically isomorphic. This means that there exists an homeomor-
phism between the topological surfaces (Mπ,Σπ, κπ) and (Mπ′ ,Σπ′ , κπ′) whose isotopy class is
canonically defined by γ. This leads to a canonical homeomorphism

jγ : Q̃(Mπ,Σπ, κπ) −→ Q̃(Mπ′ ,Σπ′ , κπ′)

between marked Teichmüller spaces.

Let us observe that the isomorphic translation surfaces (Mπ,Σπ, κπ, ζ
0
π), (Mπ′ ,Σπ′ , κπ′ , ζ

1
π′)

above define a point in
iπ(∆π ×Θπ) ∩ j−1

γ (iπ′(∆π′ ×Θπ′)).

As a consequence the union

iπ(∆π ×Θπ) ∪ j−1
γ (iπ′(∆π′ ×Θπ′))

is a connected subset of Q̃(Mπ,Σπ, κπ).

We introduce the groupoid Γ(D) of paths in the non-oriented Rauzy diagram D̃: the

vertices of D̃ are those ofD (i.e the elements of the Rauzy classR) but for each arrow γ : π → π′

in D we have two arrows γ+ : π → π′ and γ− : π′ → π in D̃. The groupoid Γ(D) is the groupoid

of oriented paths in D̃, quotiented out by the cancellation rules γ+ ∗ γ− = γ− ∗ γ+ = 1. We
denote by Γπ(D) the subset of reduced paths starting at π and by π1(D̃, π) the group of
reduced loops at π.
For each arrow γ of D, we have defined above an isomorphism jγ between marked Teichmüller
spaces. There is a unique way to extend functorially this definition to Γ(D): for each γ ∈ Γ(D)
starting at π and ending at π′, we have an isomorphism

jγ : Q̃(Mπ,Σπ, κπ) −→ Q̃(Mπ′ ,Σπ′ , κπ′),

and jγ1∗γ2 = jγ2 ◦ jγ1 whenever γ1 ∗ γ2 is defined.

In particular, when γ ∈ π1(D̃, π), jγ is an automorphism of Q̃(Mπ,Σπ, κπ). We obtain in this
way a group homomorphism

γ 7−→ jγ ,

π1(D̃, π) −→ Mod+(Mπ,Σπ) .

We now define
Uπ =

⋃
Γπ(D)

j−1
γ (iπ′(∆π′ ×Θπ′)) ,

where π′ is the endpoint of γ ∈ Γπ(D). It follows immediately from the observation at the end

of subsection 9.1 that Uπ is an open connected subset of Q̃(Mπ,Σπ, κπ). We will denote by Cπ
the component of Q̃(Mπ,Σπ, κπ) which contains Uπ.
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9.3 The following result shows that, when considering some component C of a
(marked) Teichmüller space Q̃(M,Σ, κ), there is no loss of generality if we assume that
(M,Σ, κ) = (Mπ,Σπ, κπ) (for some appropriate combinatorial data (A, π)) and C = Cπ.

Proposition Let (M,Σ, κ) be combinatorial data for a translation surface, let C be

a connected component of the marked Teichmüller space Q̃(M,Σ, κ), and let U be the open
subset of C formed by the translation surface structures in C that can be obtained through the
zippered rectangle construction.

1. The set C − U has real codimension > 2 in C.

2. There exist combinatorial data (A, π) and a homeomorphism g : (Mπ,Σπ, κπ)→ (M,Σ, κ)
such that the corresponding isomorphism g∗ of marked Teichmüller spaces satisfy

g∗(Uπ) = U .

3. Assume that (A′, π′) are combinatorial data and g′ : (Mπ′ ,Σπ′ , κπ′) → (M,Σ, κ) is an
homeomorphism such that

g′∗(Uπ′) ⊂ C.
Then, the Rauzy diagrams D, D′ spanned by π, π′ are isomorphic. Moreover, assuming
that D = D′, π = π′, the element of Mod+(Mπ,Σπ) determined by g−1 ◦ g′ belongs to the
image of the group homomorphism

π1(D, π) −→ Mod+(Mπ,Σπ)

defined in the last subsection.

Remark It is quite possible that this homomorphism is always onto. This has been
checked for g = 1, with any number of marked points, by Wang Zhiren.

Proof: Part 1. of the proposition is a consequence of the proposition in subsection
5.6 and the corollary in subsection 5.5: if a translation surface structure on (M,Σ, κ) has no
vertical connection or no horizontal connection, it can be represented with the appropriate
marking as a suspension through the zippered rectangle construction. Having both horizontal
and vertical connections is indeed a codimension 2 property: this can already be seen on each
orbit of the SL(2,R) action (for instance).

By definition of U , this open set is the union, over all combinatorial data (A, π), and all
homeomorphisms g : (Mπ,Σπ, κπ) → (M,Σ, κ) such that g∗(iπ(∆π × Θπ)) ⊂ C, of the sets
g∗(iπ(∆π ×Θπ)). As its complement in C has codimension 2, the open set U is connected.

Claim If (A, π, g), (A′, π′, g′) satisfy

g∗(iπ(∆π ×Θπ))
⋂

g′∗(iπ′(∆π′ ×Θπ′)) 6= ∅,

then the Rauzy diagrams D, D′ spanned by π, π′ are isomorphic and (assuming A = A′,
D = D′) either g−1

∗ ◦ g′∗ or g′∗
−1 ◦ g∗ is equal to jγ for a finite oriented path γ in D.

Proof of claim: By hypothesis, there are two isomorphic translation surface structures
ζ, ζ ′ on (M,Σ, κ) such that:
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• ζ is obtained by the zippered rectangle construction from an i.e.m T acting on an interval
I with combinatorial data (A, π), length data λ, suspension data τ ;

• ζ ′ is obtained by the zippered rectangle construction from an i.e.m T ′ acting on an
interval I ′ with combinatorial data (A′, π′), length data λ′, suspension data τ ′.

Let G : (M,Σ, κ, ζ) → (M,Σ, κ, ζ ′) be an isomorphism. It sends the marked outgoing
horizontal separatrix for ζ isometrically onto the marked outgoing separatrix for ζ ′.

If |I| = |I ′|, we can already conclude that T = T ′ and τ = τ ′.

Assume for instance that |I| > |I ′|. Then T ′ must be the first return map of T on the interval
of length |I ′| with the same left endpoint than I. That T ′ is obtained from T by a finite
number of steps of the Rauzy-Veech algorithm now follows from corollary 1 in subsection 7.7
(applying if necessary the same small rotation to both ζ and ζ ′, we may assume that ζ has no
vertical connection) and the last exercise in subsection 7.2. �

End of proof of proposition: A first consequence of the claim is that the combinatorial data
(A, π) such that g∗(iπ(∆π×Θπ)) ⊂ C all belong to the same Rauzy class (up to isomorphism):
otherwise, the set U would not be connected. Once we know that, both the second and the
third part of the proposition are immediate consequences of the claim. �

9.4 Rauzy diagrams and moduli spaces

Let A, R, D as above. We fix a vertex π∗ of D and denote simply (Mπ∗ ,Σπ∗ , κπ∗), Uπ∗ ,
Cπ∗ by (M,Σ, κ), U , C.
It follows from the third part of the proposition that the stabilizer of C (for the action of

Mod+(M,Σ) on Q̃(M,Σ, κ)) is the subgroup image of π1(D, π∗), which will be denoted by
Mod0(M,Σ).

We now define what amounts to a fundamental domain for the action of Mod0(M,Σ) on
C.

For each vertex π of D, define

∆0
π = {λ ∈ ∆; 1 6

∑
α

λα 6 1 + min(λαt , λαb) }

where πt(αt) = πb(αb) = d.

Consider then the disjoint union, over elements of R, of the ∆0
π×Θπ and perform the following

identifications on the boundaries of these sets.

The part of the boundary of ∆0
π × Θπ where

∑
α λα = 1 is called the lower boundary of

∆0
π ×Θπ; it is divided into a top half where

∑
α τα < 0 and a bottom half where

∑
α τα > 0.

The part of the boundary of ∆0
π × Θπ where

∑
α λα = 1 + min(λαt , λαb) is called the upper

boundary of ∆0
π × Θπ; it is divided into a top half where λαt > λαb and a bottom half where

λαt < λαb .

For each arrow γ : π → π′ in D, of top type, we identify the top half of the upper boundary of
∆0
π×Θπ with the top half of the lower boundary of ∆0

π′×Θπ′ through (λ, τ) 7→ (λB−1
γ , τB−1

γ );
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when γ is of bottom type, we identify similarly bottom halves.

We denote by M(D) the space obtained from
⊔
π ∆0

π ×Θπ by these identifications.

From its definition in subsection 9.2, it is clear that the set U is invariant under Mod0(M,Σ).
The same is true for the smaller set

V :=
⋃

γ∈Γπ∗ (D)

j−1
γ (iπ(∆0

π ×Θπ)) ,

where π is the endpoint of a path γ ∈ Γπ∗(D).

Proposition There exists a unique continuous map

p : V −→M(D)

such that for every γ ∈ Γπ∗(D) (with endpoint π), the composition p ◦ j−1
γ ◦ iπ is the canonical

map from ∆0
π ×Θπ to M(D). Moreover, p is a covering map which identifies M(D) with the

quotient of V by the action of Mod0(M,Σ). The set U − V has codimension 1.

Proof: Let γ be a path in Γπ∗(D) with endpoint π, and let γ0 be an arrow from π to some
vertex π′. The intersection

j−1
γ (iπ(∆0

π ×Θπ))
⋂

j−1
γ∗γ0(iπ′(∆

0
π′ ×Θπ′))

is non empty; if γ0 is for instance of top type, it is equal to the image j−1
γ ◦ iπ of the top

half of the upper boundary of ∆0
π × Θπ and also to the image by j−1

γ∗γ0 ◦ iπ′ of the top half of
the lower boundary of ∆0

π′ × Θπ′ , the identification between these halves being exactly as in
M(D). Moreover, it follows from the claim in the proof of proposition 9.3 that this is the only
case where a non empty intersection occurs. As a consequence, a map p with the property
required in the statement of the proposition exists, is continuous, and is uniquely defined by
this property.

From the property defining p, two points in V have the same image under p iff they belong
to the same Mod0(M,Σ) orbit. This implies that p is a covering map.

Finally, let [ζ] = j−1
γ ◦ iπ(λ, τ) be a point of U (with γ ∈ Γπ∗(D), π the endpoint of γ,

λ ∈ ∆π, τ ∈ Θπ). If λ ∈ ∆0
π, then [ζ] belongs to V . Otherwise,

∑
α λα is either too large or too

small. If it is too large, we apply one step of the Rauzy-Veech algorithm unless λαt = λαb . If
it is too small, we apply one step backwards unless

∑
α τα = 0. Iterating this process, we will

end up in V unless we run into one of the codimension one conditions that stops the algorithm
(forwards or backwards). This proves that U − V has codimension 1. �

9.5 Canonical volumes. Zorich acceleration

The last proposition allows us to identifyM(D) with a subset of the marked moduli space

M̃(M,Σ, κ) whose complement has codimension 1. In particular this subset has full measure
for the canonical volume of the moduli space. Observe that, in view of its relation with the
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period map, the canonical volume in M(D) is nothing else than the standard Lebesgue mea-
sure dλ dτ restricted to each ∆0

π ×Θπ.

The modelM(D) for (part of) the moduli space provides us also with a natural transversal
section for the Teichmüller flow, namely the union over the vertices π of D of the lower
boundaries of the ∆0

π ×Θπ. Indeed, in each ∆0
π ×Θπ, the Teichmüller flow reads as

(λ, τ) 7→ (et λ, e−t τ)

and flows from the lower boundary of ∆0
π × Θπ to its upper boundary, being then glued as

prescribed by the Rauzy-Veech algorithm to the lower boundary of some ∆0
π′ ×Θπ′ .

When computing volumes, we have to normalize the area A = τ Ωπ
tλ. Let M(1)(D) be

the subset ofM(D) defined by {A = 1}. We can identify the set S(D) of subsection 9.1 with
the transverse section to the Teichmüller flow in M(1)(D)

{(π, λ, τ) ∈
⊔
π

{π} ×∆×Θπ;
∑
α

λα = 1, τ Ωπ
tλ = 1}.

With this identification, the return map of the Teichmüller flow on S(D) is precisely given
by the Rauzy-Veech dynamics V defined in subsection 9.1. The return time is equal to

log
||λ||1
||λB−1

γ ||1
,

where || . ||1 is the `1-norm.

Observe that the return time is bounded from above, but not bounded away from 0. The
unfortunate consequence, as we see below, is that the measure of S(D) is infinite; this already
happens in the elementary case d = 2.

In order to get nicer dynamical properties, Zorich [Zo2] considered instead a smaller
transversal section S∗(D) ⊂ S(D) which still gives an easily understood return map but
has finite measure. For an arrow γ : π → π′ of top type (resp. of bottom type), let S∗γ(D) be
the set of (π, λ, τ) ∈ Sγ(D) such that

∑
τα > 0 (resp.

∑
τα < 0). Let S∗(D) be the union of

the S∗γ(D) over all arrows of D.

The return map of the Teichmüller flow to S∗(D), which is also the return map of V to S∗(D),
will be denoted by V ∗. It is obtained as follows: one iterates V as long as the type of the
corresponding arrow does not change. It is easy to check that it is the same than to ask that
the winner does not change.

This property of V ∗ shows the return time for V to S∗(D) does not depends on the
τ -coordinate. One can therefore define a map V ∗+ : ∆(D) → ∆(D) such that V ∗ is fibered
over V ∗+.
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Example For d = 2, we have

S(D) = {(λA, λB, τA, τB); λA > 0, λB > 0, τA > 0, τB < 0, λA + λB = 1, λAτB − λBτA = 1},
St(D) = {(λA, λB, τA, τB) ∈ S(D); λA > λB},
Sb(D) = {(λA, λB, τA, τB) ∈ S(D); λA < λB} ,
St(D) = {(λA, λB, τA, τB) ∈ S(D); τA + τB < 0},
Sb(D) = {(λA, λB, τA, τB) ∈ S(D); τA + τB > 0},
S∗t (D) = {(λA, λB, τA, τB) ∈ S(D); λA > λB, τA + τB > 0} ,
S∗b (D) = {(λA, λB, τA, τB) ∈ S(D); λA < λB, τA + τB > 0} .

For (λA, λB, τA, τB) ∈ St(D), we have

V (λA, λB, τA, τB) = (λAλ
−1
B , 1− λAλ−1

B , λBτA, λB(τB − τA)).

For (λA, λB, τA, τB) ∈ S∗t (D), we have

V ∗(λA, λB, τA, τB) = (λAΛ−1, 1− λAΛ−1,ΛτA,Λ(τB − nτA)),

where Λ = λB − (n− 1)λA, nλA < λB < (n+ 1)λA, n > 1.

On the λ-coordinate, V ∗+ is essentially given by the Gauss map.

9.6 Volume estimates: the key combinatorial lemmas

We will present three volume estimates: two for the measures of S(D) and S∗(D) and one
for the measure of M(1)(D), i.e the integral over S(D) of the return time for the Teichmüller
flow.

Before doing that, we consider the case d = 2 as an example of what happens in general. We
first integrate over the τ variables. For a point (λA, λB) with λB > λA > 0, λA + λB = 1,

• the integral over {τA > 0, τB < 0, λBτA − λAτB = 1} gives λ−1
A λ−1

B ;

• the integral over {τA + τB > 0, τB < 0, λBτA − λAτB = 1} gives (λA + λB)−1λ−1
B = λ−1

B .

Formulas for λA > λB > 0, λA + λB = 1 are symmetric.

For the measure of S(D), we have therefore to integrate∫ 1
2

0

d λ

λ(1− λ)

with the pole at 0 making the integral divergent.

For the measure of S∗(D), we have to integrate∫ 1
2

0

d λ

1− λ

49



on a domain away from the pole; the integral is equal to log 2.

For the measure ofM(1)(D), the return time is − log(1−λ); the zero at 0 cancels the pole
and we obtain

−
∫ 1

2

0

d λ

λ(1− λ)
log(1− λ) =

π2

12
.

The measure of M(1)(D) is twice this.

We come back to the general case. Again, we want first to perform the integration over
the τ variables. These variables run over the convex cone Θπ but are restricted by the area
condition. Define as usual αt, αb by πt(αt) = πb(αb) = d. Set

htα =
∑

πt(β)6πt(α)

τβ ,

hbα = −
∑

πb(β)6πb(α)

τβ ,

ȟtα =
∑

πt(β)<πt(α)

τβ ,

ȟbα = −
∑

πb(β)<πb(α)

τβ .

With h = −Ω tτ as in subsection 4.3, we have

hα = htα + hbα = ȟtα + ȟbα,

for all α ∈ A and htαt + hbαb = 0. The suspension conditions are

htα > 0 for α 6= αt, hbα < 0 for α 6= αb.

Consider for instance the top half of ∆ = ∆π where λαt > λαb (the other case is symmetric);
we write

λ̂α = λα for α 6= αt,

λ̂αt = λαt − λαb ,
ĥα = hα for α 6= αb,

ĥαb = hαb + hαt .

The area is given by

A =
∑
α

λαhα =
∑
α

λ̂αĥα.

We decompose Θπ into a finite family G(π) of simplicial disjoint cones. Let Γ be a cone in
this family, and let τ (1), · · · , τ (d) be a base of RA of volume 1 such that

Γ = {
d∑
1

tiτi ; ti > 0 } .
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Writing h(i) = −Ωπ
tτ (i) for 1 6 i 6 d, the area condition becomes

d∑
1

ti (
∑
α

λ̂α ĥ
(i)
α ) = 1,

and therefore the integral over Γ gives

1

(d− 1)!
[

d∏
1

(
∑
α

λ̂α ĥ
(i)
α ) ]−1.

To get the measure of S(D), we should then integrate this quantity over the top half of ∆π

(normalized by
∑

α λα = 1), sum over Γ ∈ G(π), sum over π and finally add the symmetric
contribution of the bottom halves.

Only the first step presents a finiteness problem. To deal with it, given a proper subset B
of A, we introduce the subspace EB of RA generated by the τ in the closure of Θπ such that
ĥα = 0 for all α ∈ B ( with again h = −Ω tτ).

Lemma 1 We have codimEB > #B, and even codimEB > #B when αb ∈ B.

Proof: We will find sufficiently many independent linear forms vanishing on EB.

Assume first that αb /∈ B. Let τ be a vector in the closure of Θπ, such that ĥα = 0 for all
α ∈ B. For α ∈ B, we have

ĥα = hα = htα + hbα = ȟtα + ȟbα,

with hbα > 0, htα > 0 (if α 6= αt), ȟ
t
α > 0, ȟbα > 0.

We have therefore htα = 0 for α ∈ B, α 6= αt, and also ȟtα = 0 for α ∈ B, πt(α) > 1. This
gives at least #B independent linear forms vanishing on such vectors τ , and thus also on EB
(the independence of the forms come from the triangular form of the htα, ȟtα).

Assume now that αb ∈ B. Let τ be a vector in the closure of Θπ, such that ĥα = 0 for all
α ∈ B. The relation ĥαb = 0 implies hαt = hαb = 0, hence

htαt + hbαt = hbαb + htαb = 0.

As we have hbαt > 0, htαb > 0, htαt + hbαb = 0, we conclude that

htαt = hbαt = hbαb = htαb = 0.

We have therefore

• hbα = ȟbα = 0 for all α ∈ B;

• htα = ȟtα = 0 for all α ∈ B.
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The first set of relations gives at least #B + 1 independent linear forms vanishing on EB
unless πb(B) = {1, · · · ,#B}. The same is true for the second set of relations unless πt(B) =
{1, · · · ,#B}. By irreducibility, the two exceptional cases are mutually exclusive and the proof
of the lemma is complete. �

When we deal with S∗(D), we should replace Θπ by

Θt
π = {τ ∈ Θπ;

∑
α

τα > 0 }

when we deal with the top half of ∆π. We proceed in the same way, decomposing Θπ into a
finite family of simplicial cones Γ∗. We now define E∗B as the subspace of RA generated by the

vectors τ in the closure of Θt
π, such that ĥα = 0 for all α ∈ B.

Lemma 2 We have codimE∗B > #B for all proper subsets B of A.

Proof: Obviously we have E∗B ⊂ EB, therefore the case where αb ∈ B is given by Lemma 1.
We therefore assume that αb /∈ B.
Let τ be a vector in the closure of Θt

π, such that ĥα = 0 for all α ∈ B. For α ∈ B, we have

0 = ĥα = hα = htα + hbα = ȟtα + ȟbα,

with ȟtα > 0, ȟbα > 0, hbα > 0 (because α 6= αb), h
t
α > 0 (even for α = αt). We therefore have

• hbα = ȟbα = 0 for all α ∈ B,

• htα = ȟtα = 0 for all α ∈ B,

and conclude as in Lemma 1. �

9.7 Finiteness of volume for M(1)(D) and S∗(D).

The combinatorial facts proven in the last subsection will be combined with the following
simple analytic lemma. Let

∆(1) = {λ ∈ RA; λα > 0,
∑
α

λα = 1 }.

For B ⊂ A, define also
∆

(1)
B = {λ ∈ ∆(1); λα = 0 for α /∈ B}.

Consider linear forms L1, · · · , Lp,M1, · · · ,Mq on RA which are positive on ∆(1), and the rational
map

R :=
L1 · · ·Lp
M1 · · ·Mq

.

For B ⊂ A, let

m+(B) = #{i; Li(λ) = 0 for all λ ∈ ∆
(1)
B },

m−(B) = #{j; Mj(λ) = 0 for all λ ∈ ∆
(1)
B },

m(B) = m+(B)−m−(B).
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Lemma Assume that d+m(B) > #B holds for all proper subsets of A. Then R is
integrable on ∆(1).

Remark The converse is also true but will not be used.

Proof : We decompose ∆(1) as follows: let

N := {n ∈ NA; min
α
nα = 0}.

For n ∈ N , let ∆(1)(n) be the set of λ ∈ ∆(1) such that λα > 1
2d

if nα = 0 and

1

2d
21−nα > λα >

1

2d
2−nα

if nα > 0. We have indeed
∆(1) =

⊔
N

∆(1)(n)

and also
C−1 2−

∑
nα 6 vol ∆(1)(n) 6 C 2−

∑
nα .

Fix n ∈ N . Let 0 = n0 < n1 < · · · be the distinct values, in increasing order, taken by the
nα, and let

Bi := {α ∈ A; nα > ni }.

Let L be a linear form on RA, positive on ∆(1). There is a maximal subset B(L) ⊂ A such

that L(λ) = 0 for all λ ∈ ∆
(1)
B(L). We have then, for n ∈ N , λ ∈ ∆(1)(n)

C−1
L 2−m 6 L(λ) 6 CL2−m, with m = min

A−B(L)
nα.

The definition of m shows that m > ni iff A − B(L) ⊂ Bi and m = ni iff Bci ⊂ B(L) but
Bci+1 6⊂ B(L). From this, we see that for n ∈ N , λ ∈ ∆(1)(n), we have

C−1
R 2−N 6 R(λ) 6 CR2−N ,

with
N =

∑
i>0

ni (m(Bci )−m(Bci+1)) =
∑
i>0

(ni − ni−1) m(Bci ).

Using the hypothesis of the lemma, we have, for i > 0

m(Bci ) > #Bci − d+ 1 = 1−#Bi ,

and therefore

N >
∑
i>0

(ni − ni−1)−
∑
i>0

ni(#Bi −#Bi+1) = max
α

nα −
∑
α

nα .
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We conclude that the integral of R on ∆(1)(n) is at most of the order of 2−maxα nα . Summing
over N gives the required result. �

We can now prove the finiteness of the measures of M(1)(D) and S∗(D). As explained
in subsection 9.6, the total masses of these measures are expressed as finite sums of certain
integrals over top or bottom halves of the ∆

(1)
π . We will consider the case of top halves,

the other case being symmetric. Observe that the top half of ∆
(1)
π is characterized by the

inequalities λ̂α > 0,∀α ∈ A. We will therefore in both cases apply the lemma above in the
λ̂ variables. We don’t have

∑
λ̂α = 1, but observe that

∑
λα = 1 implies 1

2
6
∑
λ̂α 6 1,

which is good enough.

• We start with M(1)(D). The return time of the Teichmüller flow to S(D) is equal to

− log
∑
λ̂α = − log(1− λαb) on the top half of ∆

(1)
π .

According to subsection 9.6, we have to integrate

− log(1− λαb)
(d− 1)!

[
d∏
1

( Σα λ̂α ĥ
(i)
α ) ]−1

over the top half of ∆
(1)
π . The vectors h(i) = −Ωπ

tτ (i) are obtained here from vectors
τ (i) generating a simplicial cone Γ ⊂ Θπ.

We apply the lemma above with p = 1, q = d. We take L(λ) = λαb = λ̂αb , a linear
form of the same order than the return time − log(1−λαb). The linear forms Mi are the

Σα λ̂α ĥ
(i)
α .

We check the hypothesis of the lemma. Let B ⊂ A be a proper subset. First, we have
m+(B) = 0 if αb ∈ B, m+(B) = 1 if αb /∈ B. Next we have

Σα λ̂α ĥ
(i)
α = 0, for all λ̂ ∈ ∆

(1)
B

iff ĥ
(i)
α = 0 for all α ∈ B. By definition of EB, this happens iff τ (i) ∈ EB. As the τ (i)

are independent, Lemma 1 in the last subsection gives m−(B) 6 d − #B if αb /∈ B,
m−(B) < d − #B if αb ∈ B. The hypothesis of the lemma above is thus satisfied, and
its conclusion gives the finiteness of the measure of M(1)(D).

• We now deal with S∗(D). According to subsection 9.6, we have to integrate

1

(d− 1)!
[

d∏
1

( Σα λ̂α ĥ
(i)
α ) ]−1

over the top half of ∆
(1)
π . The vectors h(i) = −Ωπ

tτ (i) are obtained here from vectors
τ (i) generating a simplicial cone Γ∗ ⊂ Θt

π.

We will apply the lemma above with p = 0, q = d. The linear forms Mi are the Σα λ̂α ĥ
(i)
α .

We check the hypothesis of the lemma . For a proper subset B ⊂ A, we have

Σα λ̂α ĥ
(i)
α = 0, for all λ̂ ∈ ∆

(1)
B
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iff ĥ
(i)
α = 0 for all α ∈ B. By definition of E∗B, this happens iff τ (i) ∈ E∗B. As the τ (i) are

independent, Lemma 2 in the last subsection guarantees that there are less than d−#B
such indices i. The hypothesis of the lemma above is thus satisfied, and its conclusion
gives the finiteness of the measure of S∗(D).

We have thus proved a first statement in the theorems of Masur and Veech presented
in subsection 6.11, the finiteness of the volume of the moduli space of translation surfaces.
Except in the simplest cases, it seems difficult to get the exact value of this volume through
this method. Exact formulas for the volumes of the moduli spaces have been obtained by
Eskin and Okounkov [EOk ] using a different approach.

We end this section with the following statement, which is an easy consequence of the
lemma above.

Proposition The canonical measure on S∗(D) satisfies, for all ε > 0

m({(π, λ, τ) ∈ S∗(D); minαλα < ε } 6 Cε(log ε)d−2,

where the constant C depends only on d.

Proof: In the context of the proof of the lemma, it is sufficient to observe that the number
of n ∈ N such that maxα nα = N is of the order of Nd−2. �

10 Ergodicity and unique ergodicity

In this section, we complete the proofs of the theorems of Masur and Veech presented in
subsection 6.11.

10.1 Hilbert metric

Let C be an open set in the projective space PN which is the image of an open convex cone
in RN+1 whose closure intersects some hyperplane only at the origin.

Given two distinct points x, y ∈ C, the intersection of the line through x, y with C is a
segment (a, b). The crossratio of the points a, b, x, y gives rise to a distance on C called the
Hilbert metric on C:

dC(x, y) := | log
x− a
y − a

x− b
y − b

|.

Exercise Check the triangle inequality.

The following properties are easily verified.

• Let X be a subset of C; then the closure X of X in PN is contained in C iff X has finite
diameter for dC .
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• If ϕ : PN → PN is a projective isomorphism, then, for all x, y ∈ C

dϕ(C)(ϕ(x), ϕ(y)) = dC(x, y).

• If C ′ ⊂ C is a smaller set satisfying the same hypothesis than C, then, for all x, y ∈ C ′

dC(x, y) 6 dC′(x, y).

• If C ′ is a set satisfying the same hypothesis than C and C
′ ⊂ C, there exists k ∈ (0, 1)

such that, for all x, y ∈ C ′
dC(x, y) 6 k dC′(x, y).

Thus, if ϕ : PN → PN is a projective isomorphism satisfying ϕ(C) ⊂ C, there exists
k ∈ (0, 1) such that, for all x, y ∈ C ′ we have

dC(ϕ(x), ϕ(y)) 6 k dC(x, y).

10.2 Almost sure unique ergodicity

We prove that, for every combinatorial data (A, π), and almost every length vector λ ∈ RA,
the corresponding i.e.m is uniquely ergodic.

The set of i.e.m having a connection has codimension 1. Therefore, almost surely the
Rauzy-Veech algorithm does not stop and associates to the i.e.m T an infinite path γT starting
at π in the Rauzy diagram D constructed from (A, π). According to subsection 8.1, we have
to prove that the closed convex cone C(γT ) determined by γT is almost surely a ray.

By Poincaré recurrence of the Teichmüller flow and subsection 7.7, for almost every length
vector λ, there exists an initial segment γs of γT which occurs infinitely many times in γT and
such that all coefficients of the matrix Bγs are positive. We write γT as a concatenation

γT = γs ∗ γ1 ∗ γs ∗ γ2 ∗ · · · .

Let C be the open set in P(RA) image of the positive cone in RA. From the last property in
the last subsection, there exists k ∈ (0, 1) such that Bγs decreases the Hilbert metric dC at
least by a factor k, while the Bγi , i = 1, 2, · · · do not increase dC . The first image CBγs has
closure contained in C hence has finite diameter K for dC . We then have

diam(CBγs∗···γi) 6 Kki−1.

It follows that the image in P(RA) of C(γT ) is a point. The result is proved.

10.3 Ergodicity of the Teichmüller flow

56



We will prove in this subsection that the Teichmüller flow onM(1)(D) and its return maps
V on S(D) and V ∗ on S∗(D) are ergodic. In view of the relation between these three dynam-
ical systems, the three statements are equivalent. We will prove that V ∗ is ergodic.

From the ergodicity of V and V ∗, it follows that the maps V+ and V ∗+ on ∆(D) are also
ergodic.

By Birkhoff’s ergodic theorem, for every continuous function ϕ on S∗(D), there exists an
almost everywhere defined fuction ϕ such that, for almost every (π, λ, τ) ∈ S∗(D), one has

lim
n→+∞

1

n

n−1∑
0

ϕ((V ∗)m(π, λ, τ)) = ϕ(π, λ, τ),

and also

lim
n→+∞

1

n

n−1∑
0

ϕ((V ∗)−m(π, λ, τ)) = ϕ(π, λ, τ).

To prove ergodicity, it is sufficient to show that ϕ is almost everywhere constant, for any
continuous function ϕ.

Starting from almost every (π, λ, τ), one can iterate the Rauzy-Veech algorithm both for-
ward and backward. This leads to a biinfinite path γ = γ+ ∗ γ− in the Rauzy diagram D,
where γ+ depends only on (π, λ) and γ− depends only on (π, τ).

By Poincaré recurrence, for almost every (π, τ), there is a finite path γe at the end of γ−

such that all coefficients of Bγe are positive and which appears infinitely many times in γ−.
Let again C be the open set in P(RA) image of the positive cone in RA, dC the associated
Hilbert metric. Let λ, λ′ ∈ ∆π; for m > 0, let λ−m, λ

′
−m be the respective λ-components of

(V ∗)−m(π, λ, τ), (V ∗)−m(π, λ′, τ). By the same argument that in the last subsection, we have

lim
m→+∞

dC(λ−m, λ
′
−m) = 0.

This implies that, for almost every (π, τ), ϕ(π, λ, τ) does not depend on λ.

We claim that the same argument works exchanging λ and τ , future and past. For almost
every (π, λ), we want to find a finite path γs at the beginning of γ+ which appears infinitely
many times in γ+ (this is guaranteed by Poincaré recurrence) and satisfies

ΘπB
−1
γs ⊂ Θπ′ ∪ {0}

where π′ is the endpoint of γs. Then, using the Hilbert metrics relative to the open sets images
in P(RA) of the Θπ, we conclude in the same way as above that , for almost every (π, λ, τ),
ϕ(π, λ, τ) does not depend on τ . Thus, almost surely, ϕ(π, λ, τ) does not depend on λ and τ .
But ϕ(π, λ, τ) is also V ∗-invariant, therefore it must be almost everywhere constant.

It remains to prove that, almost surely, some initial path γs of γ+ satisfies ΘπB
−1
γs ⊂

Θπ′ ∪ {0}. This is a consequence of the following result.
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Lemma If a finite path γ in D, from a vertex π to a vertex π′, is the concatenation
of 3d− 4 complete paths, then we have

ΘπB
−1
γ ⊂ Θπ′ ∪ {0}.

Proof: For combinatorial data π and τ ∈ RA, we write as before

htα =
∑

πt(β)6πt(α)

τβ, hbα = −
∑

πb(β)6πb(α)

τβ, hα = htα + hbα.

We write γ1, γ2, · · · , γm for the successive arrows of γ.

Starting from π =: π0 with a nonzero vector τ 0 ∈ RA satisfying

h0, t
α > 0 for π0

t (α) < d, h0, b
α > 0 for π0

b (α) < d,(2)

we have to show that

hm, tα > 0 for πmt (α) < d, hm, bα > 0 for πmb (α) < d,(3)

where πj is the endpoint of γj and hj, t, hj, b are calculated from τ j := τ j−1B−1
γj

.

The heigth vectors hj are column vectors related by

hj = Bγjh
j−1

and their entries are nonnegative. Let m′ < m is the smallest integer such that the initial part
γ1 ∗ · · · ∗γm′ of γ is the concatenation of 2d−3 complete paths. By proposition 2 in subsection
7.7, we have

hjα > 0, ∀α ∈ A,∀ j > m′.(4)

If γj is of top type, one has πjt = πj−1
t and

hj, tα = hj−1, t
α , if πjt (α) < d,(5)

hj, bα = hj−1, b
α , if πj−1

t (α) < d, and πj−1
b (α) < d,(6)

hj, bαb = hj−1, b
αt , with πj−1

t (αt) = πj−1
b (αb) = d,(7)

hj, bαt = hj−1, b
α∗ + hj−1

αt , with πj−1
b (α∗) = d− 1.(8)

Let `t(j) (resp. `b(j)) be the largest integer ` such that hj, tα > 0 for πjt (α) < ` (resp.
hj, bα > 0 for πjb(α) < `). We want to show that `t(m) = `b(m) = d. This implies the required
conclusion.

We always have (trivially) `t(j) > 1, `b(j) > 1. Assume for instance that γj is of top type
as above. Then relation (5) and πjt = πj−1

t imply that `t(j) > `t(j−1). If πjb(αt) = πj−1
b (αt) >

`b(j − 1), we have `b(j) > `b(j − 1) from (6). On the other hand, if πjb(αt) 6 `b(j − 1) and
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j > m′, it follows from relations (4),(6),(7),(8) that `b(j) > `b(j − 1). We first conclude that
`t, `b are non-decreasing functions of j > m′.

Let m′ < m0 < m1 6 m be such that γm0 ∗ · · · ∗ γm1−1 is complete. Observe that there
is a letter bα such that π(bα) = 1 for all vertices π of D. Let m0 6 j < m1 such that bα
is the winner of γj. Then γj is of top type so, in the notations above, we have bα = αt,
1 = πjb(αt) 6 `b(j − 1) and `b(j) > `b(j − 1). As we can find d− 1 disjoint such complete sub-
paths between m′ and m, this shows that `b(m) = d. The proof that `t(m) = d is symmetric.
�

The proof of ergodicity is now complete. We recall the full statement.

Theorem The maps V (on S(D)), V ∗ (on S∗(D)),V+ and V ∗+ (on ∆(D)) are er-
godic. The restriction of the Teichmüller flow to any component of the marked moduli space
M̃(1)(M,Σ, κ) is ergodic. The action of SL(2,R) on any such component is therefore also
ergodic.

11 Lyapunov exponents

The remaining sections are planned as introductions to further reading. The results are pre-
sented mostly without proofs. In this section, we introduce the Kontsevich-Zorich cocycle
[Kon] and present the results of Forni [For2] and Avila-Viana [AvVi1].

11.1 Oseledets multiplicative ergodic theorem

Let (X,B, µ) be a probability space, and let T : X → X be a measure-preserving ergodic
transformation. Let also

A : X −→ GL(d,R)

be a measurable function. We assume that both log ||A|| and log ||A−1|| are integrable. These
data allow to define a linear cocycle

X × Rd −→ X × Rd

(x, v) 7−→ (Tx,A(x)v).

Iterating this map leads to consider, for n > 0, the matrices

A(n)(x) := A(T n−1x) · · ·A(x).

When T is invertible, one can also consider, for n < 0

A(n)(x) := (A(−n)(T nx))−1 = (A(T nx)−1 · · · (A(T−1x))−1.

To state Oseledets multiplicative theorem, we distinguish the case where T is invertible,
which allows a stronger conclusion, from the general case.

Theorem (Oseledets [Os])
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1. The invertible case There exist numbers λ1 > · · · > λr (the Lyapunov expo-
nents) and, at almost every point x ∈ X, a decomposition

Rd = F1(x)⊕ · · · ⊕ Fr(x)

depending measurably on x, which is invariant under the action of the cocycle

A(x)Fi(x) = Fi(Tx)

and such that, for 1 6 i 6 r, v ∈ Fi(x), v 6= 0, one has

lim
n→±∞

1

n
log ||A(n)(x)v|| = λi.

2. The general case There exist numbers λ1 > · · · > λr and, at almost every point
x ∈ X, a filtration

Rd = E0(x) ⊃ E1(x) ⊃ · · · ⊃ Er(x) = {0}

depending measurably on x, which is invariant under the action of the cocycle

A(x)Ei(x) = Ei(Tx)

and such that, for v ∈ Ei−1(x)− Ei(x), one has

lim
n→+∞

1

n
log ||A(n)(x)v|| = λi.

Remarks

1. In the invertible case, one obtains the second statement from the first by setting

Ei(x) = ⊕ri+1Fj(x).

2. When A is independent of x, the Lyapunov exponents are the logarithms of the moduli of
the eigenvalues of A and the Fi are the sums of the corresponding generalized eigenspaces.

3. The statements above require obvious modifications for continuous time, i.e for flows
and semiflows.

11.2 The Kontsevich-Zorich cocycle (discrete version)

Let R be a Rauzy class, D the associated Rauzy diagram.

We have defined in subsection 9.1 the map V+ on the space ∆(D) which is the dynamics
in parameter space defined by the Rauzy-Veech algorithm. There is a partition mod.0

∆(D) =
⋃
γ

{π} × P(∆γ)

over arrows γ : π → π′ of D, such that on {π} × P(∆γ), V+ is given by
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V+(π, λ) = (π′, λB−1
γ ) .

The (extended) Kontsevich-Zorich cocycle is the linear cocycle V+,KZ : ∆(D)×RA →
∆(D)× RA over V+ defined on {π} × P(∆γ)× RA by

V+,KZ(π, λ, w) = (V+(π, λ), Bγ w).

Over the accelerated Zorich dynamics V ∗+ on ∆(D), we similarly define

V ∗+,KZ(π, λ, w) = (V ∗+(π, λ), Bγ w),

where γ is the path in D (formed of arrows of the same type, having the same winner)
associated to a single iteration of V ∗ at the point (π, λ) under consideration.

The extended Kontsevich-Zorich cocycle has a natural interpretation in terms of Birkhoff
sums. Let T be an i.e.m with combinatorial data π, length data λ, acting on an interval I.
Assume that T has no connection. Let Tn (with combinatorial data π(n), length data λ(n),
acting on an interval I(n) ⊂ I) be the i.e.m obtained from T after n steps of the Rauzy-Veech
algorithm.

For any function ϕ on I, one can associate a new function S(n)ϕ on I(n) by

S(n)ϕ(x) =
∑

06i<r(x)

ϕ(T i(x)),

where r(x) is the return time in I(n) of x ∈ I(n).

Let w ∈ RA. Consider w as the function on I which takes on I tα the constant value wα.

Then it is easy to see that the function S(n)w is constant on each interval I
(n),t
α ⊂ I(n) and

thus can also be considered as a vector in RA. It follows from the properties of the matrices
Bγ(m,n) mentioned at the end of section 7.5 that one has

V n
+,KZ(π, λ, w) = (π(n), λ(n), S(n)w).

As was mentioned in subsection 7.6, for any arrow γ : π → π′, the image of Im Ωπ under
Bγ is equal to Im Ωπ′ . One obtains the restricted Kontsevich-Zorich cocycle by allowing
only, in the definition of V+,KZ or V ∗+,KZ , the vector w to vary in Im Ωπ.

When necessary, the Kontsevich-Zorich cocycle (in its extended or restricted version) can
also be viewed as a linear cocycle over V or V ∗. This is important when one wants to use the
Oseledets theorem for invertible maps.

11.3 The Kontsevich-Zorich cocycle (continuous version)

The continuous version of the Kontsevich-Zorich cocycle is defined over the Teichmüller
flow (Tt)t∈R (on the moduli space M(M,Σ, κ), or the marked moduli space M̃(M,Σ, κ)) in
the following way.

61



Consider for instance the case of the marked moduli space. Recall that we denote by
Q̃(M,Σ, κ) the associated marked Teichmüller space. On the product

Q̃(M,Σ, κ)×H1(M−Σ,R), we define a linear cocycle over the Teichmüller flow on Q̃(M,Σ, κ)
by

T KZt (ζ, θ) = (Tt(ζ), θ).

The modular group Mod(M,Σ) acts in a non trivial canonical way on both factors of the

product Q̃(M,Σ, κ)×H1(M −Σ,R). The quotient is a vector bundle over the marked moduli

space M̃(M,Σ, κ), equipped with a flow fibered over the Teichmüller flow: this flow is the
continuous version of the extended Kontsevich-Zorich cocycle. One gets the restricted version
by restricting the fiber to the subspace H1(M,R) ⊂ H1(M − Σ,R).

Let us explicit the relation between the discrete and continuous version of the KZ-cocycle.

Let (π, λ, τ) be an element of S(D), viewed both as (cf. subsection 9.1) the domain of the
natural extension of the Rauzy-Veech dynamics and as (cf. subsection 9.5) a transverse section
to the Teichmüller flow in M(1)(D). Let w ∈ RA. Let (M,Σ, κ, ζ) be the translation surface
obtained from (π, λ, τ) by the zippered rectangle construction. As seen in subsection 4.5, this
construction provides us with a canonical basis (ζα)α∈ of the homology group H1(M,Σ,Z).
We associate to w the homology class ζw =

∑
αwαζα ∈ H1(M,Σ,R), which can also be viewed

as a cohomology class in H1(M − Σ,R) from the duality provided by the intersection form.

We assume that (M,Σ, κ, ζ) has no vertical connection. From (π, λ, τ) viewed as a point

in M(1)(D) ⊂ M̃(M,Σ, κ), we flow with the Teichmüller flow during a time t to a point
(π′, λ′, τ ′) ∈ M(1)(D). The continuous Teichmüller trajectory corresponds to a path γ from
π to π′ in D. As seen in subsection 7.4, the translation surface (M,Σ, κ, ζ) is canonically
isomorphic to the translation surface constructed from the data (π′, e−tλ′, etτ ′). This iso-
morphism and the combinatorial data π′ provides another basis (ζ ′α)α∈ for H1(M,Σ,Z) (or
H1(M − Σ,Z)). We express ζw as ζw =

∑
αw
′
αζ
′
α. Then, we have

w′ = Bγw.

The two versions of the KZ-cocycle are thus seen to be equivalent.

11.4 Lyapunov spectrum of the Kontsevich-Zorich cocycle

We start with some simple observations which follow from subsections 7.6, 9.7 and 10.3.

It follows from the proposition in subsection 7.6 that one can choose, for each vertex π of
D, a basis for the quotient space RA/Im Ωπ, in such a way that, for every arrow γ : π → π′,
the homomorphism from RA/Im Ωπ to RA/Im Ωπ′ induced by Bγ corresponds to the identity
matrix in the selected bases.

As a consequence, vectors in these quotient spaces stay bounded under the action of the
KZ-cocycle. It follows that 0 is the unique Lyapunov exponent associated with this part of
the KZ-cocycle. The multiplicity of this exponent is s− 1 = d− 2g.
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By the Masur-Veech theorem stated in subsection 6.11 and proved in subsections 9.7 and
10.3, the canonical measures onM(M,Σ, κ) and M̃(M,Σ, κ) have finite total masses, and the
Teichmüller flow is ergodic with respect to these invariant measures. As seen in Subsection 9.7
and first proved by Zorich, the canonical invariant measure on M̃(M,Σ, κ) induces on S∗(D) a
finite measure which is equivalent to Lebesgue measure and invariant under V ∗. This measure
can be projected to ∆(D) to obtain a finite measure, equivalent to Lebesgue measure, which
is invariant under V ∗+.

We can thus apply the Oseledets theorem to the restricted KZ-cocycle, either in the con-
tinuous version over the Teichmüller flow or in the discrete version over V ∗ or V ∗+.

However, one has first to check the integrability condition of subsection 10.1. We do that
for the discrete version of the cocycle. From the definition of the Zorich acceleration V ∗+ of the
Rauzy-Veech dynamics, the norm of the matrix Bγ defining the KZ-cocycle at a point (π, λ)
is bounded by

||Bγ|| 6 C

∑
α λα

minα λα
.

The same estimate holds for the inverse of this matrix. But the proposition at the end of
subsection 9.7 states that the majorant in the inequality above is larger than A on a set of
measure at most A−1(logA)d−2, which easily implies the required integrability.

Observe that the same computation shows that the return time for the Teichmüller flow
on S∗(D) is integrable. By Birkhoff’s ergodic theorem, the mean value θ∗1 over S∗(D) of this

return time has the following property: for almost any point in ζ ∈ M̃(M,Σ, κ), we have

lim
T→+∞

1

T
#{t ∈ [0, T ]; Tt(ζ) ∈ S∗(D)} =

1

θ∗1
.

As a consequence, the Lyapunov exponents for the discrete KZ-cocycle over V ∗ or V ∗+ are
proportional by a factor θ∗1 to those of the continuous KZ-cocycle over T .

Exercise: Show that the largest Lyapunov exponent of the continuous KZ-cocycle
over T is equal to 1, and that the largest Lyapunov exponent of the discrete KZ-cocycle over
V ∗ or V ∗+ is equal to θ∗1.

Exercise: Use the ergodicity of V ∗+ to show that the largest Lyapunov exponent of
the KZ-cocycle is simple.

Let γ : π → π′ be an arrow of D. We have also seen in subsection 7.6 that, when we
equip Im Ωπ and Im Ωπ′ with the symplectic structures defined by Ωπ, Ωπ′ respectively, the
restriction of Bγ to Im Ωπ is symplectic. This implies that the Lyapunov spectrum (i.e the
Lyapunov exponents, counted with multiplicities) of the restricted KZ-cocycle is symmetric
with respect to 0: counted with multiplicities the Lyapunov exponents of the continuous
restricted KZ-cocycle have the form

1 = θ1 > θ2 > . . . θg > θg+1 = −θg > . . . > θ2g−1 = −θ2 > θ2g = −1,
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the Lyapunov exponents for the discrete restricted KZ-cocycle over V ∗ or V ∗+ being the
θ∗i := θ∗1 θi.

Kontsevich and Zorich conjectured that all Lyapunov exponents of the restricted KZ-
cocycle are simple. In particular, this stipulates that θg > θg+1 = −θg, hence that the
restricted KZ-cocycle is hyperbolic in the sense that it does not have 0 as Lyapunov expo-
nent. Forni then proved the hyperbolicity of the restricted KZ-cocycle before Avila and Viana
proved the full conjecture of Kontsevich and Zorich.

Theorem (Forni [For2],[Kri]) The restricted Kontsevich-Zorich cocycle is hyper-
bolic.

The (Lyapunov) hyperbolicity of the KZ-cocycle holds w.r.t the invariant measure equiv-
alent to Lebesgue measure, but not to any invariant measure.

Exercise : In the Rauzy diagram with g = 2, d = 4, find a complete loop γ such
that Bγ has two eigenvalues of modulus 1.

Observe that when g = 2, Forni’s theorem already implies that the Lyapunov spectrum of
the KZ-cocycle is simple. For higher genus, we have

Theorem (Avila-Viana [AvVi1],[AvVi2]) The Lyapunov spectrum of the restricted
Kontsevich-Zorich cocycle is simple.

The proofs of both theorems (Avila-Viana’s approach is quite different from Forni’s) are
beyond the scope of these notes.

The Lyapunov exponents of the restricted discrete KZ-cocycle over V ∗ and V ∗+ are the
same. The conclusions of the Oseledets theorem are however slightly different.

• For almost every (π, λ, τ) ∈ S∗(D), there exists a direct sum decomposition into 1-
dimensional subspaces

Im Ωπ = ⊕2g
1 Fi(π, λ, τ),

such that, for w ∈ Fi(π, λ, τ), w 6= 0, we have, writing (V ∗KZ)n(π, λ, τ, w) = ((V ∗)n(π, λ, τ), wn)

lim
n→±∞

1

n
log
||wn||
||w||

= θ∗i .

• For almost every (π, λ) ∈ ∆(D), there exists a filtration

Im Ωπ = E0(π, λ) ⊃ E1(π, λ) ⊃ . . . ⊃ E2g(π, λ) = {0},

with codimEi(π, λ) = i, such that, for w ∈ Ei−1(π, λ)−Ei(π, λ), writing (V ∗+,KZ)n(π, λ, w) =
((V ∗+)n(π, λ), wn), we have

lim
n→+∞

1

n
log
||wn||
||w||

= θ∗i .
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For almost every (π, λ, τ) ∈ S∗(D), and every 0 6 i < 2g, the direct sum ⊕2g
i+1Fi(π, λ, τ)

is independent of τ and equal to Ei(π, λ). Symmetrically, for almost every (π, λ, τ) ∈ S∗(D),
and every 0 < i 6 2g, the direct sum ⊕i1Fi(π, λ, τ) is independent of λ.

When one considers (assuming s > 1) the extended KZ-cocycle over V ∗ or V ∗+, one obtains
moreover

• In the invertible case, a subspace F∗(π, λ, τ), which complements Im Ωπ and has dimen-
sion s− 1, associated to the exponent 0;

• In the non invertible case, the subspaces associated to the positive exponents are the

E∗i (π, λ) := Ei(π, λ)⊕ F∗(π, λ, τ), ∀ 0 6 i 6 g,

which satisfy codimE∗i (π, λ) = i. The subspace associated to the exponent 0 is

E∗(π, λ) := F∗(π, λ, τ)⊕ Eg+1(π, λ),

and those associated with the negative exponents θ∗i , g < i 6 2g are the Ei(π, λ).

11.5 Lyapunov exponents of the Teichmüller flow

Recall that S(D) was identified in subsection 9.5 with the transverse section to the
Teichmüller flow in M(1)(D)

{(π, λ, τ) ∈
⊔
π

{π} ×∆×Θπ;
∑
α

λα = 1, τ Ωπ
tλ = 1},

the return map being given by the Rauzy-Veech invertible dynamics V . Thus, a number
of iterations of V , associated to a path γ : π → π′ in D, correspond to the Teichmüller time

log
||λ||1

||λ B−1
γ ||1

= − log ||λ B−1
γ ||1

and to the return map

(π, λ, τ) 7→ (π′,
λ B−1

γ

||λ B−1
γ ||1

, ||λ B−1
γ ||1 τ B−1

γ ).

From subsection 7.6, we know that the action of B−1
γ on row vectors in Ker Ωπ is neutral

and the action on the quotient RA/Ker Ωπ ' Im Ωπ is given by Bγ. From this we deduce

immediately the Lyapunov exponents of the Teichmüller flow onM(1)(D) (with respect to the
canonical invariant measure)
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• There are, counted with multiplicities, d − 1 = (2g − 1) + (s − 1) positive Lyapunov
exponents which are the simple exponents

2 = 1 + θ1 > 1 + θ2 > . . . > 1 + θ2g−1

and, when s > 1, the exponent 1 (between 1 + θg and 1 + θg+1) with multiplicity s− 1.

• There are symmetrically d− 1 = (2g− 1) + (s− 1) negative Lyapunov exponents which
are the simple exponents

−1 + θ2 > . . . > −1 + θ2g−1 > −1 + θ2g = −2

and, when s > 1, the exponent −1 with multiplicity s− 1.

• Finally, the exponent 0 = 1 + θ2g = −1 + θ1 was killed by the normalization conditions
on λ and τ , but is still present with multiplicity 1 in the direction of the flow.

• When considering the flow in M(D), the exponent 0 has multiplicity 2 because the
foliation by the levels of the area map A is invariant.

• The strong local stable manifold of a point (π, λ0, τ0) ∈ M(D) has equation
{λ = λ0, (τ − τ0) Ωπ

tλ0 = 0}. Similarly, the strong local unstable manifold has
equation {τ = τ0, τ0 Ωπ

t(λ− λ0) = 0}.

11.6 Deviation of ergodic averages

Let T be an i.e.m with combinatorial data (A, π) and domain tI tα. Given a point x0, a
letter α ∈ A and an integer k, denote the number of visits to I tα of the orbit of x0 up to time
k by

χα(k) := # {i ∈ [0, k) ; T i(x0) ∈ I tα} .

How do these numbers behave as k goes to +∞? This was one of the questions that led
Kontsevich and Zorich to introduce their cocycle.

A first answer is provided by Birkhoff’s theorem: by the theorem of Masur and Veech, for
almost all length data λ, T is ergodic w.r.t Lebesgue measure. Therefore, for such a T , one
has , for all α ∈ A and almost all x0

lim
k→+∞

1

k
χα(k) = |I tα| = λα .

A slightly better answer is obtained by using that, by the same theorem of Masur and
Veech, almost all T are actually uniquely ergodic. Indeed, if f is a uniquely ergodic minimal
homeomorphism of a compact metric space X and ϕ is a continuous function on X, the
convergence of the Birkhoff sums of ϕ holds for any initial value x0 and is uniform in x0.
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Here, T is not a homeomorphism and the characteristic function of I tα is not continuous but
this is not a problem in reason of the following trick.

Split any point in the forward orbit of the singularities of T−1 and the backward orbit
of the singularities of T into its left and right limit. One obtains, equipped with the order
topology, a compact metric space Î. The i.e.m T induces on Î a homeomorphism T̂ which is
easily seen to be uniquely ergodic when T is. Also, the interval I tα corresponds to a clopen set

in Î so its characteristic function is continuous.

A much more precise answer on the speed of convergence of the 1
k
χα(k) is obtained using

the KZ-cocycle.

Assume that T has no connection. Let (I(n))n>0 be the intervals of induction for the
Rauzy-Veech algorithm, (Tn)n>0 the corresponding i.e.m, w ∈ RA. Viewing w as the function
on tI tα with constant value wα on I tα, the Birkhoff sums of w are given by

Skw(x0) =
∑
α

wαχα(k) .

On the other hand, we have seen in subsection 11.2 that the KZ-cocycle is directly related to
the Birkhoff sums S(n)w of w corresponding to the return to I(n).

In order to relate Skw(x0) to the S(n)w, we introduce the point x∗ of the orbit
{T j(x0); 0 6 j 6 k } which is closest to the left endpoint of I. We consider separately in
Skw(x0) the part of the sum which is before x∗ and the part which is after x∗. Thus, we have
just to consider Birkhoff sums Sjw(x∗) (with j ∈ Z).

Consider such a sum Sjw(x∗), with for instance j > 0 (the case j 6 0 is similar). In the
orbit {T `(x∗); 0 6 ` 6 j }, there exists a unique subsequence (x∗s)06s6r = (T js(x∗))06s6r, and
a sequence (ns)06s6r with the following properties:

• 0 = j0 < j1 < . . . < jr = j ;

• 0 6 nr 6 . . . 6 n0 ;

• the point x∗s belongs to I(ns) for 0 6 s 6 r;

• the point x∗s does not belong to I(ns+1) for 1 6 s 6 r;

• the point T `(x∗) does not belong to I(ns) for 1 6 s 6 r, js−1 < ` < js;

This means that the sum
∑js−1

js−1
w(T `(x∗)) corresponds to a first return in I(ns). Writing αs

for the letter such that x∗s−1 ∈ I
t, (ns)
αs , we have

Sjw(x∗) =
r∑
1

(S(ns)w)αs .
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As the return time of Tn in I(n+1) is 1 or 2, we have actually n0 > n1 > . . . > nr. On the
other hand, assume that the data (π, λ) of T are typical for Oseledets theorem applied to the
KZ-cocycle; when w ∈ E∗i (π, λ) for some 0 6 i < g (resp. w ∈ E∗g (π, λ)), one has

lim sup
log ||S(n)w||
log ||S(n)1||

= θi+1,

(resp. lim sup
log ||S(n)w||
log ||S(n)1||

= 0. )

From this, one obtains the following result

Theorem [Zo3] For almost every i.e.m. T = Tπ,λ, and all x ∈ I, one has

lim sup
log |Skw(x)|

log k
6 θi+1

if w ∈ E∗i (π, λ) for some 0 6 i < g and

lim sup
log |Skw(x)|

log k
= 0

if w ∈ E∗g (π, λ).

There is a similar interpretation of the KZ-cocycle in terms of the way that the orbits of
the vertical flow of a typical translation surface wind around the surface: see [Zo1],[Zo4].

12 The cohomological equation

We present in this section the main result of [MmMsY]. Let f : X → X be a map. The
cohomological equation associated to this dynamical system is

ψ ◦ f − ψ = ϕ,

where ϕ is a given function on X (usually assumed to have some degree of smoothness), and
ψ is an unknown function on X (generally required to have another degree of smoothness).

12.1 Irrational numbers of Roth type

Definition An irrational number α is of Roth type if, for every ε > 0, there exists
C = Cε > 0 such that, for every rational p

q
, one has

|α− p

q
| > C

q2+ε
.
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The reason for the terminology is the celebrated result

Theorem (Roth) Every irrational algebraic number is of Roth type.

Let α = [a0; a1, . . .] be the continuous fraction decomposition of the irrational number α,
and let (pn

qn
) be the associated convergents of α. Then α is of Roth type iff qn+1 = O(q1+ε

n ) for

all ε > 0; this can be reformulated as an+1 = O(qεn) for all ε > 0.

The set of irrational numbers of Roth type has full Lebesgue measure: indeed, for every
q > 1, C > 0, the set of α ∈ (0, 1) such that

|α− p

q
| < C

q2+ε

for some p ∈ Z has measure 6 2Cq−1−ε and the series
∑

q>1 q
−1−ε is convergent.

Standard methods of harmonic analysis allow to prove the following fundamental result,
where Rα denotes the rotation x 7→ x+ α on T.

Theorem Let α be an irrational number of Roth type and let r, s be nonnegative
real numbers with r − s > 1. For every function ϕ ∈ Cr(T) of mean value 0, there exists a
unique function ψ ∈ Cs(T) of mean value 0 such that

ψ ◦Rα − ψ = ϕ.

12.2 Interval exchange maps of Roth type

Let T be an interval exchange map, (A, π) its combinatorial data; denote by R the Rauzy
class of π and by D the associated Rauzy diagram.

We assume that T has no connection. The Rauzy-Veech algorithm applied to T produces
an infinite path γ in D starting from π. From Proposition 1 in subsection 7.7, the path γ is
∞-complete. We can therefore write in a unique way γ as a concatenation

γ = γ1 ∗ γ2 ∗ . . . ∗ γn ∗ . . .

where each γi is complete but no strict initial subpath of γi is complete. We write γ(n) for
the initial part

γ(n) = γ1 ∗ γ2 ∗ . . . ∗ γn
of γ.

We say that T is an i.e.m of Roth type if it satisfies the three conditions (a), (b), (c) below.

(a) For every ε > 0, there exists C = Cε such that, for all n > 0, one has

||Bγn|| 6 C ||Bγ(n−1)||ε.
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Exercise Let x 7→ x + α be an irrational rotation on T and let T be the associated
i.e.m with two intervals. Show that α is of Roth type iff T satisfies condition (a).

Let λ ∈ RA be the length data of T and let E1 = {
∑

α λαwα = 0}; this hyperplane of RA
should be viewed as the space of functions w, constant on each I tα, of mean value 0.

(b) There exists θ > 0, C > 0, such that, for all n > 0, one has

||Bγ(n)|E1|| 6 C ||Bγ(n)||1−θ.

Exercise Show that condition (b) is always satisfied when d = 2.

Exercise Show that condition (b) implies that T is uniquely ergodic.

Exercise Assume that T satisfies the following reinforcement of condition (a): there
exists C > 0 such that ||Bγn|| < C for all n > 0. Show that this imply that T satisfies
condition (b).

Exercise Show that the condition of the last exercise is satisfied iff the orbit of (π, λ)
under V is relatively compact in ∆(D).

In order to state part (c) of the definition of Roth type i.e.m, we define, for ` > k

γ(k, `) = γk+1 ∗ . . . ∗ γ`

and introduce, for k > 0

Es(k) := {w ∈ RA ; lim sup
`→+∞

log ||Bγ(k,`)w||
log ||Bγ(k,`)||

< 0}.

Observe that Es(k) is a vector subspace of RA which is sent by Bγ(k,`) onto Es(`). Denote

by B[
k,` the restriction of Bγ(k,`) to Es(k) and by B]

k,` the map from RA/Es(k) to RA/Es(`)
induced by Bγ(k,`).

(c) For every ε > 0, there exists C = Cε such that, for all ` > k, we have

||B[
k,`|| 6 C ||Bγ(`)||ε,

||(B]
k,`)
−1|| 6 C ||Bγ(`)||ε.

Assume that µ is a probability measure which is invariant under the dynamics V generated
by the Rauzy-Veech algorithm or the accelerated version V ∗. Assume also that the integrability
condition of Oseledets’s theorem is satisfied by the Kontsevich-Zorich cocycle w.r.t µ. For
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instance, µ could be the canonical V ∗-invariant measure absolutely continuous w.r.t Lebesgue,
or could be supported by a periodic orbit of V (or more generally a compact V -invariant subset
of ∆(D)).

Then, property (c) is satisfied by µ-almost all T . The spaces Es(k) are the stable subspaces
associated to the negative Lyapunov exponents (relative to µ) and the estimates in (c) follow
from the conclusions of Oseledets’s theorem.

Property (b) is also satisfied by µ-almost all T . Indeed, the largest Lyapunov exponent for
µ is simple, with associated hyperplane equal to E1 (the simplicity of the largest exponent for
µ is proven from the positivity of the matrices B as in subsection 10.2).

Regarding property (a), no general statement w.r.t any invariant probability µ as above is
known. On the other hand, with respect to the canonical V ∗-invariant measure absolutely con-
tinuous w.r.t Lebesgue, (or equivalently w.r.t Lebesgue measure), almost all T satisfy property
(a): this follows from a stronger statement that will be presented in section 14. We thus obtain

Proposition For any combinatorial data (A, π), and Lebesgue almost any length
vector λ, the i.e.m T constructed from these data is of Roth type.

12.3 The cohomological equation for interval exchange maps

The first and decisive breakthrough concerning the cohomological equation for i.e.m of
higher genus was obtained by Forni [For1]. He actually works with the (nonzero) constant
vectorfields X on a translation surface (M,Σ, κ, ζ) for which the cohomological equation takes
the form

X.Ψ = Φ.

He defines from the flat metrics associated to the structure of translation surface a family
Hs(M) of Sobolev spaces and obtains the following result

Theorem (Forni[For1],[For3]) Let k > 0 be an integer and r, s be real numbers
satisfying s − 3 > k > r. For almost all constant unit vectorfields X on (M,Σ, κ, ζ), and all
functions Φ ∈ Hs(M) satisfying D.Φ = 0 for all D ∈ IsX , there exists Ψ ∈ Hr(M) such that
X.Ψ = Φ. Here, IsX is the finite-dimensional space of X-invariant distributions in H−s(M).

A slight drawback of Forni’s theorem is that no explicit description of the set of ”good”
directions for which it is possible to solve the cohomological equation is given. This is ad-
dressed by the next result.

Let T be an interval exchange map, (A, π) its combinatorial data, tI tα the domain of T .
We denote by BV1

∗(tI tα) the Banach space of functions ϕ on tI tα with the following properties

• the restriction of ϕ to each I tα is absolutely continuous and its derivative is a function of
bounded variation;

• the mean value of the derivative Dϕ over tI tα is 0.
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Remark The first property implies that the limits ϕ((uti)
+) (for 0 6 i < d) and

ϕ((uti)
−) (for 0 < i 6 d) exist, where u0 = ut0, ud = utd are the endpoints of the domain of t

and ut1 < . . . < utd−1 are the singularities of T . Then the second condition is

d−1∑
1

(ϕ((uti)
+)− ϕ((uti)

−)) + ϕ(u+
0 )− ϕ(u−d ) = 0.

Theorem [MmMsY] Assume that T has no connection and is of Roth type. Then,
for every function ϕ ∈ BV1

∗(tI tα), there exists a bounded function ψ on tI tα and a function χ
which is constant on each I tα such that

ψ ◦ T − ψ = ϕ− χ .

Remark The solution (ψ, χ) of the equation is unique if one restricts ψ, χ to smaller
subspaces. More precisely, let ET be the subspace of RA formed of the functions χ, constant
on each I tα, which can be written as ψ ◦ T − ψ for some bounded function ψ; let E∗T be a
complementary subspace of ET in RA. Then, under the hypotheses of the theorem, one can
find a unique pair (ψ, χ) satisfying moreover that ψ has mean value 0 and that χ ∈ E∗T . The
quotient space RA/ET can thus be seen as the obstruction to solve the cohomological equation
for the smoothness data under consideration.

As the derivative of T is 1 on each I tα, differentiating the cohomological equation leads to the
same equation for derivatives of ϕ, ψ, with only constants of integration to keep under control.
A result on the cohomological equation in higher smoothness is therefore easily deduced from
the basic result above.

For r > 1, let BVr
∗(tI tα) be the space of functions ϕ on tI tα such that

• the restriction of ϕ to each I tα is of class Cr−1, Dr−1ϕ is absolutely continuous on I tα and
Drϕ is a function of bounded variation;

• the mean value of the derivative Djϕ over tI tα is 0 for every integer 0 < j 6 r.

On the other hand, let I be the interval supporting the action of T . Denote for r > 2 by
Cr−2+Lip(I) the space of functions ψ on I which are of class Cr−2 on all of I and such that
Dr−2ψ is Lipschitz on I.

Finally, for r > 1, let E(r) be the space of functions χ on tI tα such that

• the restriction of χ to each I tα is a polynomial of degree < r;

• the mean value of the derivative Djχ over tI tα is 0 for every integer 0 < j < r.

One has then
Theorem [MmMsY] Assume that T has no connection and is of Roth type. Let r be an
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integer > 2. Then, for every function ϕ ∈ BVr
∗(tI tα), there exists a function ψ ∈ Cr−2+Lip(I)

and a function χ ∈ E(r) such that

ψ ◦ T − ψ = ϕ− χ .

12.4 Sketch of the proof

We give some indications about the steps of the proof of the theorem.

We want to use the following classical result.

Theorem (Gottschak-Hedlund) Let f be a minimal homeomorphism of a compact
metric space X, let x0 be a point of X, and let ϕ be a continuous function on X. The following
are equivalent:

1. The Birkhoff sums
∑n−1

0 ϕ ◦ f i(x0) are bounded.

2. There exists a continuous function ψ on X such that

ψ ◦ f − ψ = ϕ.

By splitting each point in the orbits of the singularities of T and T−1 into its left and right
limit, one obtain a compact metric space Î on which T induces a minimal homeomorphism.
Moreover, every continuous function ψ̂ on Î induces a bounded function on I. Therefore, in
view of the theorem of Gottschalk-Hedlund, it is sufficient to find, for every ϕ ∈ BV1

∗(tI tα), a
function χ, constant on each I tα, such that the Birkhoff sums of ϕ− χ are bounded.

Let BV(tI tα) be the Banach space of functions ϕ1 of bounded variation on tI tα, equipped
with the norm

||ϕ1||BV := sup
tItα
|ϕ1(x)| + |ϕ1|BV ,

|ϕ1|BV :=
∑
α

VarItα ϕ1 .

Let I(n) = tI t, (n)
α ⊂ I be the interval of induction for the step of the Rauzy-Veech algorithm

associated to the initial path γ(n) of γ (notations of subsection 12.2). A simple but crucial
observation, in the spirit of the Denjoy estimates for circle diffeomorphisms, is that, for ϕ1 ∈
BV(tI tα), the Birkhoff sum S(n)ϕ1 corresponding to returns in I(n) (see subsection 11.2) satisfy

S(n)ϕ1 ∈ BV(tI t, (n)
α ) with

|S(n)ϕ1|BV 6 |ϕ1|BV .

This estimate is the basic ingredient in the proof of the
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Proposition Assume that T has no connection and satisfy conditions (a) and (b) of
subsections 12.2. For every function ϕ1 ∈ BV(tI tα) of mean value 0, and every n > 0, we
have

sup
tIt, (n)
α

|S(n)ϕ1(x)| 6 C ||Bγ(n)||1−
θ
2d ||ϕ1||BV ,

where C depends only on the constants in condition (a) and (b).

From condition (a), the lengths |I t, (n)
α | satisfy

lim
n→+∞

log |I t, (n)
α |

log ||Bγ(n)||
= −1 .

Therefore, for every ϕ1 ∈ BV(tI tα) of mean value 0, and every n > 0, there exists a primitive
ϕ0 ∈ BV1

∗(tI tα) of ϕ1 (one constant of integration being chosen for each I tα) such that

sup
tIt, (n)
α

|S(n)ϕ0(x)| 6 C ||Bγ(n)||−
θ
3d ||ϕ1||BV .

Using condition (c) of subsection 12.2, one can change the order of the quantifiers to make
the primitive ϕ0 independent of n and still satisfy

sup
tIt, (n)
α

|S(n)ϕ0(x)| 6 C ||Bγ(n)||−ω||ϕ1||BV ,

for some ω > 0. But the last estimate, together with condition (a) of 12.2, easily imply
that the Birkhoff sums of ϕ0 are bounded. This proves the required result: starting from
any ϕ ∈ BV1

∗(tI tα), we take ϕ1 := Dϕ ∈ BV(tI tα); it has mean value 0 and therefore has a
primitive ϕ0 such that the Birkhoff sums of ϕ0 are bounded. The difference ϕ−ϕ0 is constant
on every I tα.

13 Connected components of the moduli spaces

We present in this section the classification of the connected components of the moduli space
M(M,Σ, κ) by Kontsevich and Zorich [KonZo]. The classification of the connected compo-
nents of the marked moduli space is the same: it is easy to see that the canonical covering
map from M̃(M,Σ, κ) to M(M,Σ, κ) induces a bijection at the π0 level. Observe also that
for classification purposes, we can and will assume that all ramification indices κi are > 1.

13.1 Hyperelliptic components

Let d > 4 be an integer, and let P ∈ C[z] be a polynomial of degree d+1 with simple roots.
Adding 1 or 2 points at infinity (depending on whether d is even or odd) to the complex curve
{w2 = P (z)}, one obtains an hyperelliptic compact Riemann surface M of genus g = [d

2
]. The
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holomorphic 1-form ω := dz
w

has no zero at finite distance. When d is even, it has a zero of
order d − 2 = 2g − 2 at the single point A1 at infinity. When d is odd, it has a zero of the
same order g − 1 = d−3

2
at each of the two points A1, A2 at infinity.

The translation surface defined by (M,ω) has therefore the following data:

• s = 1, κ1 = 2g − 1 if d is even;

• s = 2, κ1 = κ2 = g if d is odd.

Moreover we have d = 2g + s − 1 in all cases so d is the complex dimension of the corre-
sponding moduli space.

Observe that, for a ∈ C∗, b ∈ C, the polynomials P and a−2P (az + b) produce isomorphic
translation surfaces. One has therefore exactly d independent complex parameters to deform
the translation surface through a change of polynomial P . It is not difficult to see that one
gets in this way, for each integer d > 4, a whole connected component of the corresponding
moduli space. Such connected components are called hyperelliptic.

Hyperelliptic components correspond to the simplest Rauzy classes. Let #A = d. A Rauzy
class containing some combinatorial data π = (πt, πb) such that πt(α) + πb(α) = d + 1 for all
α ∈ A is associated to the hyperelliptic component of dimension d.

When g = 2, the values d = 4 and d = 5 correspond to a double zero or two simple zeros
for ω respectively. It is immediate to check that the hyperelliptic Rauzy classes described
above are the only ones giving these values of (g, s, κ). Therefore, the two strata of the moduli
space in genus 2 are connected and hyperelliptic.

Kontsevich and Zorich discovered that the situation is quite different in genus > 3.

13.2 Parity of spin structure

Let (M,Σ, κ, ζ) be a translation surface such that all κi are odd. We denote as usual

Σ = (A1, . . . , As). The divisor D =
∑ (κi−1)

2
Ai defines a spin structure on the Riemann surface

M (equipped with the complex structure defined by the structure of translation surface). The
parity of this spin structure is the parity of the dimension of the space of meromorphic functions
f on M such that (f) +D 6 0.

The reader should consult [At], [Mil] for some fundamental facts and results about spin
structures and their parity. A fundamental result is that the parity of the spin structure is
invariant under deformation, and is therefore the same for all translation surfaces in a same
connected component of the moduli space.

The parity of the spin structure can be computed in the following way. For a smooth loop
c : S1 → M − Σ, define the index ind(c) to be the degree mod 2 of the map which associates
to t ∈ S1 the angle between the tangent vector ċ(t) and the horizontal direction at c(t). As all
ramification indices κi are odd, the index depends only on the class of c in H1(M,Z). Now let
ai, bi, 1 6 i 6 g be smooth loops in M − Σ such that their homology classes form a standard
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symplectic basis of H1(M,Z). The parity of the spin structure for the translation surface
(M,Σ, κ, ζ) is then given by

g∑
1

(ind(ai) + 1)(ind(bi) + 1) mod. 2.

13.3 Classification

Kontsevich and Zorich have shown that hyperellipticity and parity of spin structure are
sufficient to classify components. More precisely

Theorem [KonZo] Let (g, s, κ) be combinatorial data (with all κi > 1) determining
a moduli space for translation surfaces.

1. If at least one of the κi is even, the moduli space is connected, except when s = 2,
κ1 = κ2 = g > 4. In this case, the moduli space has two components, one hyperelliptic
and the other not hyperelliptic.

2. If all κi are odd and either s > 3 or s = 2 and κ1 6= κ2, then the moduli space has
two connected components, one with even spin structure and the other with odd spin
structure.

3. If either s = 1, g > 4 or s = 2, κ1 = κ2 = g odd > 5, the moduli space has three connected
components: one hyperelliptic and two non hyperelliptic distinguished by the parity of the
spin structure.

4. If g = 3, s = 1 or s = 2, κ1 = κ2 = 3, the moduli space has two components, one
hyperelliptic and the other not hyperelliptic. If g = 2,s = 1, the moduli space is connected.

We just say a few words of the scheme of the proof. The confluence of the zeros of the
1-form associated to the structure of translation surface organizes the various moduli spaces
as the strata of a stratification. The minimal stratum Smin corresponds to a single zero of
maximal multiplicity 2g − 2.

Kontsevich and Zorich establish the following fact, which allows to rely any stratum to
Smin: for any stratum S, and any connected component C of Smin, there exists exactly one
component of S which contains C in its closure.

The determination of the connected components of the minimal stratum Smin is by induc-
tion on the genus g. First, using a local construction first described in [EMaZo], they show
that there are at least as many components as stated in the theorem: given a translation
surface with a single zero A1 of multiplicity 2g − 2, they split A1 into two zeros A′1, A

′′
1 of

respective multiplicities k′1, k
′′
1 , slit the surface along a segment joining A′1 and A′′1, and glue

the two sides to the two boundary components of a cylinder. The resulting translation surface
has genus g + 1, a single zero of maximal multiplicity 2g and the parity of its spin structure
changes when the parity of k′1 change.
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That there are no more components of Smin that as stated in the theorem is also proved by
induction. The idea is to present any generic translation surface in Smin as the suspension, via
the zippered rectangle construction, of an i.e.m and then take off a handle by an appropriate
reduction operation.

14 Exponential mixing of the Teichmüller flow

We present in this section the main results from [AvGoYo].

14.1 Exponential mixing

Let (X,B,m) be a probability space, and let (T t) be a measure-preserving dynamical
system. We allow here for discrete time (t ∈ Z) as well as continuous time (t ∈ R). We denote
by L2

0(X) the Hilbert space of square-integrable functions of mean value 0, by U t the unitary
operator ϕ 7→ ϕ ◦ T t of L2

0(X). For ϕ, ψ ∈ L2
0(X), we define the correlation coefficient of

ϕ, ψ by
cϕ,ψ(t) :=< ϕ,U tψ > .

We recall that

• T t is ergodic iff, for all ϕ, ψ ∈ L2
0(X), cϕ,ψ(t) converges to 0 in the sense of Cesaro as

t→ +∞ ;

• T t is mixing iff, for all ϕ, ψ ∈ L2
0(X), cϕ,ψ(t) converges to 0 as t→ +∞ .

Exponential mixing requires that this convergence is exponentially fast. However, simple
examples (for instance, the shift map) show that this cannot happen, even in the most chaotic
dynamical systems, for all functions ϕ, ψ ∈ L2

0(X). One generally requires that ϕ, ψ belong
to some Banach space E of ”regular” functions on X, dense in L2

0(X). Then the correlation
coefficients should satisfy

cϕ,ψ(t) 6 C||ϕ||E ||ψ||E exp(−δ t),

where δ > 0 is independent of ϕ, ψ ∈ E. Observe that this indeed imply mixing.

Exponential mixing, unlike ergodicity or mixing, is not a spectral notion (one which de-
pends only on the properties of the unitary operators U t).

Theorem [AvGoYo] The Teichmuller flow is exponentially mixing on any connected

component of any marked moduli space M̃(1)(M,Σ, κ).

The subspace E of ”regular” functions will be explicited below; for any 1 > β > 0, it can
be chosen to contain all β-Hölder functions with compact support.
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14.2 Exponential mixing and irreducible unitary representations of SL(2,R)

The theorem has an interesting consequence with respect to the representation of SL(2,R)
determined by the action of this group on the marked moduli spaces.

Ler C be a connected component of some marked moduli space M̃(1)(M,Σ, κ). Denote by
H the Hilbert space of zero mean L2 functions on C. The action of SL(2,R) induces an unitary
representation of SL(2,R) in H. As any unitary representation of SL(2,R), it decomposes as
an hilbertian sum

H =

∫
Hξdµ(ξ),

where, for each ξ, the representation of SL(2,R) in Hξ is irreducible.

According to Bargmann, the nontrivial irreducible unitary representations of SL(2,R) are
divided into three families, the discrete, principal and complementary series. This corresponds
to an orthogonal decomposition into invariant subspaces

H = Htr ⊕Hd ⊕Hpr ⊕Hc .

The ergodicity of the action of SL(2,R) (Masur-Veech) means that Htr = {0}.

Write gt for the diagonal element (et, e−t) of SL(2,R) corresponding to the Teichmüller
flow. In general, for vectors v, v′ belonging both to the discrete component Hd or the principal
component Hpr of the representation, one has, for t 6 1

< gt(v), v′ > 6 C t e−t ||v|| ||v′|| .

On the other hand, the complementary series is parametrized by a parameter s ∈ (0, 1),
with

Hs = {f : S1 → C , ||f ||2 :=

∫ ∫
f(z)f(z′)

|z − z′|1−s
dz dz′ < +∞},

the representation of SL(2,R) in Hs being given by(
a b
c d

)
.f(z) = |βz + α|−1−s f

(
αz + β

βz + α

)
,

with (
i i
−1 1

)−1(
a b
c d

)(
i i
−1 1

)
=

(
α β

β α

)
.

We observe that the norm in Hs is equivalent to the norm

||f ||′ =
(∑

(1 + |n|)−s|f̂(n)|2
) 1

2
.
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The integral powers en(z) := zn, n ∈ Z, are eigenfunctions for the action of SO(2,R):(
cos θ sin θ
− sin θ cos θ

)
en = exp(2iπnθ) en .

An easy calculation show that, for m,n ∈ Z, t > 1

| < gt em , en > | 6 < gt e0 , e0 >,

C−1
s et(s−1) 6 < gt e0 , e0 > 6 Cs e

t(s−1),

with Cs > 0 depending on s but not on t.

Definition A unitary representation H of SL(2,R) has an almost invariant vector
if, given any compact subset K of SL(2,R) and ε > 0, there exists a unit vector v ∈ H such
that

||g.v − v|| < ε

for all g ∈ K.
A unitary representation H of SL(2,R) with no almost invariant vector is said to have a

spectral gap.

Let H =
∫
Hξdµ(ξ) be the decomposition of a unitary representation H of SL(2,R) into

irreducible representations. Then H has a spectral gap iff there exists s0 ∈ (0, 1) such that,
for almost every ξ, Hξ is neither the trivial representation nor isomorphic to a representation
in the complementary series with parameter s ∈ (s0, 1).

Definition Let H be a unitary representation of SL(2,R). A vector v ∈ H is
Cr-SO(2,R)-smooth if the function

θ →
(

cos θ sin θ
− sin θ cos θ

)
.v

is of class Cr.

Proposition (Ratner [Rat]) If the unitary representation H has a spectral gap,
then it is exponential mixing for C2-SO(2,R)-smooth vectors: there exists δ > 0 and C > 0
such that, for any C2-SO(2,R)-smooth v, v′ ∈ H, t > 1

| < gt.v, v
′ > | 6 C exp(−δt) ||v||2 ||v′||2 ,

where ||v||2 is the sum of the norm of v and the norm of the second derivative at 0 of

θ →
(

cos θ sin θ
− sin θ cos θ

)
.v.
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Sketch of proof: It is sufficient to consider unit vectors v, v′ in the complementary com-
ponent of the representation. There exists s0 ∈ (0, 1) such that s(ξ) /∈ [s0, 1) for almost every
ξ, hence we have

| < gt.em, en >ξ | 6 C exp(t(s0 − 1))

for all t > 1, m,n ∈ Z, and almost every ξ. Let v, v′ be C2-SO(2,R)-smooth vectors in the
complementary component of H. Write

v =

∫
v(ξ)dµ(ξ) =

∫ ∑
vm(ξ)emdµ(ξ),

and similarly for v′. Then v(ξ) is C2-SO(2,R)-smooth for almost all ξ. From the remark on
the norm in Hs above, this gives, for all m ∈ Z

|vm(ξ)| 6 C||v(ξ)||2(1 + |m|)
s(ξ)
2
−2.

We conclude that

| < gt.v, v
′ > | 6

∫
| < gt.v(ξ), v′(ξ) > |dµ(ξ)

6
∫
|
∑
m

∑
n

vm(ξ)v′n(ξ) < gt.em, en >ξ |dµ(ξ)

6 C exp(t(s0 − 1))

∫
||v(ξ)||2||v′(ξ)||2dµ(ξ)

6 C exp(t(s0 − 1)) ||v||2||v′||2. �

Remark: The absence of a trivial component, i.e the ergodicity of the action of
SL(2,R), already imply that the action of the diagonal subgroup is mixing: for vectors of
the form v =

∫
0<s(ξ)<s0

∑
|m|6M vm(ξ)emdµ(ξ), v′ =

∫
0<s(ξ)<s0

∑
|m|6M v′m(ξ)emdµ(ξ), for some

M > 0, s0 ∈ (0, 1), we have that | < gt.v, v
′ > | converges to 0 by the calculation above. These

vectors are dense in the complementary component of H, and the mixing property follows.

Conversely

Proposition Assume that there exists δ > 0 and a dense subset E of vectors v in
the space of SO(2,R)-invariant vectors in H for which the correlation coefficients < gt.v, v >
are O(exp(−δt)). Then H has a spectral gap.

Proof: We may assume that 0 < δ < 1. Assume by contradiction that H has no
spectral gap. The complementary component vc of any SO(2,R)-invariant vector takes the
form vc =

∫
v0(ξ)e0dµ(ξ), with v0 ∈ L2(µ). As E is dense in the space of SO(2,R)-invariant

vectors in H, we can find v ∈ E such that

µ{ξ, s(ξ) > 1− δ and v0(ξ) 6= 0} > 0 .
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Then we have

< gt.vc, vc > =

∫
|φ(ξ)|2 < gt.e0, e0 > dµ(ξ)

>
∫
|φ(ξ)|2C−1

s(ξ) exp(t(s(ξ)− 1))dµ(ξ);

here s(ξ) is the parameter in the complementary series associated to Hξ. Thus < gt.vc, vc >
is not O(exp(−δt)). But v does not have a discrete component, and the principal component
vp satisfies < gt.vp, vp >= O(t exp(−t)). This contradicts the property of E. �

Coming back to the setting of the theorem in subsection 14.1, let C be a component of some
marked moduli space M̃(1)(M,Σ, κ). The space of compactly supported mean zero smooth
SO(2,R)-invariant functions on C is dense in the subspace of SO(2,R)-invariant functions in
L2

0(C). Therefore the representation of SL(2,R) in L2
0(C) has a spectral gap.

14.3 Diophantine estimates

Exponential mixing is a classical property of uniformly hyperbolic transformations pre-
serving a smooth volume form.

Exercise : Let A ∈ SL(d,R) be a hyperbolic matrix. The induced diffeomorphism
of Td preserves Lebesgue measure. Prove that , if ϕ, ψ are Hölder functions on Td with zero
mean-value, the correlation coefficient cϕ,ψ(n) :=

∫
Td ϕ ψ ◦ An satisfy

|cϕ,ψ(n)| 6 C||ϕ|| ||ψ|| exp(−δn),

where δ depends only on A and the Hölder exponent of ϕ, ψ.

With respect to this very basic case, the Teichmüller flow presents three difficulties:

• the time is continuous rather than discrete;

• hyperbolicity is non uniform;

• distortion for large time is not controlled as simply than in the uniformly hyperbolic
setting on a compact manifold.

As the constant time suspension of an Anosov diffeomorphism is obviously not mixing, the
first difficulty is quite serious. The ideas which allow to deal with it were first introduced by
Dolgopyat ([Do]) and later developped by Baladi-Vallée ([BaVa]).

The other two difficulties are related to a lack of compactness of the moduli spaces of
translation surfaces. To get uniform hyperbolicity and bounded distortion, one is led to intro-
duce the return map of the Teichmüller flow to a suitably small transversal section (smaller
than the ones considered in Section 9). The problem is then to control the return time to
this transversal section. This is done through diophantine estimates which we will now present.
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Let R be a Rauzy class on an alphabet A, let D be the associated Rauzy diagram. The
estimates depend on a parameter q ∈ RA+. For such q, we define a probability measure Pq on
P(RA+) by

Pq(A) :=
Leb(R+A

⋂
Λq)

Leb(Λq)
,

where Λq = {λ ∈ RA+; < λ, q > < 1 }. Define also, for q ∈ RA+, M(q) := maxα∈A qα,
m(q) := minα∈A qα. For a finite path γ in D, starting from a vertex π, we denote by ∆γ the
set of λ ∈ ∆π whose Rauzy-Veech path starts with γ.

Let now 0 6 m 6M be integers, q ∈ RA+, π ∈ R. Define Γ0 = Γ0(m,M, q, π) to be the set
of finite paths γ ∈ D starting from π such that

M(Bγq) > 2M M(q), m(Bγq) < 2M−m M(q).

Theorem [AvGoYo] There exist constants θ, C depending only on #A such that

Pq(
⋃
γ∈Γ0

P(∆γ)) 6 C(m+ 1)θ2−m.

A closely connected estimate is the following. Let M be an integer and q ∈ RA+, π ∈ R.
Define Γ1 = Γ1(M, q, π) to be the set of finite paths γ ∈ D starting from π such that γ is not
complete and M(Bγq) > 2M M(q).

Theorem [AvGoYo] There exist constants θ, C depending only on #A such that

Pq(
⋃
γ∈Γ1

P(∆γ)) 6 C(M + 1)θ2−M .

Exercise Use these estimates to show that almost all i.e.m are of Roth type.

References

[At] M. ATIYAH – Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4), 4
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[Kri] R . KRIKORIAN – Déviations de moyennes ergodiques, d’après Forni, Kontsevich,
Zorich. Séminaire Bourbaki 2003-2004, 56ème année, exposé n0 927, novembre 2003.
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