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Abstract

For almost all interval exchange maps T0, with combinatorics of genus g ≥ 2,
we construct affine interval exchange maps T which are semi–conjugate to T0 and
have a wandering interval.
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0. Introduction

Quasiperiodic systems play a very important role in the theory of dynamical
systems and in mathematical physics.

Irrational rotations of the circle are the prototype of quasiperiodic dynamics.
The suspension of these rotations produces linear flows on the two-dimensional
torus. When analyzing the recurrence of rotations or the suspended flows, the
modular group GL (2,Z) is of fundamental importance, providing the renormal-
ization scheme associated to the continuous fraction of the rotation number.

Poincaré proved that any orientation-preserving homeomorphism of the circle
with no periodic orbit is semi-conjugate to an irrational rotation. Later Denjoy
constructed examples of Cr diffeomorphisms with irrational rotation number and
a wandering interval if r < 2. He also proved that any C2 diffeomorphism with no
periodic orbit is conjugate to an irrational rotation. Actually, this result is also
true for piecewise-affine homeomorphisms [He].

A natural generalization of the linear flows on the two-dimensional torus is
obtained by considering linear flows on compact surfaces of higher genus, called
translation surfaces. By a Poincaré section their dynamics can be reduced to
(standard) interval exchange maps (i.e.m. ), which generalize rotations of the circle.

Let A be an alphabet with d ≥ 2 elements. A (standard) i.e.m. T on an
interval I (of finite length) is determined by two partitions (It

a), (Ib
a), of I with

It
a, Ib

a of the same length, the restriction of T to It
a being a translation with

image Ib
a . Thus T is orientation-preserving and preserves Lebesgue measure.

By relaxing the requirement on the lengths and only asking that the restriction
of T to It

a is an orientation-preserving homeomorphism onto Ib
a one obtains the

definition of a generalized i.e.m. A special class of generalized i.e.m. , namely
affine i.e.m. are considered in this paper: we require that the restriction of T to It

a

is affine (and orientation-preserving). When d = 2, by identifying the endpoints
of I standard i.e.m. correspond to rotations of the circle and generalized i.e.m. to
homeomorphisms of the circle.

The ordering of the subintervals in the two partitions of I constitute the
combinatorial data for the i.e.m. T . One says that a standard i.e.m. has no
connection if every orbit can be extended indefinitely in the future or in the past
(or both) without going through the endpoints of the subintervals; Keane [Ke] has
shown that such an i.e.m. is minimal. When d = 2, this corresponds exactly to
irrational rotations.

Following Rauzy [Ra] and Veech [V1], one analyzes the dynamics of a standard
i.e.m. T with no connection by considering the first return maps T (n) of T on a
decreasing sequence of intervals I(n), with the same left endpoint than I. These
maps are again standard i.e.m. on the same alphabet A but the combinatorial
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data may be different. The set of all possible combinatorial data accessible from
the initial one by this process constitute a Rauzy class. To each Rauzy class is
associated a Rauzy diagram (whose vertices are the elements in the Rauzy class
and arrows are the possible transitions). The sequence of combinatorial data for
the T (n) is an infinite path in this diagram which can be viewed as a “rotation
number”.

By suspending an i.e.m. through Veech zippered rectangle construction [V2],
one obtains a linear flow on a translation surface. The genus g of the surface only
depends on the Rauzy class.

For a generalized i.e.m. T with no connection one can still define the T (n)
and obtain an infinite path in a Rauzy diagram. When this path is also associated
with a standard i.e.m. T0 with no connection (one then says that T is irrational),
T is semi–conjugate to T0 .

When d = 2, or more generally g = 1, such a semi–conjugacy for an affine
i.e.m is always a conjugacy as recalled above.

Levitt [L] found an example of an affine irrational i.e.m. in higher genus which
has a wandering interval. The corresponding standard i.e.m is not unique in his
case; this only happens in the non-uniquely ergodic case which has measure zero
in parameter space [Ma], [V2].

Later Camelier and Gutierrez [CG] exhibited an example of affine irrational
i.e.m. with a wandering interval such that the corresponding standard i.e.m. is
uniquely ergodic. The infinite path in the Rauzy diagram in their case is periodic.
The same example was studied more deeply by Cobo [Co]. In particular, he put
in evidence on this example the importance of the Oseledets decomposition of the
extended Zorich cocycle (see Section 3.1 below).

Very recently, Bressaud, Hubert and Maass [BHM] generalized the Camelier-
Gutierrez example to a large class of periodic paths in Rauzy diagrams with g > 1.
In the periodic case, the Zorich cocycle is just a matrix in SL (Z, d) with positive
coefficients. The vector of the logarithms of the slopes (for the affine i.e.m. ) must
lie in the Perron-Frobenius hyperplane for this matrix; however, it can have a non-
zero component with respect to the next biggest eigenvalue (which is assumed to
be real and conjugate to the largest one), and such a choice lead to the required
examples.

Our main result is of a similar nature, but instead of starting with periodic
paths (a countable set of possibilities) , we consider a set of “rotation numbers”
of full measure.

Let us fix combinatorial data, such that the associated surface has genus
g > 1. By a deep result of Avila-Viana [AV], the extended Zorich cocycle has g
simple positive Lyapunov exponents θ1 > θ2 > . . . > θg. Let E0 = RA ⊃ E1 ⊃
E2 ⊃ . . . ⊃ Eg (with dim Ei = d − i) be the corresponding filtration (defined for
almost all parameter values); a necessary and sufficient condition for a vector in
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RA to have for coordinates the logarithms of the slopes of an affine i.e.m. with
this rotation number is that it belongs to the hyperplane E1.

Theorem.For almost all standard i.e.m. T0 with the given combinatorial data,
the following holds: the coordinates of any vector in E1 \E2 can be realized as the
logarithms of the slopes of an affine i.e.m. semi–conjugate to T0 with a wandering
interval.

We will now summarize the contents of our paper. In the first section we
introduce interval exchange maps and we develop the continued fraction algo-
rithms. Accelerating the Rauzy–Veech map by grouping together arrows with
the same type in the Rauzy diagram leads to the Zorich continued fraction algo-
rithm (described in 1.2.4) which has the advantage of having a finite mass a.c.i.m..
The notations and the presentation of the Rauzy–Veech–Zorich algorithms follow
closely the expository paper [Y1] (see also [Y2]).

Section 2 is devoted to the study of the deformations of affine interval echange
maps. First we describe the compact convex set Aff(1) (γ,w) of affine i.e.m. of the
unit interval whose slope vector w and orbit γ under the Rauzy–Veech algorithm
are prescribed. Following an analogy with the theory of holomorphic motions in
complex dynamics, we them define affine motions. This allows us to characterize
the tangent space to Aff(1) (γ,w).

In Section 3 deals with the construction of affine interval exchange maps with
a wandering interval.

Acknowledgements This research has been supported by the following insti-
tutions: the Collège de France, the Scuola Normale Superiore and the Italian
MURST. We are also grateful to the two former institutions and to the Centro di
Ricerca Matematica “Ennio De Giorgi” in Pisa for hospitality.
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1. The continued fraction algorithm for interval exchange maps

1.1 Interval exchange maps

An interval exchange map (i.e.m. ) is determined by combinatorial data on one
side, length data on the other side.

Let A be an alphabet with d ≥ 2 elements which serve as indices for the
intervals. The combinatorial data is a pair π = (πt, πb) of bijections from A onto
{1, . . . , d} which indicates in which order the intervals are met in the domain and
in the range of the i.e.m. . We always assume that the combinatorial data are
irreducible: for 1 ≤ k < d, we have

π−1
t ({1, . . . , k}) 6= π−1

b ({1, . . . , k}) .

The length data are the lengths (λα)α∈A of the subintervals. Let T = Tπ,λ be the
i.e.m. determined by these data; it is acting on I = (0, λ∗), with

λ∗ =
∑

α∈A
λα .

The subintervals in the domain are

It
α =


 ∑

πtβ<πtα

λβ ,
∑

πtβ≤πtα

λβ




and those in the range are

Ib
α =


 ∑

πbβ<πbα

λβ ,
∑

πbβ≤πbα

λβ


 .

We also write Iα for It
α. The translation vector (δα)α∈A is given by

δα =
∑

β

Ωαβλβ

where the antisymmetric matrix Ω = Ω(π) is defined by

Ωαβ =

{ +1 if πtβ > πtα , πbβ < πbα,
−1 if πtβ < πtα , πbβ > πbα,
0 otherwise.



6 Marmi, Moussa, Yoccoz

We denote the rank of Ω by 2g; in fact g is the genus of the translation surfaces
obtained from T by suspension. One has thus

T (x) = x + δα forx ∈ It
α ,

T (It
α) = Ib

α forα ∈ A .

We denote by ut
1 < . . . < ut

d−1 the points of I \∪α∈AIt
α, which we call singularities

of T . Similarly, the points ub
1 < . . . < ub

d−1 of I\∪α∈AIb
α are called the singularities

of T−1. A connection is a triple (ut
i, u

b
j , m), where m is a nonnegative integer, such

that
Tm(ub

j) = ut
i .

Keane has proved [Ke] that an i.e.m. with no connection is minimal, and also that
an i.e.m. has no connection if the length data are independent over Q.

1.2 The elementary step of the Rauzy–Veech algorithm

Let T = Tπ,λ be an i.e.m. . Denote by αt, αb the elements of A such that

πt(αt) = πb(αb) = d .

When ut
d−1 6= ub

d−1 (which must happen if T has no connection), we consider the
first return map T̂ on Î = (0, Max (ut

d−1, u
b
d−1)).

When ut
d−1 < ub

d−1, we have

T̂ (y) =
{

T 2(y) if y ∈ It
αb

,
T (y) otherwise.

Thus T̂ is an i.e.m. with the same alphabet A, length data λ̂, combinatorial data
π̂ with

λ̂αt = λαt − λαb
,

λ̂α = λα , α 6= αt ,

π̂t = πt ,

π̂b(α) =





πb(α) if πb(α) ≤ πb(αt),
πb(α) + 1 if πb(αt) < πb(α) < d,
πb(αt) + 1 if πb(α) = d.

When ub
d−1 < ut

d−1, we have

T̂−1(y) =
{

T−2(y) if y ∈ Ib
αt

,
T−1(y) otherwise.
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In this case, the length and combinatorial data for T̂ are:

λ̂αb
= λαb

− λαt
,

λ̂α = λα , α 6= αb ,

π̂b = πb ,

π̂t(α) =





πt(α) if πt(α) ≤ πt(αb),
πt(α) + 1 if πt(αb) < πt(α) < d,
πt(αb) + 1 if πt(α) = d.

We say that T̂ is deduced from T by an elementary step of the Rauzy–Veech
algorithm. We also define the Rauzy operation π̂ = Rt(π) (respectively π̂ = Rb(π))
for the change of combinatorial data when ut

d−1 < ub
d−1 (respectively ub

d−1 <
ut

d−1).

1.3 Rauzy diagrams

A Rauzy class on an alphabet A is a nonempty set of irreducible combinatorial
data which is invariant under Rt, Rb and minimal with respect to this property.
A Rauzy diagram is a graph whose vertices are the elements of a Rauzy class and
whose arrows connect a vertex π to its images Rt(π) and Rb(π). Each vertex is
therefore the origin of two arrows. As Rt, Rb are invertible, each vertex is also the
endpoint of two arrows. It is a fact that the rank of the matrix Ω(π) is the same
for all π in a given Rauzy class.

An arrow connecting π to Rt(π) (respectively Rb(π)) is said to be of top type
(resp. bottom type). The winner of an arrow of top (resp. bottom) type starting
at π = (πt, πb) with πt(αt) = πb(αb) = d is the letter αt (resp. αb) while the loser
is αb (resp. αt).

To an arrow γ of a Rauzy diagram D starting at π of top (resp. bottom) type,
is associated the matrix Bγ ∈ SL (ZA) defined by

Bγ = I+ Eαbαt

(resp. Bγ = I + Eαtαb
), where Eαβ is the elementary matrix whose only nonzero

coefficient is 1 in position αβ. For a path γ in D made of the successive arrows
γ1 . . . γl we associate the product Bγ = Bγl

. . . Bγ1 . It belongs to SL (ZA) and has
nonnegative coefficients.

A path γ in D is complete if each letter in A is the winner of at least one arrow
in γ; it is k–complete if γ is the concatenation of k complete paths. An infinite
path is ∞–complete if it is the concatenation of infinitely many complete paths.
By [MMY, Section 1.2.4], if a path γ is (2d− 3)–complete, then all coefficients of
Bγ are strictly positive.
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1.4 The Rauzy-Veech and Zorich algorithms

Let T (0) = T(λ(0),π(0)) be an i.e.m. with no connection. We denote by A the
alphabet for π(0) and by D the Rauzy diagram on A having π(0) as a vertex. The
i.e.m. T (1) = T(λ(1),π(1)) deduced from T (0) by the elementary step of the Rauzy–
Veech algorithm has also no connection. It is therefore possible to iterate this
elementary step indefinitely and get a sequence T (n) = T(λ(n),π(n)) of i.e.m. acting
on a decreasing sequence I(n) of intervals and a sequence γ(n, n + 1) of arrows in
D from π(n) to π(n+1). For m < n, we also write γ(m,n) for the path from π(m)

to π(n) composed of the γ(l, l + 1), m ≤ l < n. One has

λ(m) =t Bγ(m,n)λ
(n) ,

δ(n) = Bγ(m,n)δ
(m) .

Conversely, if it is possible to iterate indefinitely the Rauzy–Veech elementary step
starting from T (0), then T (0) has no connection.

Let γ be the infinite path starting at π(0) obtained by concatenation of
the γ(n, n + 1); then γ is ∞–complete. Conversely, if an infinite path γ is ∞–
complete, it is associated by the Rauzy–Veech algorithm to some T = Tλ,π with
no connection. This T is unique up to rescaling if and only if it is uniquely ergodic;
this last property is true for almost all λ ([Ma], [V2]).

Following Zorich [Z1] it is often convenient to group together in a single
Zorich step successive elementary steps of the Rauzy–Veech algorithm whose
corresponding arrows have the same type (or equivalently the same winner); we
therefore introduce a sequence 0 = n0 < n1 < . . . such that for each k all arrows
in γ(nk, nk+1) have the same type and this type is alternatively top and bottom.
For n ≥ 0, the integer k such that nk ≤ n < nk+1 is called the Zorich time and
denoted by Z(n).

1.5 Dynamics of the continued fraction algorithms

LetR be a Rauzy class on an alphabetA. The elementary step of the Rauzy–Veech
algorithm,

(π, λ) 7→ (π̂, λ̂) ,

considered up to rescaling, defines a map from R×P((R+)A) to itself, denoted by
QRV. There exists a unique absolutely continuous measure invariant under these
dynamics ([V2]); it is conservative and ergodic but has infinite total mass, which
does not allow all ergodic–theoretic machinery to apply. Replacing a Rauzy–Veech
elementary step by a Zorich step gives a new map QZ on R×P((R+)A). This map
has now a finite absolutely continuous invariant measure, which is ergodic ([Z1]).
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It is also useful to consider the natural extensions of the maps QRV and QZ,
defined through the suspension data which serve to construct translation surfaces
from i.e.m. . For π ∈ R, let Θπ be the convex open cone in RA defined by the
inequalities ∑

πtα≤k

τα > 0 ,
∑

πbα≤k

τα < 0 , 1 ≤ k < d .

Define also
Θt

π = {τ ∈ Θπ ,
∑
α

τα < 0} ,

Θb
π = {τ ∈ Θπ ,

∑
α

τα > 0} .

Let γ : π → π̂ be an arrow in the Rauzy diagram D associated to R. Then tB−1
γ

sends Θπ isomorphically onto Θt
π̂ (resp. Θb

π̂) when γ is of top type (resp. bottom
type). The natural extension Q̂RV is then defined on tπ∈R{π}×P((R+)A)×P(Θπ)
by

(π, λ, τ) 7→ (π̂,t B−1
γ λ,t B−1

γ τ)

where γ is the arrow starting at π, associated to the map QRV at (π, λ). The map
Q̂RV has again a unique absolutely continuous invariant measure; it is ergodic,
conservative but infinite. One defines similarly a natural extension Q̂Z for QZ; it
has a unique absolutely continuous invariant measure, which is finite and ergodic.

1.6 The continued fraction algorithm for generalized and affine i.e.m.

Let A be an alphabet and π = (πt, πb) be irreducible combinatorial data over A.
Let I = (0, λ∗) be an interval and let

0 = ut
0 < ut

1 < . . . < ut
d = λ∗ ,

0 = ub
0 < ub

1 < . . . < ub
d = λ∗ ,

two sets of points in I. Define

It
α =

(
ut

πt(α)−1, u
t
πt(α)

)
,

Ib
α =

(
ub

πb(α)−1, u
b
πb(α)

)
.

A generalized i.e.m. with combinatorial data π is a map on I whose restriction
to each It

α is a non decreasing homeomorphism onto Ib
α (for some choice of the ut

i,
ub

j). When these restrictions are affine, we say that T is an affine i.e.m. .
Connections for generalized i.e.m. are again defined by some relation Tm(ub

j) =
ut

i, with m ≥ 0, 0 < i, j < d. When T has no connection, one has in particular
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ut
d−1 6= ub

d−1. One then defines Î = (0,Max (ut
d−1, u

b
d−1)) and T̂ as the first return

map of T in Î. Then T̂ is again a generalized i.e.m. (affine if T was affine), the
combinatorial data being Rt(π) if ut

d−1 < ub
d−1, Rb(π) if ub

d−1 < ut
d−1. Also, T̂

has no connection, hence we can iterate the processus.
A difference with the case of standard i.e.m. is that the infinite path γ in the

Rauzy diagram D having π as a vertex is not always ∞–complete.
When this path γ is ∞–complete, there exists also a standard i.e.m. T0

associated to γ, and any two such T0 are topologically conjugate. Let I0 be the
interval on which acts T0. Then there exists a unique semiconjugacy from T to
T0, i.e. a continuous non–decreasing surjective map h from I onto I0 such that
h ◦ T = T0 ◦ h.

2. Deformations of affine interval exchange maps

Let D be a Rauzy diagram on the alphabet A and let γ be an ∞–complete path
in D issued from (πt, πb).

An affine i.e.m. with combinatorial data π is uniquely defined by the lengths
|It

α| and |Ib
α| subjected to the only constant

∑
α |It

α| =
∑

α |Ib
α|.

Let w ∈ RA. We will describe the set Aff (γ,w) of the affine interval exchange
maps whose orbit under the Rauzy–Veech algorithm is given by γ and with slope
vector exp w:

(1) |Ib
α| = exp wα|It

α| , ∀α ∈ A .

We denote by Aff(1) (γ,w) the set of affine i.e.m. in Aff (γ, w) whose domain is
[0, 1].

When w = 0 it is known ([Ka], [V1]) that the set of length vectors λ
corresponding to a fixed Rauzy–Veech expansion γ is a simplicial cone of dimension
≤ g (where g is the genus of the surface associated to the diagram D). In the
remaining part of Section 2 we assume that w 6= 0.

2.1 The set Aff(1) (γ, w).

We will first determine a necessary and sufficient condition for Aff (γ,w) 6= ∅.
Lemma 1 Let αt, αb the elements of A such that πt(αt) = πb(αb) = d. There
exists an affine interval exchange map of slope exp w verifying |It

αt
| > |Ib

αb
| if and

only if the intersection

{
∑

λαwα = 0} ∩ {λα > 0 , λαt > λαb
}

is not empty.



Affine i.e.m. with a wandering interval 11

Proof. There exists an affine i.e.m. of slope exp w verifying |It
αt
| > |Ib

αb
| if and only

if the hyperplane {∑α |It
α|(exp wα− 1) = 0} intersects the cone {|It

α| > 0 , |It
αt
| >

expwαb
|It

αb
|}.

Let a 6= 0 in RA. The hyperplane {∑α aαxα = 0} does not intersect the
positive cone xα > 0 if and only if either all aα ≥ 0 or all aα ≤ 0.

Set first xα = |It
α| for α 6= αt, xαt

= |It
αt
|−exp(wαb

)|It
αb
|, aα = expwα−1 for

α 6= αb, aαb
= exp(wαt

)− exp(−wαb
). We have

∑
α aαxα =

∑
α |It

α|(exp wα − 1).
Therefore the hyperplane {∑α |It

α|(exp wα − 1) = 0} does not intersect the cone
{|It

α| > 0 , |It
αt
| > exp wαb

|It
αb
|} iff

• either exp wα − 1 ≥ 0 for α 6= αb and exp wαt
− exp(−wαb

) ≥ 0,
• or exp wα − 1 ≤ 0 for α 6= αb and exp wαt − exp(−wαb

) ≤ 0.
This is in turn respectively equivalent to

• wα ≥ 0 for α 6= αb and wαt + wαb
≥ 0,

• wα ≤ 0 for α 6= αb and wαt + wαb
≤ 0.

Take now xα = λα for α 6= αt, xαt = λαt − λαb
; aα = wα for α 6= αb,

aαb
= wαt + wαb

. We have
∑

α aαxα =
∑

α λαwα. Therefore the hyperplane
{∑α λαwα = 0} does not intersect λα > 0 , λαt > λαb

} if and only if
• either wα ≥ 0 for α 6= αb and wαt + wαb

≥ 0,
• or wα ≤ 0 for α 6= αb and wαt + wαb

≤ 0.
We have shown that the negations of both statements considered in the

Lemma are equivalent to the same set of inequalities. Hence the proof of the
Lemma is complete. ¤

If an affine interval exchange map verifies (1) and |It
αt
| > |Ib

αb
|, one can apply a

step of the Rauzy–Veech algorithm. The new affine i.e.m. T̂ is the return map of
T on ∪α 6=αb

Ib
α and its slope vector exp ŵ is given by

ŵα = wα , if α 6= αb ,

ŵαb
= wαb

+ wαt .

The corresponding lengths are

|Ît
α| = |It

α| , if α 6= αt ,

|Ît
αt
| = |It

αt
| − exp(wαb

)|It
αb
| .

It is easy to check that the maps T̂ obtained in this way (as T varies) are
determined by the only constraint

(1′) |Îb
α| = exp ŵα|Ît

α| .
Similarly, the top Rauzy–Veech operation maps the set

{
∑

λαwα = 0 , λα > 0 , λαt > λαb
}
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onto the set
{
∑

λ̂αŵα = 0 , λ̂α > 0} ,

where λ̂ is connected to λ by the formulas of Section 1.2.
Lemma 1 and the subsequent discussion have a symmetric reformulation for

the bottom Rauzy–Veech operation (|It
αt
| < |Ib

αb
|, λαt

< λαb
).

By applying several times the top or bottom versions of Lemma 1 and the
subsequent discussion one obtains

Lemma 2. Let γ∗ be a finite initial segment of γ. There exists an affine interval
exchange map satisfying (1) whose orbit under the Rauzy–Veech algorithm begins
with γ∗ if and only if the set {∑ λαwα = 0 , λα > 0} contains a standard i.e.m.
whose expansion under the the Rauzy–Veech algorithm begins with γ∗.

We now give a necessary and sufficient condition for Aff (γ,w) to be non empty.

Proposition The set Aff (γ,w) is not empty if and only if the hyperplane
{∑λαwα = 0} contains a standard interval exchange map whose Rauzy–Veech
expansion is equal to γ. In this case, the set Aff(1) (γ, w), parametrized by the |It

α|,
is convex and compact.

Proof. For γ an arrow of D, we define a matrix Bγ [w] ∈ SL (RA) with nonnegative
coefficients in the following way. Let π = (πt, πb) be the origin of γ, αt, αb ∈ A
such that πt(αt) = πb(αb) = d. If γ is of top type, set

Bγ [w] = I+ exp wαb
Eαbαt .

If γ is of bottom type, set

Bγ [w] = I+ (exp wαb
− 1)Eαtαt + exp(−wαb

)Eαtαb
.

Observe that Bγ [0] is the matrix Bγ introduced in 1.3. The positive coefficients
for Bγ [w] and Bγ appear at the same positions. If T is an affine i.e.m. with
combinatorial data π, slope exp w and T̂ is deduced from T by the Rauzy–Veech
operation associated to γ, the respective lengths |It

α|, |Ît
α| are related by

|It| =t Bγ [w]|Ît| ,
in view of the formulas in the discussion following Lemma 1. If γ = γ1 . . . γl is a
path in D, we define

Bγ [w] = Bγl
[wl−1] . . . Bγ1 [w0] ,

with w0 = w, wj = Bγ1...γj [w] for j > 0. If T̂ is deduced from T by a sequence of
Rauzy–Veech operations corresponding to γ, we still have

|It| =t Bγ [w]|Ît| .
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Observe also that the positive coefficients of Bγ [w] and Bγ [0] = Bγ appear again at
the same positions. Let now be γ be an∞–complete path in D. Let Aff (γ(0, n), w)
be the set of lengths (It

α) for affine i.e.m. T whose Rauzy–Veech expansion starts
with the initial segment γ(0, n) of γ. We have

Aff (γ(0, n), w) =t Bγ(0,n)[w]((R+)A) ,

Aff (γ(0, n), 0) =t Bγ(0,n)((R+)A) ,

Aff (γ,w) = ∩n≥0Aff (γ(0, n), w) ,

Aff (γ, 0) = ∩n≥0Aff (γ(0, n), 0) .

Let n > m be such that γ(m,n) is (2d − 3)–complete. Then, as recalled in
Section 1.3, all coefficients of Bγ(m,n) are positive. Therefore, the same is true for
Bγ(m,n)[Bγ(0,m)w]. We therefore have

Aff (γ(0, n), 0) =t Bγ(0,n)((R+)A) =t Bγ(0,m)(tBγ(m,n)((R+)A) ⊂ {0}∪Aff (γ(0,m), 0) ,

and similarly
Aff (γ(0, n), w) ⊂ {0} ∪Aff (γ(0,m), w) .

It follows that

{0} ∪Aff (γ, 0) = ∩n≥0Aff (γ(0, n), 0) , (2)

{0} ∪Aff (γ,w) = ∩n≥0Aff (γ(0, n), w) . (3)

We conclude that Aff (γ, w) is nonempty if and only if Aff (γ(0, n), w) is nonempty
for all n ≥ 0; by Lemma 2 this happens if and only if Aff (γ(0, n), 0) intersects the
hyperplane {∑α λαwα = 0} for all n ≥ 0; in view of the formula (2) above, this
last condition holds if and only if the hyperplane {∑α λαwα = 0} meets Aff (γ, 0).
This proves the first statement in the proposition.

The second statement follows from formula (3) and the fact that

Aff (γ(0, n), w) =t Bγ(0,n)[w]((R+)A)

is a closed convex cone for n ≥ 0. ¤

When there exists a unique (up to rescaling) standard i.e.m. whose expansion
under the Rauzy–Veech algorithm is γ the condition stated in the Proposition
above means that the vector w belongs to the hyperplane

{
∑

λαwα = 0} .
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In general, as already mentioned, Aff (γ, 0) is a simplicial cone of dimension r ≤ g.
Let us denote by λ(1), . . . , λ(r) the normalized extremal vectors of this simplicial
cone. The necessary and sufficient condition which guarantees that Aff (γ,w) is
not empty is that the numbers

∑

α∈A
λ(j)

α wα , j = 1, . . . , r

are neither all strictly positive, nor all strictly negative.

Remark. For fixed combinatorial data, normalized affine i.e.m. form a manifold
of dimension (2d − 2), and the standard i.e.m. have dimension (d − 1). As
almost all i.e.m. are uniquely ergodic, one can think that (d − 1) is also the
“dimension” od the set of paths γ. When γ corresponds to the uniquely ergodic
standard i.e.m. , the constraint

∑
α λαwα = 0 defines a (d− 1) dimensional space.

Therefore one can expect that for most (γ,w) the set Aff(1) (γ, w) is of dimension
(2d− 2)− (d− 1)− (d− 1) = 0. As Aff(1) (γ,w) is convex and compact this would
mean that Aff(1) (γ,w) is reduced to a point. The problem with this heuristic
argument is that the map which associates to an affine i.e.m. T its “rotation
number” γ is not smooth.

2.2 Affine motions.

Let w 6= 0 and T ∗ ∈ Aff(1) (γ, 0) such that
∑
α

λ∗αwα = 0 .

We choose an affine i.e.m T0 in the intrinsic interior of the nonempty compact
convex set Aff(1) (γ,w). There exists a unique semiconjugacy H of T0 towards T ∗.

We denote by ub
i , u

t
i (1 ≤ i ≤ d−1) the singularities of T−1

0 and T0 respectively.
Let (Ts)s∈(−1,+1) be an open segment passing through T0 and contained

in Aff(1) (γ,w), with an affine parametrization. Let ut
i(s) and ub

i (s) denote the
singularities of Ts and T−1

s respectively. Since the parametrization is affine we can
write

ut
i(s) = ut

i + sν(ut
i) , s ∈ (−1, +1) ,

ub
i (s) = ub

i + sν(ub
i ) , s ∈ (−1, +1) ,

with certain numbers ν(ut
i), ν(ub

i ) (note that the ut
i are all distinct from the ub

i

since T0 has no connection). Since all the maps Ts are semi–conjugate to T ∗, we
can also write

ut
i,n(s) = ut

i,n + sν(ut
i,n) , n ≤ 0 ,

ub
i,n(s) = ub

i,n + sν(ub
i,n) , n ≥ 0 ,
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where we have set
ut

i,n(s) = Tn
s (ut

i(s)) , n ≤ 0

ut
i,n = Tn

0 (ut
i) , n ≤ 0

ub
i,n(s) = Tn

s (ub
i (s)) , n ≥ 0

ub
i,n = Tn

0 (ub
i ) , n ≥ 0

Let
Z = {ut

i,n, ub
j,m , n ≤ 0,m ≥ 0 , 1 ≤ i, j ≤ d− 1} ∪ {0, 1} ,

and let ν(0) = ν(1) = 0.
In analogy with the notion of holomorphic motions [MSS], we will say that

one has an affine motion for the set Z parametrized by the interval (−1,+1): for
each s ∈ (−1,+1) the map hs

Z ↪→ [0, 1]
ut

i,n 7→ ut
i,n(s)

ub
j,m 7→ ub

j,m(s)

is injective and the dependence w.r.t. s is affine. The application ν (or rather its
derivative) plays the role of a “Beltrami form” .

Proposition 1.The map ν : Z → R is 1–Lipschitz.

Proof. Indeed if this not true there exists x0, x1 with |ν(x0)− ν(x1)| > |x0 − x1|.
Then the maps s → x0 + ν(x0)s, s → x1 + ν(x1)s are equal at the point
s∗ = −(x1 − x0)/(ν(x1) − ν(x0)) ∈ (−1, +1) which contradicts the injectivity
of hs∗ . ¤

Extending by continuity ν to Z we obtain an affine motion of Z. If Z 6= [0, 1],
i.e. if T0 has a wandering interval, one can extend the affine motion to the whole
interval [0, 1] by linear interpolation, i.e. one extends ν to [0, 1] in such a way that
ν is affine on each component of [0, 1] \ Z. This extension of ν to [0, 1] is still
1–Lipschitz.

This leads to a one–parameter family (hs)s∈(−1,+1) of homeomorphisms of
[0, 1]. By construction, hs is a conjugacy between T0 and Ts:

Ts(hs(x)) = hs(T0(x)) , x 6= ut
i ,

T−1
s (hs(x)) = hs(T−1

0 (x)) , x 6= ub
j .

Let χα denote the (constant) value of ∂
∂sTs|s=0 on It

α(T0). If we derive the above
relations w.r.t. s we obtain

ν(T0(x)) = ν(x) exp wα + χα , x ∈ It
α(T0) .
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Since ν is 1–Lipschitz, its derivative (in the sense of distributions) is a function in
L∞([0, 1]). It verifies

Dν(T0(x)) = Dν(x) ,

‖Dν‖L∞ ≤ 1 .

Moreover, since one has extended ν by linear interpolation to all wandering
intervals of T0, Dν is constant on any wandering interval. Finally, as ν(0) =
ν(1) = 0, Dν has zero mean.

Conversely, let us suppose that one has a function µ ∈ L∞([0, 1]) which verifies
• ‖µ‖L∞ ≤ 1;
• µ has zero mean;
• µ is T0–invariant;
• µ is constant on each wandering interval.

Then one can realize a segment (Ts)s∈(−1,+1) in Aff(1) (γ,w): we denote by ν the
primitive of µ which vanishes at 0 and 1. The function ν is 1–Lipschitz on [0, 1].
For s ∈ (−1, +1) one defines hs : [0, 1] → R by

hs(x) = x + sν(x) .

One has hs(0) = 0, hs(1) = 1; hs is continuous since ν is continuous and it is
injective since ν is 1–Lipschitz; thus hs is a homeomorphism of [0, 1]. One defines
Ts by

Ts(y) = hs ◦ T0 ◦ h−1
s (y)

if y 6= hs(ut
j). Ts is a generalized i.e.m. conjugate to T0. The T0–invariance of

µ implies that Ts is affine and belongs to Aff(1) (γ,w). Finally, since the hs(ut
j),

hs(ub
j) have an affine dependence on s the parametrization we have obtained is

also affine. Summarizing:

Proposition 2.The tangent space to Aff(1) (γ,w) at T0 is canonically identified
with the vector space of L∞ functions on [0, 1] which are T0–invariant, constant
on each wandering interval of T0 and have zero mean.

It is easy to compute the dimension r − 1 of this tangent space in terms of the
“ergodic components” of T0. Indeed we will have r = rd + rc with:
• rd is the number of orbits of (maximal) wandering intervals of T0;
• rc > 0 if and only if Leb (Z) > 0; if this is the case, one has a partition

Z = Z1 t . . . t Zrc of Z into T0–invariant sets, of positive Lebesgue measure,
and ergodic (i.e. the restriction of the quasi–invariant Lebesgue measure to
Zi is ergodic).

3. Wandering intervals for affine interval exchange maps
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3.1 The Zorich cocycle

Let R be a Rauzy class on an alphabet A, D the associated Rauzy diagram. For
T = Tπ,λ a standard i.e.m. acting on some interval I with combinatorial data
π ∈ R, define ET to be the vector space of functions on I which are constant
on each subinterval It

α. This vector space is canonically isomorphic to RA. Let
T̂ = Tπ̂,λ̂ be the i.e.m. deduced from T by one step of the Rauzy–Veech algorithm,
let γ be the corresponding arrow from π to π̂ in D, let Î be the interval on which
T̂ acts and Ît

α the associated subintervals. For ϕ ∈ ET , one defines a function
ϕ̂ ∈ ET̂ by

ϕ̂(x) =
q(x)−1∑

i=0

ϕ(T ix) ,

where q(x) is the return time of x in Î (equal to 1 or 2). The matrix of the linear
map ϕ 7→ ϕ̂ from ET to ET̂ in the canonical bases of these spaces is Bγ .

At the projective level, the fibered map

(π, λ, ϕ) 7→ (QRV(π, λ), Bγϕ) ,

R× P((R+)A)× RA →R× P((R+)A)× RA ,

is called the extended Zorich cocycle over the Rauzy–Veech dynamics QRV.
There is an invariant subbundle under this cocycle whose fiber over (π, λ) is

H(π) = Im Ω(π) .

Indeed, we have
BγΩ(π) = Ω(π̂) tB−1

γ .

It also follows that the restriction to the cocycle to this subbundle, called the
Zorich cocycle, is symplectic (for the symplectic form defined by the Ω(π)). To
analyze the extended Zorich cocycle, one goes to the accelerated dynamics QZ,
i.e. one reparametrizes the time in the algorithm in order to apply the Oseledets
multiplicative ergodic theorem. Then, the Lyapunov exponents on the quotient
RA/H(π) are all equal to zero. Avila–Viana ([AV], see also [Fo]) have proved that
the Lyapunov exponents on H(π) are all simple, hence by symplecticity they can
be written as

θ1 > θ2 > . . . > θg > −θg > . . . > −θ1 .

Here g = 1
2dim H(π) is the genus of the surface obtained by suspension. Associated

to these exponents, we have for almost all T a filtration

ET = RA = E0 ⊃ E1 ⊃ . . . ⊃ Eg ,
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with dim Ei = d− i. Here, we have

E1 = {ϕ ∈ ET ,

∫

I

ϕ(x)dx = 0} .

3.2 Statement of the main result

We assume g ≥ 2. We recall the statement of the Theorem in the introduction.

Theorem.For all vertices π of D, for almost all λ ∈ (R+)A, for any w ∈
E1(π, λ) \ E2(π, λ), there exists an affine i.e.m. T ∗ = T ∗π,λ,w with the following
properties:
(i) T ∗ ∈ Aff (γ,w);
(ii) T ∗ has a wandering interval.

Remarks.
1. For almost all (π, λ), Tπ,λ is uniquely ergodic; then w ∈ E1(π, λ) is a necessary

condition for an affine i.e.m. to satisfy (i).
2. Actually the proof of the theorem shows that any affine i.e.m. in Aff (γ,w)

has a wandering interval: see the remark at the end of Section 3.7. Moreover,
in view of this remark and of the remark at the end of Section 2.1, it appears
very probable that there is up to scaling only one affine i.e.m. in Aff (γ,w)

3.3 Reduction to a statement on Birkhoff sums

3.3.1 The main step in the proof of the theorem is the following result

Proposition.For all vertices π of D, for almost all λ ∈ (R+)A, for all w ∈
E1(π, λ) \ E2(π, λ), there exists x∗, not in the orbits of the singularities of T±1

π,λ,
such that the Birkhoff sums of w at x∗ satisfy, for all ε > 0 and a constant C(ε) > 0
independent of n ∈ Z,

Snw(x∗) ≤ C(ε)− |n|θ2/θ1−ε .

The Birkhoff sums are here defined as usual as

Snw(x∗) =
{ ∑n−1

i=0 wβi for n ≥ 0,
−∑−1

i=n wβi for n < 0,

with T i
π,λ(x∗) ∈ It

βi
.
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3.3.2 The theorem follows from the proposition by the usual Denjoy construction.
Let π, λ, w, x∗ be as in the Proposition and I(0) be the interval of definition of Tπ,λ.
Define, for n ∈ Z

ln = exp{Snw(x∗)} .

From the Proposition it follows that

L =
∑

n∈Z
ln < +∞ .

For x ∈ I(0) set
l−(x) =

∑

T n
π,λ

(x∗)<x

ln ,

l+(x) =
∑

T n
π,λ

(x∗)≤x

ln ,

and let h : [0, L] → I(0) be the continuous non decreasing map such that

h−1(x) = [l−(x), l+(x)] .

One then defines the affine i.e.m. T ∗ on [0, L] by
• T ∗(l±(x)) = l±(Tπ,λ(x)),
• when l−(x) < l+(x), T ∗ is affine from the interval [l−(x), l+(x)] onto the

interval [l−(Tπ,λ(x)),l+(Tπ,λ(x))].
Then, the fact that T ∗ is an affine i.e.m. with the required slopes follow from the
definition of the li. The semi–conjugacy to Tπ,λ is built in the construction (using
also that Tπ,λ is minimal). Finally, the interval h−1(x∗) is wandering.

3.4 Limit shapes for Birkhoff sums

3.4.1 In order to prove the Proposition in 3.3.1, we construct some functions
closely related to the Zorich cocycle. Such functions have also been considered in
a different setting in [BHM]. Instead of acting on (π, λ) we consider the natural
extension of the Rauzy–Veech dynamics (and the Zorich acceleration) acting on
(π, λ, τ), where τ ∈ RA is a suspension datum satisfying the usual conditions (for
1 ≤ k ≤ d) ∑

πtα<k

τα > 0 ,
∑

πbα<k

τα < 0 .

Instead of a filtration

E0 = RA ⊃ E1(π, λ) ⊃ E2(π, λ) ⊃ . . .
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as above, we get from Oseledets theorem 1–dimensional subspaces Fi(π, λ, τ)
associated to the Lyapunov exponent θi, generated by a vector in Ei−1(π, λ) \
Ei(π, λ). Moreover the sums

⊕i
j=1 Fj(π, λ, τ) depend only on (π, τ). (This is the

subspace of vectors decreasing in the past under the Zorich cocycle at a rate at
least −θi).

In particular F1 depends only on (π, τ), not on λ; because the matrices B
of the Zorich cocycle only have non negative entries (and positive entries after
appropriate iteration), the subspace F1(π, τ) is contained in the positive cone
(R+)A; we write q(π, λ) for a positive vector generating F1(π, τ), normalized by

∑
α

q2
α(π, τ) = 1 .

Next, we consider the 2–dimensional subspace F1 ⊕ F2, depending only on (π, τ):
we choose a vector v(π, τ) satisfying

∑
α

v2
α(π, τ) = 1 ,

∑
α

vα(π, τ)qα(π, τ) = 0 .

There are two choices for v, differing by a sign, both of them being relevant in the
following; we fix such a choice.

From q and v, it is easy to find a generator w for F2(π, λ, τ). Indeed we have

F2(π, λ, τ) ⊂ E1(π, λ) ,

with
E1(π, λ) = {w ,

∑
α

λαwα = 0} .

Therefore, we will take

w(π, λ, τ) = v(π, τ)− t(π, λ, τ)q(π, τ)

with

t(π, λ, τ) =
〈λ, v〉
〈λ, q〉 .

Proposition. For almost all (π, λ, τ) and all (nα) ∈ NA, not all equal to 0, we
have ∑

α

nαwα(π, λ, τ) 6= 0 .
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Proof. Indeed, fixing (nα), we have

∑
α

nαwα = 0 ⇔ t =
〈n, v〉
〈n, q〉

where 〈n, q〉 > 0 as nα ≥ 0, qα > 0. In view of the formula for t, for fixed (π, λ)
this happens with measure 0 w.r.t. λ. The conclusion follows by Fubini’s theorem.
¤

3.4.2 The functions Vα(π, λ). Let (π, τ) be a typical point (for backward time
Rauzy–Veech–Zorich dynamics). Let (π(−n), τ (−n)) be its backwards orbit for
the Rauzy–Veech dynamics. Let q(−n)(π, τ), v(−n)(π, τ) be the images of q(π, τ),
v(π, τ) under the Zorich cocycle. From the invariance of F1 and F1⊕F2 w.r.t. the
Zorich cocycle we can write

q(−n)(π, τ) = Θ(−n)
1 q(π(−n), τ (−n)) ,

v(−n)(π, τ) = Θ(−n)
2 v(π(−n), τ (−n)) + Θ(−n)q(π(−n), τ (−n)) ,

where Θ(−n)
1 , Θ(−n)

2 and Θ(−n) are real numbers depending on π, τ, n, Θ(−n)
1 > 0.

We will always make a coherent choice for the vectors v(π(−n), τ (−n)) along an
orbit in order to have Θ(−n)

2 > 0. The coefficient Θ(−n)
1 is exponentially small (in

Zorich reparametrized time) at rate θ1, |Θ(−n)
2 | is exponentially small at rate θ2,

and |Θ(−n)| is at most exponentially small at rate θ2.
Let u(−n)(π, τ) = (q(−n)(π, τ), v(−n)(π, τ)). According to the definition of the

Zorich cocycle, we have
u

(−n)
β = u

(−n−1)
β ,

if β is not the loser of the arrow from π(−n−1) to π(−n) and

u
(−n)
βl

= u
(−n−1)
βl

+ u
(−n−1)
βw

,

if βl (resp. βw) is the loser (resp. the winner) of this arrow.
For α ∈ A, let Γ(−n)

α be the broken line in R2 starting at the origin and
obtained by adding successively the vectors u

(−n)
βi

, where β0, β1, . . . are defined as
follows: if T (0) is any i.e.m. with combinatorial data π(0), and T (−n) is the i.e.m.
whose n–times Rauzy–Veech induction is T (0), we have

[T (−n)]i(I(0)
α ) ⊆ I

(−n)
βi

.

Here, i runs from 0 to the return time of I
(0)
α in I(0).
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In other terms, β0, β1, . . . is the itinerary of I
(0)
α with respect to the partition

of I(−n) by the I
(−n)
β . When we go one step further to T (−n−1) on I(−n−1), the

new itinerary is obtained by replacing βl by βlβw or βwβl (depending whether the
arrow from π(−n−1) to π(−n) has top or bottom type).

Consequently, the vertices of Γ(−n)
α are also vertices of Γ(−n−1)

α . The following
properties are now clear:

1. Γ(−n)
α is the graph of a piecewise affine continuous map V

(−n)
α (π, τ) on

[0, qα(π, τ)] satisfying

V (−n)
α (π, τ)(0) = 0 ,

V (−n)
α (π, τ)(qα(π, τ)) = vα(π, τ) .

(In particular V
(0)
α (π, τ) is the affine map on [0, qα(π, τ)] with these boundary

values).
2. The vertices of Γ(−n)

α are also vertices of Γ(−n−1)
α .

From the behaviour of the coefficients Θ(−n)
1 , Θ(−n)

2 and Θ(−n) it also follows that
3. The sequence V

(−n)
α (π, τ) converges uniformly exponentially fast (with respect

to Zorich reparametrized time) at rate θ2 to a continuous function Vα(π, τ)
on [0, qα(π, τ)] (with the same boundary values).

4. The function Vα(π, τ) satisfies a Hölder condition of exponent θ, for any
θ < θ2/θ1.
We also define the following function V∗(π, τ): if αb, αt are the last letter of

the bottom, top lines of π, we set:

V∗(π, τ)(x) =
{

Vαb
(π, τ)(x) if 0 ≤ x ≤ qαb

,
Vαt(π, τ)(x− qαb

) + vαb
if qαb

≤ x ≤ qαb
+ qαt ,

(with qαb
= qαb

(π, τ), etc.).

3.4.3 The functions Wα(π, λ, τ). For π, τ as above, α ∈ A, λ ∈ (R+)A, we can
perform with respect to the vector w(π, λ, τ) = v(π, τ)−t(π, λ, τ)q(π, τ) of Section
3.4.1 the same construction that we did for v(π, τ). We denote by w(−n)(π, λ, τ)
the image of w(π, λ, τ) under the Zorich cocycle and we have

w(−n)(π, λ, τ) = Θ(−n)
2 w(π(−n), λ(−n), τ (−n)) .

We obtain functions Wα(π, λ, τ), W∗(π, λ, τ) which are related to the previous
ones by

Wα(π, λ, τ)(x) = Vα(π, τ)(x)− t(π, λ, τ)x ,

W∗(π, λ, τ)(x) = V∗(π, τ)(x)− t(π, λ, τ)x .
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3.4.4 Relation to Birkhoff sums. Let α ∈ A. Denote as above by (β0, β1, . . .)
the itinerary of I

(0)
α with relation to the partition I

(−n)
β till its return to I(0).

Consider the Birkhoff sums

Sαq(−n)(i) =
i−1∑

j=0

q
(−n)
βj

(π, τ) ,

Sαw(−n)(i) =
i−1∑

j=0

w
(−n)
βj

(π, λ, τ) .

We have then by definition of Γ(−n) (for W (π, λ, τ))

Wα(Sαq(−n)(i)) = Sαw(−n)(i) .

If instead we look at the Birkhoff sums

Sαq(i) =
i−1∑

j=0

qβj (π
(−n), τ (−n)) ,

Sαw(i) =
i−1∑

j=0

wβj (π
(−n), λ(−n), τ (−n)) ,

we will have, in view of the relation between q(−n), w(−n) and q, w:

Sαq(i) = (Θ(−n)
1 )−1Sαq(−n)(i) ,

Sαw(i) = (Θ(−n)
2 )−1Sαw(−n)(i) ,

hence
Sαw(i) = (Θ(−n)

2 )−1Wα(Θ(−n)
1 Sαq(i)) .

In view of this formula one can think of Wα as the “limit shape” for the Birkhoff
sum of w.

3.4.5 Functional equation. Here we relate the Wα(π, λ, τ) to the Wα(π(−1), λ(−1), τ (−1)).
The relation is a consequence of the formulas

q(−1)(π, τ) = Θ(−1)
1 q(π(−1), τ (−1)) ,

w(−1)(π, λ, τ) = Θ(−1)
2 w(π(−1), λ(−1), τ (−1)) .

Indeed, if α is not the loser of the arrow from π(−1) to π(0), we obtain

Wα(π, λ, τ)(x) = Θ(−1)
2 Wα(π(−1), λ(−1), τ (−1))

(
x

Θ(−1)
1

)
.
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If α is the loser of this arrow, we obtain

Wαl
(π, λ, τ)(x) = Θ(−1)

2 W∗(π(−1), λ(−1), τ (−1))

(
x

Θ(−1)
1

)
.

3.5 On the direction of w
Recall that in Section 3.3.1 we want to bound from above the Birkhoff

sums of w at some point x∗. In Section 3.4.4 we have related the Birkhoff
sums of w(π(−n), λ(−n), τ (−n)) to the limit shape Wα(π, λ, τ). In Section 3.7 the
point x∗ will be defined using the maximum of Wα(π(n), λ(n), τ (n)) (for n > 0
large). Therefore we need to compare these functions Wα(π(n), λ(n), τ (n)) to their
maximum values. In order to do this, the Proposition below is a crucial technical
step.

3.5.1 The Rauzy operations Rt, Rb in R do not change the first letter of the
bottom and top lines of elements of R. So there is a letter a ∈ A which is the
first letter in the top line of any element of R. Consider the set Υ of (π, λ, τ) with
π ∈ R, λ ∈ (R+)A, τ ∈ Θπ, which satisfy the following properties
(i) a is the last letter of the bottom line of π;
(ii) a is the loser of the next step of the Rauzy–Veech algorithm for (π, λ, τ): if α

is the last letter of the top line of π, we have λα > λa;
(iii) wa(π, λ, τ)(wa(π, λ, τ) + wα(π, λ, τ)) < 0.

Here w(π, λ, τ) is the vector associated to the exponent θ2 defined in 3.4.1.
There were two possible choices for w but obviously property (iii) does not depend
on this choice. Observe also that there are elements π ∈ R satisfying (i): since
the Rauzy–Veech expansion of a standard i.e.m. with no connections produces an
∞–complete path (see e.g. [Y1]) the letter a must be the winner of at least one
arrow in D and this can only occur when a is the last letter of the bottom line.

Proposition.The set Υ has positive measure.

Proof. The rest of this Section 3.5 is devoted to the proof of this assertion.

3.5.2 Recall that

w(π, λ, τ) = v(π, τ)− < λ, v >

< λ, q >
q(π, τ) .

In view of (ii), the vector λ is allowed to vary in a convex cone whose extremal
vectors λ(β) are given by

•λ(β)
γ := δγβ , β 6= a

•λ(a)
γ := δγa + δγα ,
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where δγβ , δγa and δγα denote the Kronecker symbol. The corresponding values
for wa are

• va − vβ

qβ
qa , β 6= a

• va − vα + va

qα + qa
qa .

We see that these values have the same sign if and only if va

qa
is either larger than

all other vβ

qβ
or smaller than these quantities. Furthermore, if a change of sign of

wa occurs, we want that wa + wα does not change sign at the same time, and this
occurs if and only if va

qa
= vα

qα
. We will prove below the following two results

Proposition 1.Let π ∈ R such that a is the first top letter and last bottom letter
of π. For all α ∈ A, α 6= a and almost all τ we have

va(π, τ)qα(π, τ)− vα(π, τ)qa(π, τ) 6= 0 .

Proposition 2.There exist π ∈ R, with last bottom letter a, letters b, c and a
positive measure set of τ on which

vc

qc
<

va

qa
<

vb

qb
.

These two propositions do indeed imply that Υ has positive measure. Let
a, b, c, π, τ be as in Proposition 2; almost surely the conclusion of Proposition
1 is also satisfied. We have wa(π, λ, τ) < 0 if and only if the linear form
l(λ) =< λ, v > −va

qa
< λ, q > is positive and wa(π, λ, τ) + wα(π, λ, τ) < 0 if

and only if the linear form l̃(λ) =< λ, v > −va+vα

qa+qα
< λ, q > is positive (here α is

the last letter in the top line of π). One has l(λ(b)) > 0, l(λ(c)) < 0. Moreover, l
and l̃ are not proportional thus there exists a set of λ of positive measure where
l(λ)l̃(λ) < 0. This concludes the proof of the Proposition. ¤

Obviously, the statement obtained from the Proposition in 3.5.1 and the
Propositions 1 and 2 in 3.5.2 by exchanging the role of the top and bottom lines
are also true.

3.5.3 Proof of Proposition 1. It is based on the twisting property of the Rauzy
monoid proved by A. Avila and M. Viana [AV]. Let us recall the content of this
property. For π ∈ R, be the antisymmetric matrix Ω(π) has been defined by

Ωβγ(π) =

{ 1 if πtβ < πtγ , πbβ > πbγ ,
−1 if πtβ > πtγ , πbβ < πbγ ,
0 otherwise.
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The subspaces H(π) = ImΩ(π) have dimension 2g and are invariant under
the Zorich cocycle, which acts symplectically on these subspaces. Let π ∈ R,
F ⊂ H(π) a subspace of dimension k, 0 < k < 2g, and F ∗1 , . . . , F ∗l ⊂ H(π) be
subspaces of codimension k. The twisting property asserts that there exists a loop
σ of D at π such that the image of F under the matrix Bσ corresponding to σ
under the Zorich cocycle is transverse to F ∗1 , . . . , F ∗l .

Consider the 2–dimensional subspace F (π, τ) generated by q and v. As it is
associated to the positive Lyapunov exponents θ1 > θ2, it is contained in H(π)
(the Lyapunov exponents on RA/H(π) are equal to zero).

Let π ∈ R be such that a is the first top letter and the last bottom letter of
π and let α ∈ A, α 6= a. The relation vαqa − vaqα = 0 holds if and only if F (π, τ)
is not transverse to the codimension 2 subspace

{y ∈ RA , ya = yα = 0 } .

We claim that the intersection F ∗(α) of this subspace with H(π) is transverse,
hence has codimension 2 in H(π): indeed, let ν ∈ RA, y = Ω(π)ν; as a is the first
top and the last bottom letter of π we have

ya =
∑

β 6=a

νβ ,

On the other hand the coefficient of νa in yα is −1. Therefore the linear forms (of
the variable ν) ya and yα are not proportional and the claim follows.

Therefore, if the conclusion of Proposition 1 for π, α does not hold, there
exists a set of positive measure X ⊂ P(Θπ) such that, for τ ∈ X, the subspace
F (π, τ) is not transverse to F ∗(α).

The following Lemma will be proved below.

Lemma. Let π ∈ R, X ⊂ P(Θπ) a subset of positive measure. For any ε > 0,
there exista a loop σ of D at π such that the measure of P(Θπ)\ (tBσ(X)∩P(Θπ))
is < ε.

From the twisting property and the compactness of the Grassmannians, there exist
loops σ1, . . . , σk of D at π such that, for any 2–dimensional subspace F0 ⊂ H(π),
and any codimension 2 subspace F ∗0 ⊂ H(π), F ∗0 is transverse to at least one of
the BσiF0.

Let ε > 0, and let σ be as in the Lemma above. If ε > 0 is small enough,
there exists a set of positive measure Y ⊂ P(Θπ) such that, for τ ∈ Y , tB−1

σi
τ

belongs to tBσ(X) ∩ P(Θπ) for all 1 ≤ i ≤ k. Writing τi = tB−1
σ

t
B−1

σi
τ , we

have τi ∈ X for 1 ≤ i ≤ k; this means that F (π, τi) is not transverse to F ∗(α).
As the F–bundle is invariant under the Rauzy–Veech dynamics, we have that
F (π, τi) = BσBσiF (π, τ); setting F0 = F (π, τ), F ∗0 = B−1

σ F ∗(α), we see that, for
τ ∈ Y , BσiF0 is not transverse to F ∗0 for all 1 ≤ i ≤ k, a contradiction. ¤
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Proof of the Lemma. ¤

Remark. Proposition 1 is in general false if we replace a, α by any two distinct
letters: consider in genus 2

π =
(

A B C D E
D E C B A

)
.

Obviously we have {uD = uE} as equation of H(π), hence qDvE − qEvD ≡ 0.

3.5.4 Proof of Proposition 2. Let c be the first letter of the bottom line of
all elements of R: we have c 6= a; let b be any letter distinct from a and c. We
will prove the inequalities of Proposition 2 up to exchanging b and c (which leaves
invariant the statement of Proposition 2). Let π0 ∈ R such that the last top and
bottom letters are c, a respectively (if π ∈ R is such that a is the last letter of the
bottom line such a π0 is obtained by a suitable number of iterations of the Rauzy
operation Rb). Consider in D the subdiagram obtained by erasing the arrows
whose winner is not a, b or c and then keeping the connected component D′ of π0.
It is easily seen to have the typical form shown in the figure (see [AV], [AGY])

a cb b

π` πrπo

• •• ....................
........................

...................................
............................................................................................................................................................... ......................................................................................................................................................................................

...........................
.....................

........ ......................................................................................................................................................................................
...........................
.....................
............................

........................
...................................

.....................................................................................................................................................................................................................................................................................................................................................
...

....................
........................
...................................

..........................................................................................................
......................................................................................................................................................................................

...
....................

........................
...................................

..........................................................................................................
..............................................
..............
..................
..............

..............
..................
..............
..............................................

•

•• •

...............
...............
...................................
......................
...............
..................................................................

.
..............
........
.................

.........................................................
........
.....................
.

................. ...............
...............
...................................
......................
...............
....................................................

....
................................ ................

................
........................................
.............. .........................................................

........
.....................
.

................. ...............
...............
...................................
......................
...............
..

................................. ...................... ................................. ....................................................... ....................................................... ......................

....................................................... .....................................................................................................................................................................

(i.e. it is essentially the Rauzy diagram with d = 3, (see e.g. [Y1]) with some
meaningless vertices added; only π0, πl and πr have two arrows going out).

For paths contained in D′, the a, b, c coordinates of vectors are changed under
the Zorich cocycle exactly as in the Rauzy diagram with d = 3. Consider the
vectors in the right halfplane:

ua = ua(π0, τ) = (qa(π0, τ), va(π0, τ)) ,

ub = ub(π0, τ) = (qb(π0, τ), vb(π0, τ)) ,

uc = uc(π0, τ) = (qc(π0, τ), vc(π0, τ)) .

By Proposition 1 (and its symmetric statement obtained by exchanging top and
bottom), for almost all τ , no two among these 3 vectors are collinear (indeed, c
has the same properties than a).

If there is a set of τ of positive measure such that ua is between ub and uc in
the right halfplane, the conclusion of Proposition 2 is satisfied; assume therefore
that it is not the case.
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Next assume that on a set of positive measure the vector ua + uc is between
ua and ub. Consider the path σ starting at π0, going to πl and making N–times
the b–loop at πl; the effect on the vectors is the following (we have for each arrow
to add the winning vector to the losing one):

ua −→ u′a = ua + Nub ,

ub −→ u′b = ub ,

uc −→ u′c = ua + uc .

If N is large enough then u′a is between u′b and u′c hence the conclusion of
Proposition 2 is again satisfied (at πl).

Finally, in the remaining case, we would have that, for almost all τ , ub is
between ua and ua + uc; the loop at π0 obtained by going to πr, making N times
the b–loop at πr and coming back to π0 has for effect:

ua −→ u′′a = ua + uc ,

ub −→ u′′b = uc + (N + 1)ub ,

uc −→ u′′c = uc + Nub .

For large N , u′′c is between u′′a and u′′b , which contradicts the assumption. The
proof of Proposition 2 is now complete. ¤

3.6 Consequences for limit shapes

3.6.1 Let (π, λ, τ) be a typical point for the Rauzy–Veech dynamics, let α ∈ A,
and let Wα(π, λ, τ) be the limit shape defined in Section 3.4.3.

Proposition The extremal values of Wα(π, λ, τ) (minimum and maximum) are
not taken at the endpoints of the interval of definition [0, qα(π, τ)] of Wα(π, λ, τ).

Proof. As the set Υ of the proposition in 3.5.1 has positive measure and the
invariant measure for Rauzy–Veech dynamics is conservative and ergodic, there
exists (for almost all (π, λ, τ)) a positive integer N such that (π(−N), λ(−N), τ (−N))
belongs to Υ and the interval I(0) is contained in the first subinterval I

(−N+1)
a of

I(−N+1). We have then

Wα(π, λ, τ)(q(−N)
a (π, τ)) = w(−N)

a (π, λ, τ) ,

Wα(π, λ, τ)(q(−N+1)
a (π, τ)) = w(−N+1)

a (π, λ, τ) ,

with
q(−N+1)
a (π, τ) = q(−N)

a (π, τ) + q(−N)
α (π, τ) ,

w(−N+1)
a (π, λ, τ) = w(−N)

a (π, λ, τ) + w(−N)
α (π, λ, τ) ,
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α being the winner of the arrow from π(−N) to π(−N+1). By the definition of Υ
we have that

w(−N)
a (π, λ, τ)w(−N+1)

a (π, λ, τ) < 0

and therefore 0 is not an extremal value of Wα(π, λ, τ). The other endpoint is
treated in a similar manner, exchanging the top and the bottom lines. ¤

3.6.2 Smallest concave majorant. Let F : [a, b] → R be continuous. The
infimum of concave majorants of F on [a, b] is the smallest concave majorant of F
and will be denoted by F̂ ; it is continuous and satisfies F̂ (a) = F (a), F̂ (b) = F (b);
moreover, the maximum values of F and F̂ are the same. We write F̂ ′r, F̂ ′l for the
right and left derivatives of F̂ .

Proposition Let (π, λ, τ) be a typical point for Rauzy–Veech dynamics and let
α ∈ A. We have

Ŵ ′
α,r(π, λ, τ)(0) = +∞ ,

Ŵ ′
α,l(π, λ, τ)(qα(π, τ)) = −∞ ,

Ŵ ′
∗,r(π, λ, τ)(qαb

) = Ŵ ′
∗,l(π, λ, τ)(qαb

) 6= 0 .

Proof. The first two assertions are a very slight extension of the Proposition in
3.6.1: in the proof of this proposition we first replace the set Υ of Section 3.5.1 by
the slightly smaller set Υδ obtained by replacing condition (iii) in 3.5.1 by

(iii)δ wa(wa + wα) < 0 , and |wa| > δ and |wa + wα| > δ .

If δ > 0 is small enough, this has still positive measure. Now, the integer N in the
proof of Proposition 3.6.1 can be taken arbitrarily large; as q

(−N)
a and w

(−N)
a go

down exponentially fast (in Zorich time) at respective rates θ1 > θ2, this implies
the first two assertions of the Proposition.

For the last assertion, it follows from the definition of V∗ and the first two
assertions that we have

V̂∗(π, τ)(qαb
) > V∗(π, τ)(qαb

) .

It follows that V̂∗ is affine in a neighborhood of qαb
, in particular V̂ ′

∗,r(qαb
) =

V̂ ′
∗,l(qαb

).
Now, obviously we have

Ŵ∗(π, λ, τ)(x) = V̂∗(π, τ)(x)− < λ, v >

< λ, q >
x ,
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(adding an affine function to F adds the same affine function to the smallest
concave majorant). Therefore we have

Ŵ ′
∗(π, λ, τ)(qαb

) = 0

if and only if
< λ, v >

< λ, q >
= V̂ ′

∗(π, τ)(qαb
)

which has λ–measure zero for any given (π, τ). ¤

3.6.3 Corollary. The function Wα(π, λ, τ) takes its maximum value at a unique
point xmax

α (π, λ, τ) (for almost all (π, λ, τ)).

Proof. Let (π, λ, τ) be a typical point and α ∈ A. By the functional equation of
Section 3.4.5, Wα(π, λ, τ) is a rescaled version of either Wα(π(−1), λ(−1), τ (−1)) (if
α is not the loser of the arrow from π(−1) to π) or W∗(π(−1), λ(−1), τ (−1)) (if α is
the loser of this arrow).

In this last case, by the last assertion of Proposition 3.6.2, W∗(π(−1),
λ(−1), τ (−1)) does not take its maximum value both in [0, qαb

(π(−1), τ (−1))] and in
[qαb

(π(−1), τ (−1)), qαb
(π(−1), τ (−1)) + qαt(π

(−1), τ (−1))] (otherwise we would have
Ŵ ′
∗(π

(−1), λ(−1), τ (−1))(qαb
(π(−1), τ (−1))) = 0).

In view of the definition of W∗, this means that the set M where Wα(π, λ, τ)
takes its maximum value is a rescaled version of the set where Wα(1)(π(−1), λ(−1),

τ (−1)) takes its maximum value, for some α(1) ∈ A. Iterating this procedure,
we obtain that M is a rescaled version (by a factor Θ(−n)

1 ) of the set where
Wα(n)(π(−n), λ(−n), τ (−n)) takes its maximum value, for some letter α(n) ∈ A.
As the qα are bounded by 1 this proves that the diameter of M is smaller than
Θ(−n)

1 for all n ≥ 0, hence it is a point. The case of the minimum is similar. ¤

A similar result is true for minimum values. The function W∗(π, λ, τ) also takes
its maximum value at a unique point xmax

∗ (π, λ, τ). By the proposition in 3.6.1 we
know that xmax

∗ (π, λ, τ) is distinct from 0, qαb
, qαb

+ qαt . Observe that we have

xmax
∗ (π, λ, τ) ∈ (0, qαb

) ⇐⇒ Ŵ ′
∗(π, λ, τ)(qαb

) < 0 ,

xmax
∗ (π, λ, τ) ∈ (qαb

, qαb
+ qαt) ⇐⇒ Ŵ ′

∗(π, λ, τ)(qαb
) > 0 .

Assume for instance that xmax
∗ (π, λ, τ) ∈ (0, qαb

). As W∗ and Ŵ∗ coincide at xmax
∗ ,

we have, for x ∈ [qαb
, qαb

+ qαt ]

W∗(x) ≤ Ŵ∗(x)

≤ Ŵ∗(qαb
) + Ŵ ′

∗(qαb
)(x− qαb

)

≤ W∗(xmax
∗ ) + Ŵ ′

∗(qαb
)(x− qαb

) .
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This will provide a satisfactory control of W∗ if |Ŵ ′
∗(qαb

)| is not too small and
(x − qαb

) is not too small. When x is very close to qαb
, we will rely on a direct

control on W∗(xmax
∗ )−W∗(qαb

), based on the Proposition in 3.5.1.

3.7 Proof of the Proposition in 3.3.1

3.7.1 Let (π, λ, τ) be a typical point for the Rauzy–Veech dynamics.
We observe first that, if w̃ is a vector in the subspace E2(π, λ), Zorich has

proved [Z2] that the Birkhoff sums Snw̃ satisfy, uniformly on I(0), an estimate

‖Sn(w̃)‖C0 ≤ C(ε)|n|ω+ε ,

for all ε > 0; here ω is either 0 if g = 2 or θ3/θ1 if g ≥ 3. In any case, we have
ω+ε < θ2/θ1−ε for small ε, hence the order is smaller than the one in Proposition
3.3.1.

It follows that it is sufficient to prove the estimate of Proposition 3.3.1 when
w is “the” vector w(π, λ, τ) considered above (there are actually two vectors to
consider, opposite to each other).

3.7.2 Recall the relation between Birkhoff sums and limit shapes from Section
3.4.4:

Sαw(i) = Θ(n)
2 Wα((Θ(n)

1 )−1Sαq(i)) ,

where
• Sαq(i) =

∑i−1
j=0 qβj (π, τ) ,

• Sαw(i) =
∑i−1

j=0 wβj (π, λ, τ) ,

• β0, β1, . . . is the itinerary of I
(n)
α with relation to the partition I

(0)
β of I(0),

• Wα = Wα(π(n), λ(n), τ (n)) is the limit shape at (π(n), λ(n), τ (n)),
• the real number Θ(n)

1 = Θ(n)
1 (π, λ, τ) > 0 is defined by the relation q(n)(π, τ) =

Θ(n)
1 q(π(n), τ (n)) where q(n)(π, τ) is the image of q(π, τ) under the Zorich

cocycle,
• the real number Θ(n)

2 = Θ(n)
2 (π, λ, τ) is similarly defined by w(n)(π, λ, τ) =

Θ(n)
2 w(π(n), λ(n), τ (n)),

• i varies from 0 to the return time of I
(n)
α in I(n) under T (0).

We assume that the choices of signs for w(π, λ, τ) and w(π(n), λ(n), τ (n)) are such
that

Θ(n)
2 > 0 .

By Corollary 3.6.3, for almost all (π, λ, τ), all α ∈ A, all n ≥ 0, Wα(π(n), λ(n), τ (n))
has a unique maximum at some xmax

α = xmax
α (π(n) , λ(n) , τ (n)). Let i be the integer

such that

(4) Sαq(i) < Θ(n)
1 xmax

α < Sαq(i + 1) ,
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where the inequalities are strict, by Proposition 3.6.1.
Let Imax

α (n) be the image of I
(n)
α by (T (0))i.

Consider what happens when going from n to n + 1. If α is not the loser
of the arrow from π(n) to π(n+1), Wα(π(n+1), λ(n+1), τ (n+1)) is a rescaled version
of Wα(π(n), λ(n), τ (n)), hence the respective maxima correspond. Therefore the
values of i are the same, and Imax

α (n + 1) is equal to (if α is not the winner)
or contained in (if α is the winner) Imax

α (n) (because I
(n+1)
α is equal to, resp.

contained in, I
(n)
α ).

If α is the loser of the arrow from π(n) to π(n+1), Wα(π(n+1), λ(n+1), τ (n+1))
is a rescaled version of W∗(π(n), λ(n), τ (n)). Write as usual αb (resp. αt) for the
last letters in the bottom (resp. top) lines of π(n). The maximum xmax

∗ is either
xmax

αb
or qαb

+xmax
αt

; in the first case, the values of i for Imax
α (n+1) and Imax

αb
(n) are

again the same, and I
(n+1)
α is a subinterval of I

(n)
αb , hence Imax

α (n + 1) ⊂ Imax
αb

(n);
in the second case, the values of i for Imax

α (n+1) and Imax
αt

(n) differ by the return
time Q of I

(n)
αb in I(n), and the image of I

(n+1)
α under (T (0))Q is contained in I

(n)
αt ,

hence Imax
α (n + 1) is contained in Imax

αt
(n).

Thus, we have the following

Lemma. For each n, the intervals Imax
α (n) are disjoint. They satisfy

Imax
α (n + 1) ⊂ Imax

ηn(α)(n)

where ηn(α) = α except possibly when α is the loser of the arrow from π(n) to
π(n+1); in this case ηn(α) is either α or the winner of the same arrow.

Proof. The last assertion has been proved above, the first one is clear because the
orbits of the I

(n)
α are disjoint till their return time. ¤

We can now specify the point x∗ in Proposition 3.3.1. Indeed, take any
sequence (αn)n≥0 ⊂ A such that

ηn(αn+1) = αn .

Remark. It is reasonable to expect that for almost all (π, λ, τ) such a sequence
is unique.

The point x∗ is defined to be

x∗ = ∩n≥0Imax
αn

(n) .

3.7.3 The Birkhoff sums of w at x∗ and the functions Wα are related as follows.
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Denote by Q+(n) ≥ 0 (respectively Q−(n) ≤ 0) the first entrance time in the
future (resp. in the past) of x∗ in I(n) under T (0). The sequence Q+(n) is non
decreasing and the sequence Q−(n) is non increasing.

Moreover, for almost all (π, λ, τ), one has (π(n), λ(n), τ (n)) ∈ Υδ for infinitely
many n ≥ 0, where Υδ is the set defined in 3.6.2. It follows that there are
arbitrarily large values of n such that the maximum xmax

αn
(π(n), λ(n), τ (n)) of

Wαn
(π(n), λ(n), τ (n)) is not exponentially small w.r.t. Zorich time Z(n). This

implies that the integer i in formula (4) above goes to +∞ and thus

lim
n→+∞

Q−(n) = −∞ ,

and similarly one has
lim

n→+∞
Q+(n) = +∞ .

Given some integer j, we want to estimate the Birkhoff sum Sjw(x∗).
Assume for instance that j is positive (the other case is symmetric) and let n

be such that
Q+(n) < j ≤ Q+(n + 1) .

For m ≥ 0, let im ≥ 0 be the integer such that

Imax
αm

(m) = T im(I(m)
αm

) .

Claim. αn+1 is the loser of the arrow from π(n) to π(n+1).

Proof. Assume that this is not the case. Then the discussion before the lemma in
Section 3.7.2 shows that in = in+1; on the other hand, the return times of I

(n)
αn+1 in

I(n) and I
(n+1)
αn+1 in I(n+1) are the same. Then we would have Q+(n) = Q+(n + 1),

a contradiction. ¤

It follows from the claim that Wαn+1(π
(n+1), λ(n+1), τ (n+1)) is a rescaled version

of W∗ = W∗(π(n), λ(n), τ (n)).
We have then

Sjw(x∗) =
in+1+j−1∑

k=in+1

wβk
(π, λ, τ)

= Θ(n)
2

(
W∗([Θ

(n)
1 ]−1Sαn+1q(in+1 + j))−W∗([Θ

(n)
1 ]−1Sαn+1q(in+1))

)
.

Claim. We have in+1 = in, π
(n)
b (αn+1) = d and

[Θ(n)
1 ]−1Sαn+1q(in+1) ∈ [0, qαb

(π(n), λ(n), τ (n))]
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and

[Θ(n)
1 ]−1Sαn+1q(in+1+j) ∈ [qαb

(π(n), λ(n), τ (n)), qαb
(π(n), λ(n), τ (n))+qαt

(π(n), λ(n), τ (n))] .

Proof. We refer again to the discussion before the lemma in Section 3.7.2. We
claim that in this discussion we must have that xmax

∗ is xmax
αb

. (Otherwise this
discussion shows that Q+(n + 1) = Q+(n)). We have seen in Section 3.7.2 that
then we have in = in+1, π

(n)
b (αn+1) = d and thus

[Θ(n)
1 ]−1Sαn+1q(in+1) ∈ [0, qαb

(π(n), λ(n), τ (n))] .

Moreover, we have

[Θ(n)
1 ]−1Sαn+1q(in+1 + Q+(n)) = qαb

(π(n), λ(n), τ (n)) ,

and

[Θ(n)
1 ]−1Sαn+1q(in+1 + Q+(n + 1)) = qαb

(π(n), λ(n), τ (n)) + qαt(π
(n), λ(n), τ (n)) ,

Hence

[Θ(n)
1 ]−1Sαn+1q(in+1+j) ∈ [qαb

(π(n), λ(n), τ (n)), qαb
(π(n), λ(n), τ (n))+qαt(π

(n), λ(n), τ (n))] .

Let
y† = (Θ(n)

1 )−1Sαn+1q(in+1 + j) ,

y∗ = (Θ(n)
1 )−1Sαn+1q(in+1) .

From the construction of W∗ we have

|Θ(n)
2 (W∗(y∗)−W∗(xmax

∗ ))| ≤ C ,

where the majorant C depends on (π, λ, τ) but not on n. We therefore are left
with the estimation of

Θ(n)
2 (W∗(y†)−W∗(xmax

∗ )) ,

when xmax
∗ ∈ [0, qαb

], y† ∈ [qαb
, qαb

+ qαt ].

3.7.4 For n ≥ 0, write Wmax
∗ (n) for the maximum value of W∗(π(n), λ(n), τ (n)) in

its domain [0, qαb
+ qαt ]. If the maximum value is taken in [0, qαb

], let W̃max
∗ (n)

be the maximum value of W∗ in [qαb
, qαb

+ qαt ]; if the maximum value of W∗ is
taken in [qαb

, qαb
+ qαt ] , let W̃max

∗ (n) be the maximum value in [0, qαb
].
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To complete the proof of Proposition 3.3.1, it is therefore sufficient to prove
the following estimate:

Proposition. For almost all (π, λ, τ) one has

lim
n→+∞

1
Z(n)

log(Wmax
∗ (n)− W̃max

∗ (n)) = 0 ,

where Z(n) is the Zorich time defined in Section 1.4.

Proof. We apply Birkhoff ergodic theorem to the Rauzy–Veech dynamics (in Zorich
time) and to the characteristic function of the set Υδ. We see that for any
n there exists n′ < n such that I(n) is contained in the first interval I

(n′+1)
a ,

(π(n′), λ(n′), τ (n′)) belongs to Υδ, and the ratio Z(n)−Z(n′)
Z(n) converges to 0 as

n → +∞.
By definition of Υδ and the scaling rules, there exists a point x1 ∈ [qαb

, qαb
+

qαt ] such that

W∗(x1)−W∗(qαb
) ≥ δ

Min [Θ(n′)
2 , Θ(n′+1)

2 ]

Θ(n)
2

.

Exchanging the top and bottom lines, we find similarly that there exists a point
x0 ∈ [0, qαb

] such that

W∗(x0)−W∗(qαb
) ≥ δ

Min [Θ(n′)
2 , Θ(n′+1)

2 ]

Θ(n)
2

.

On the other hand, take n′′ < n′ such that Z(n)−Z(n′′)
Z(n) still goes to zero but

‖W (π(n′′), λ(n′′), τ (n′′))‖ Θ(n′′)
2

Min [Θ(n′)
2 , Θ(n′+1)

2 ]

is small; in view of the choice of normalization for W , this is possible because of
the following

Lemma.For almost all (π, τ) we have

lim
n→+∞

1
Z(n)

log Infα qα(π(n), τ (n)) = 0 .

Proof. This follows easily from the boundary behaviour of the Zorich invariant
measure, see [Y1] for instance. ¤
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Putting together the properties of n′ and n′′, we see that for

|y − qαb
| ≤ r(n) := Minα qα(π(n′′), τ (n′′))

Θ(n′′)
1

Θ(n)
1

,

we have

W∗(y) ≤ Wmax
∗ (n)− 1

2
δ
Min [Θ(n′)

2 , Θ(n′+1)
2 ]

Θ(n)
2

.

Observe that by the claim and the choice of n′′ we have

lim
n→+∞

1
Z(n)

log r(n) = 0 .

To estimate W∗ outside the neighborhood of qαb
we go back to the smallest concave

majorant Ŵ∗ of Section 3.6.2. By the proposition in this Section the derivative at
qαb

of Ŵ∗ almost surely exists and is non zero.
Observe that the maximum value of W∗ is taken in [0, qαb

] (respectively
[qαb

, qαb
+ qαt ]) if and only if Ŵ ′

∗(qαb
) < 0 (resp. Ŵ ′

∗(qαb
) > 0).

In the first case, we have, for y ≥ qαb
+ r(n)

W∗(y) ≤ Wmax
∗ (n) + W̃ ′

∗(qαb
)r(n) .

We claim that

Claim Almost surely in (π, λ, τ) we have

lim sup
n→+∞

1
n

log |Ŵ ′
∗(π

(n), λ(n), τ (n))(qαb
)| ≥ 0 .

Proof. Recall that (Section 3.6.2)

Ŵ ′
∗(π, λ, τ)(qαb

) = V̂ ′
∗(π, τ)(qαb

)− < λ, v >

< λ, q >
.

Therefore one has |Ŵ ′
∗(qαb

)| < ε if and only if
∣∣∣∣
< λ, v >

< λ, q >
− V̂ ′

∗(π, τ)(qαb
)
∣∣∣∣ < ε .

For fixed (π, τ), the set of λ such that |Ŵ ′
∗(π, λ, τ)(qαb

)| < ε has therefore a
Lebesgue measure which is at most Cε (because q and v are normalized to have
l2 norm 1, and q is positive). Going to the Zorich invariant measure (with the
control of [Y1] for instance) and using a Borel–Cantelli argument gives the claim.
¤
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Combining the estimate for |y − qαb
| < r(n) and the one for |y − qαb

| > r(n)
now gives the Proposition. ¤

3.7.5 End of the proof of Proposition 3.3.1 We have just seen that the
quantity at the end of Section 3.7.3

Θ(n)
2 (Wαn

(y†)−Wαn
(xmax

αn
))

(with y† ∈ [qαb
, qαb

+ qαt
] if xmax

αn
∈ [0, qαb

] and y† ∈ [0, qαb
] if xmax

αn
∈

[qαb
, qαb

+ qαt
]) grows exponentially fast at rate θ2 (in Zorich time Z(n)). This

quantity was seen in Section 3.7.3 to control Sjw(x∗) for Q+(n− 1) < j ≤ Q+(n)
(in the case xmax

αn
∈ [0, qαb

]).
But as we have

lim
n→+∞

1
Z(n)

log r(n) = 0

we will have by the scaling rules

lim
n→+∞

1
Z(n)

log Q+(n− 1) = θ1 .

The proof of Proposition 3.3.1 is now complete. ¤

Remark. The dimension r − 1 of Aff(1) (γ,w) is obtained as follows. With the
notations of Section 2.2, we have rc = 0 and r = rd is the number of sequences
αn such that ηn(αn+1) = αn. Indeed, observe first that for n large and n′ >> n
the image Ln of the composition ηn ◦ . . . ◦ ηn′ is independent of n′ and has r
elements; moreover, ηn is 1-to-1 from Ln+1 onto Ln. Take then T ∗ in the interior
of Aff(1) (γ,w). For α ∈ Ln, Imax

α (n) contains a wandering interval such that the
complement has small Lebesgue measure (for large n). Taking then n′ >> n and
decomposing (0, 1) into the union of the orbits of the Imax

β (n′), one has that the
measure of each orbit is no more than the measure of the largest interval in the
orbit , which is contained in some Imax

α (n), α ∈ Ln; hence one concludes that the
complement of the orbits of the r wandering intervals has 0 Lebesgue measure.

From rc = 0 it follows that any affine i.e.m. T ∈ Aff (γ,w) has a wandering
interval (consider the segment from T ∗ to T as in Section 2).
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[LM] I. Liousse, H. Marzougui “Échanges d’intervalles affines conjugués à des
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