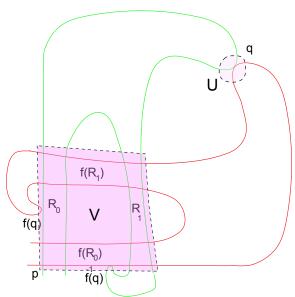
Quelques aspects de la théorie des systèmes dynamiques hyperboliques (9)

Jean-Christophe Yoccoz

Collège de France

18 mars 2015

Bifurcations homoclines pour un ensemble basique



Soit f un difféomorphisme de classe C^{∞} d'une surface M.

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On note V un voisinage ouvert de K_f , ne contenant pas q dans son adhérence, tel que

$$K_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(V).$$

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On note V un voisinage ouvert de K_f , ne contenant pas q dans son adhérence, tel que

$$K_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(V).$$

Notons Λ_f l'union de K et de l'orbite o(q) de q.

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On note V un voisinage ouvert de K_f , ne contenant pas q dans son adhérence, tel que

$$K_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(V).$$

Notons Λ_f l'union de K et de l'orbite o(q) de q. C'est un ensemble fermé, invariant par f (mais pas hyperbolique!).

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On note V un voisinage ouvert de K_f , ne contenant pas q dans son adhérence, tel que

$$K_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(V).$$

Notons Λ_f l'union de K et de l'orbite o(q) de q. C'est un ensemble fermé, invariant par f (mais pas hyperbolique!). On suppose que Λ_f est localement maximal:

On suppose que p appartient à un ensemble basique infini de type selle (fer à cheval) $K = K_f$.

On note V un voisinage ouvert de K_f , ne contenant pas q dans son adhérence, tel que

$$K_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(V).$$

Notons Λ_f l'union de K et de l'orbite o(q) de q. C'est un ensemble fermé, invariant par f (mais pas hyperbolique!). On suppose que Λ_f est localement maximal: il existe un voisinage ouvert $U \cup V$ de Λ_f tel qu'on ait

$$\Lambda_f = \bigcap_{n \in \mathbb{Z}} f^{-n}(U \cup V).$$

$$\Lambda_g := \bigcap_{n \in \mathbb{Z}} g^{-n}(U \cup V).$$

$$\Lambda_g:=\bigcap_{n\in\mathbb{Z}}g^{-n}(U\cup V).$$

Si $\mathcal U$ est assez petit, l'ensemble maximal invariant

$$\mathcal{K}_g := \bigcap_{n \in \mathbb{Z}} g^{-n}(V),$$

est la continuation hyperbolique de K_f .

$$\Lambda_g:=\bigcap_{n\in\mathbb{Z}}g^{-n}(U\cup V).$$

Si \mathcal{U} est assez petit, l'ensemble maximal invariant

$$K_g := \bigcap_{n \in \mathbb{Z}} g^{-n}(V),$$

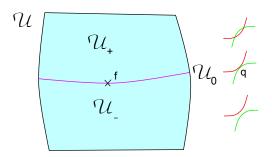
est la continuation hyperbolique de K_f . Pour $g \in \mathcal{U}$, l'ensemble Λ_g est une partie compacte de $U \cup V$.

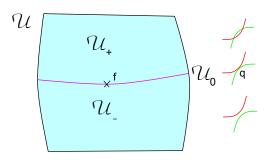
$$\Lambda_g:=\bigcap_{n\in\mathbb{Z}}g^{-n}(U\cup V).$$

Si \mathcal{U} est assez petit, l'ensemble maximal invariant

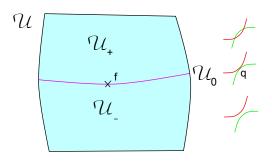
$$K_g := \bigcap_{n \in \mathbb{Z}} g^{-n}(V),$$

est la continuation hyperbolique de K_f . Pour $g \in \mathcal{U}$, l'ensemble Λ_g est une partie compacte de $U \cup V$. C'est donc une partie fermée, g-invariante et localement maximale dont il s'agit d'étudier la géométrie et la dynamique, pour la plupart des difféomorphismes $g \in \mathcal{U}$.

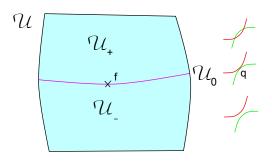




Pour $g \in \mathcal{U}_-$, on a $\Lambda_g = K_g$.

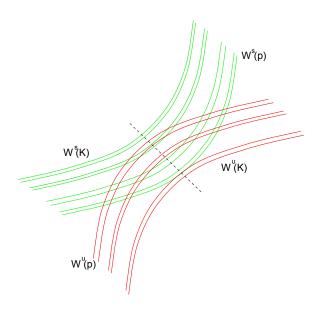


Pour $g \in \mathcal{U}_-$, on a $\Lambda_g = K_g$. Pour $g \in \mathcal{U}_0$, on a $\Lambda_g = K_g \cup o(q_g)$.



Pour $g \in \mathcal{U}_-$, on a $\Lambda_g = K_g$. Pour $g \in \mathcal{U}_0$, on a $\Lambda_g = K_g \cup o(q_g)$.

La situation dans \mathcal{U}_+ est plus compliquée!



Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$.

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n\geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n\geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor.

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor. Il existe r > 1 tel que les applications d'holonomie de ces laminations sont de classe C^r .

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor. Il existe r>1 tel que les applications d'holonomie de ces laminations sont de classe C^r . Les dimensions de Hausdorff transverses d_s , d_u de $W_g^s(K_g)$, $W_g^u(K_g)$ sont donc bien définies et dépendent continûment de g.

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor. Il existe r>1 tel que les applications d'holonomie de ces laminations sont de classe C^r . Les dimensions de Hausdorff transverses d_s , d_u de $W_g^s(K_g)$, $W_g^u(K_g)$ sont donc bien définies et dépendent continûment de g. La somme d_s+d_u est en fait la dimension de Hausdorff de K.

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor. Il existe r>1 tel que les applications d'holonomie de ces laminations sont de classe C^r . Les dimensions de Hausdorff transverses d_s , d_u de $W_g^s(K_g)$, $W_g^u(K_g)$ sont donc bien définies et dépendent continûment de g. La somme d_s+d_u est en fait la dimension de Hausdorff de K.

L'ensemble Λ_g contient l'intersection $W_g^s(K_g) \cap W_g^u(K_g) \cap U$.

Soit *N* un entier tel que $f^n(q)$ soit contenu dans *V* pour $|n| \ge N$. On pose

$$W_g^s(K_g) = \cap_{n \geqslant N} g^{-n}(V), \qquad W_g^u(K_g) = \cap_{n \geqslant N} g^n(V).$$

Les ensembles $W_g^s(K_g)$, $W_g^u(K_g)$ sont au voisinage de q des laminations qui sont transversalement des ensembles de Cantor. Il existe r>1 tel que les applications d'holonomie de ces laminations sont de classe C^r . Les dimensions de Hausdorff transverses d_s , d_u de $W_g^s(K_g)$, $W_g^u(K_g)$ sont donc bien définies et dépendent continûment de g. La somme d_s+d_u est en fait la dimension de Hausdorff de K.

L'ensemble Λ_g contient l'intersection $W_g^s(K_g)\cap W_g^u(K_g)\cap U$. Donc les tangences entre ces deux laminations sont des obstructions à l'hyperbolicité uniforme de Λ_g .

Théorème: (Palis-Takens) Supposons que f vérifie $d_s + d_u < 1$.

Notons \mathfrak{T} l'ensemble des $g \in \mathcal{U}$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de g.

Notons $\mathfrak T$ l'ensemble des $g\in \mathfrak U$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $\frac{d_s}{d_s} + \frac{d_u}{d_u} > 1$.

Notons $\mathfrak T$ l'ensemble des $g\in \mathfrak U$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $d_s + d_u > 1$. Alors, avec densité totale dans \mathcal{U}_+

Notons \mathcal{T} l'ensemble des $g \in \mathcal{U}$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $d_s + d_u > 1$. Alors, avec densité totale dans \mathcal{U}_+

▶ soit $W_g^s(K_g)$ et $W_g^u(K_g)$ sont transverses au voisinage de q,

Notons \mathcal{T} l'ensemble des $g \in \mathcal{U}$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $d_s + d_u > 1$. Alors, avec densité totale dans \mathcal{U}_+

- ▶ soit $W_g^s(K_g)$ et $W_g^u(K_g)$ sont transverses au voisinage de q,
- ▶ soit g appartient à l'intérieur de T.

Notons \mathcal{T} l'ensemble des $g \in \mathcal{U}$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $d_s + d_u > 1$. Alors, avec densité totale dans \mathcal{U}_+

- ▶ soit $W_g^s(K_g)$ et $W_g^u(K_g)$ sont transverses au voisinage de q,
- ▶ soit g appartient à l'intérieur de T.

De plus, le deuxième cas a une densité uniformément strictement positive.

Notons \mathcal{T} l'ensemble des $g \in \mathcal{U}$ tels que $W_g^s(K_g)$ et $W_g^u(K_g)$ ont au moins une tangence au voisinage de q.

Théorème: (Moreira-Y.) Supposons que f vérifie $d_s + d_u > 1$. Alors, avec densité totale dans \mathcal{U}_+

- ▶ soit $W_g^s(K_g)$ et $W_g^u(K_g)$ sont transverses au voisinage de q,
- ▶ soit g appartient à l'intérieur de T.

De plus, le deuxième cas a une densité uniformément strictement positive.

On a vu précédemment que, si les épaisseurs transversales de $W_g^s(K_g)$, $W_g^u(K_g)$ vérifient $\tau_s \tau_u > 1$, on a $\mathfrak{T} = \mathfrak{U}_0 \cup \mathfrak{U}_+$.

Question: Quelles sont les propriétés géométriques et dynamiques de Λ_g de densité totale lorsque la condition $d_s + d_u < 1$ de Palis-Takens n'est pas satisfaite?

Question: Quelles sont les propriétés géométriques et dynamiques de Λ_g de densité totale lorsque la condition $d_s + d_u < 1$ de Palis-Takens n'est pas satisfaite?

D'après Moreira-Y., Λ_g n'est alors pas un ensemble basique (avec densité totale).

Question: Quelles sont les propriétés géométriques et dynamiques de Λ_g de densité totale lorsque la condition $d_s + d_u < 1$ de Palis-Takens n'est pas satisfaite?

D'après Moreira-Y., Λ_g n'est alors pas un ensemble basique (avec densité totale).

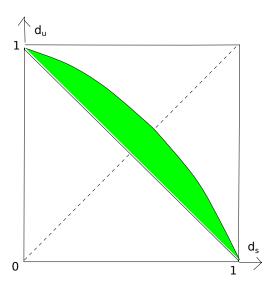
Palis-Y. apportent une réponse partielle à cette question lorsque la dimension $d_s + d_u$ de K est légèrement plus grande que 1,

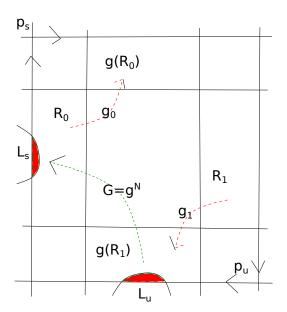
Question: Quelles sont les propriétés géométriques et dynamiques de Λ_g de densité totale lorsque la condition $d_s + d_u < 1$ de Palis-Takens n'est pas satisfaite?

D'après Moreira-Y., Λ_g n'est alors pas un ensemble basique (avec densité totale).

Palis-Y. apportent une réponse partielle à cette question lorsque la dimension $d_s + d_u$ de K est légèrement plus grande que 1, plus précisément $d_s + d_u > 1$ et

$$(d_s + d_u)^2 + (\max(d_s, d_u))^2 < (d_s + d_u) + \max(d_s, d_u).$$





Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

P est une bande "verticale" traversant R;

Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

- P est une bande "verticale" traversant R;
- Q est une bande "horizontale" traversant R;

Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

- P est une bande "verticale" traversant R;
- Q est une bande "horizontale" traversant R;
- ▶ $g_t^n : P \rightarrow Q$ est un difféomorphisme essentiellement affine.

Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

- P est une bande "verticale" traversant R;
- Q est une bande "horizontale" traversant R;
- ▶ $g_t^n : P \rightarrow Q$ est un difféomorphisme essentiellement affine.

A partir des deux triplets initiaux avec n = 1, les autres sont construits par composition directe ou composition parabolique (on intercale G).

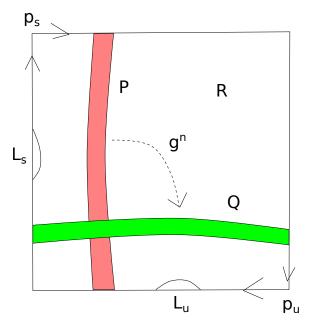
Il s'agit de construire, dans toute famille à un paramètre (g_t) transverse à \mathcal{U}_0 , un ensemble E de bons paramètres de densité totale.

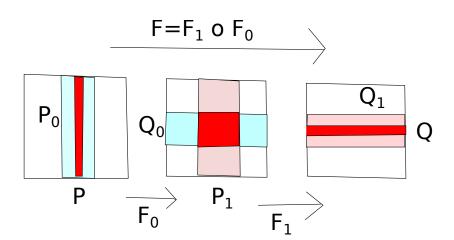
Pour de tels paramètres, il existe de nombreux triplets (P, Q, n) tels que:

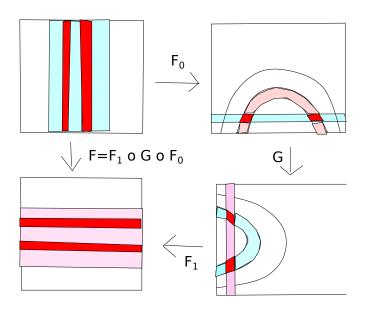
- P est une bande "verticale" traversant R;
- Q est une bande "horizontale" traversant R;
- ▶ $g_t^n : P \rightarrow Q$ est un difféomorphisme essentiellement affine.

A partir des deux triplets initiaux avec n = 1, les autres sont construits par composition directe ou composition parabolique (on intercale G).

Notons \Re l'ensemble des triplets (P, Q, n) construits de la sorte.







Notons \mathcal{R}_{+}^{∞} l'union des courbes stables traversant verticalement R,

Construisons de même l'union \mathbb{R}_{-}^{∞} des courbes instables à partir des rectangles horizontaux Q_i .

Construisons de même l'union \mathcal{R}^{∞}_{-} des courbes instables à partir des rectangles horizontaux Q_i . On a

$$\mathcal{R}_+^{\infty} \subset W^s(\Lambda_{g_t}), \quad \mathcal{R}_-^{\infty} \subset W^u(\Lambda_{g_t}), \quad \mathcal{R}_+^{\infty} \cap \mathcal{R}_-^{\infty} \subset \Lambda_{g_t}.$$

Construisons de même l'union \mathcal{R}^{∞}_{-} des courbes instables à partir des rectangles horizontaux Q_i . On a

$$\mathcal{R}_+^{\infty} \subset W^s(\Lambda_{g_t}), \quad \mathcal{R}_-^{\infty} \subset W^u(\Lambda_{g_t}), \quad \mathcal{R}_+^{\infty} \cap \mathcal{R}_-^{\infty} \subset \Lambda_{g_t}.$$

Les dimensions de Hausdorff transverses de \mathcal{R}_+^{∞} , \mathcal{R}_-^{∞} sont proches respectivement de d_s , d_u .

Construisons de même l'union \mathbb{R}^{∞}_{-} des courbes instables à partir des rectangles horizontaux Q_i . On a

$$\mathcal{R}_+^{\infty} \subset W^s(\Lambda_{g_t}), \quad \mathcal{R}_-^{\infty} \subset W^u(\Lambda_{g_t}), \quad \mathcal{R}_+^{\infty} \cap \mathcal{R}_-^{\infty} \subset \Lambda_{g_t}.$$

Les dimensions de Hausdorff transverses de \mathcal{R}_+^{∞} , \mathcal{R}_-^{∞} sont proches respectivement de d_s , d_u .

On a une partition

$$\mathcal{R}_{+}^{\infty} = \mathcal{N}_{+} \sqcup (\bigsqcup_{P \in \mathcal{P}} \mathcal{R}_{+}^{\infty}(P)),$$

Construisons de même l'union \mathcal{R}^{∞}_{-} des courbes instables à partir des rectangles horizontaux Q_i . On a

$$\mathcal{R}_+^{\infty} \subset W^s(\Lambda_{g_t}), \quad \mathcal{R}_-^{\infty} \subset W^u(\Lambda_{g_t}), \quad \mathcal{R}_+^{\infty} \cap \mathcal{R}_-^{\infty} \subset \Lambda_{g_t}.$$

Les dimensions de Hausdorff transverses de \mathcal{R}_+^{∞} , \mathcal{R}_-^{∞} sont proches respectivement de d_s , d_u .

On a une partition

$$\mathcal{R}_{+}^{\infty} = \mathcal{N}_{+} \sqcup (\bigsqcup_{P \in \mathcal{P}} \mathcal{R}_{+}^{\infty}(P)),$$

où l'ensemble P est dénombrable.

Construisons de même l'union \mathcal{R}^{∞}_{-} des courbes instables à partir des rectangles horizontaux Q_i . On a

$$\mathcal{R}_+^{\infty} \subset W^s(\Lambda_{g_t}), \quad \mathcal{R}_-^{\infty} \subset W^u(\Lambda_{g_t}), \quad \mathcal{R}_+^{\infty} \cap \mathcal{R}_-^{\infty} \subset \Lambda_{g_t}.$$

Les dimensions de Hausdorff transverses de \mathcal{R}_+^{∞} , \mathcal{R}_-^{∞} sont proches respectivement de d_s , d_u .

On a une partition

$$\mathcal{R}_{+}^{\infty} = \mathcal{N}_{+} \sqcup (\bigsqcup_{P \in \mathcal{P}} \mathcal{R}_{+}^{\infty}(P)),$$

où l'ensemble $\mathcal P$ est dénombrable. Cette partition a les propriétés suivantes:

 \triangleright \mathcal{N}_+ est une union de courbes stables;

N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- ► (Propriété de Bernoulli)

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- ▶ (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^{\infty}(P)$ est une union de courbes stables;

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- ▶ (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^{\infty}(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^{\infty}(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^{\infty}$;

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

$$\sum_{\mathcal{D}} n_P |\mathcal{R}_+^{\infty}(P)|^{d_s^-} < +\infty,$$

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

$$\sum_{\mathfrak{D}} n_{P} |\mathcal{R}_{+}^{\infty}(P)|^{d_{\mathfrak{s}}^{-}} < +\infty,$$

où $|\mathcal{R}_+^\infty(P)|$ est la largeur de $\mathcal{R}_+^\infty(P)$

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

$$\sum_{P} n_P |\mathcal{R}_+^{\infty}(P)|^{d_s^-} < +\infty,$$

où $|\mathcal{R}_{+}^{\infty}(P)|$ est la largeur de $\mathcal{R}_{+}^{\infty}(P)$ et $d_{s}^{-} < d_{s}$.

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

▶

$$\sum_{\mathcal{P}} n_{P} |\mathcal{R}_{+}^{\infty}(P)|^{d_{s}^{-}} < +\infty,$$

où $|\mathcal{R}_{+}^{\infty}(P)|$ est la largeur de $\mathcal{R}_{+}^{\infty}(P)$ et $d_{s}^{-} < d_{s}$.

La première propriété permet d'itérer indéfiniment la famille $(g_t^{n_p})_P$ pour la plupart des courbes stables $\subset \mathbb{R}_+^{\infty}$.

- N₊ est une union de courbes stables; sa dimension de Hausdorff transverse est strictement inférieure à celle de R₊[∞];
- (Propriété de Bernoulli) Pour chaque $P \in \mathcal{P}$, l'ensemble $\mathcal{R}_+^\infty(P)$ est une union de courbes stables; il existe un entier $n_P > 0$ tel que l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$ soit contenue dans une courbe stable $\gamma' \subset \mathcal{R}_+^\infty$; inversement toute courbe stable $\gamma' \subset \mathcal{R}_+^\infty$ contient l'image par $g_t^{n_P}$ d'une courbe stable $\gamma \subset \mathcal{R}_+^\infty(P)$;

▶

$$\sum_{\mathcal{P}} n_{\mathcal{P}} |\mathcal{R}_{+}^{\infty}(\mathcal{P})|^{d_{s}^{-}} < +\infty,$$

où $|\mathcal{R}_{+}^{\infty}(P)|$ est la largeur de $\mathcal{R}_{+}^{\infty}(P)$ et $d_{s}^{-} < d_{s}$.

La première propriété permet d'itérer indéfiniment la famille $(g_t^{n_p})_P$ pour la plupart des courbes stables $\subset \mathcal{R}_+^{\infty}$. La troisième propriété permet de comparer le temps relatif à cette itération au temps relatif à l'itération de g_t .

Les propriétés précédentes permettent de comprendre de façon assez satisfaisante la géométrie et la dynamique en temps positif de $\mathcal{R}_+^\infty \subset W^s(\Lambda_{a_t})$.

Les propriétés précédentes permettent de comprendre de façon assez satisfaisante la géométrie et la dynamique en temps positif de $\mathcal{R}_+^\infty \subset W^s(\Lambda_{g_t})$.

On peut de même analyser la géométrie et la dynamique en temps négatif de $\mathbb{R}_{-}^{\infty} \subset W^{u}(\Lambda_{g_{t}})$.

Les propriétés précédentes permettent de comprendre de façon assez satisfaisante la géométrie et la dynamique en temps positif de $\mathcal{R}_+^\infty \subset W^s(\Lambda_{g_t})$.

On peut de même analyser la géométrie et la dynamique en temps négatif de $\mathbb{R}_{-}^{\infty} \subset W^{u}(\Lambda_{g_{t}})$.

Dans quelle mesure a-t-on décrit ainsi la dynamique de la plupart des orbites dans $W^s(\Lambda_{g_t})$, $W^u(\Lambda_{g_t})$ respectivement?

Les propriétés précédentes permettent de comprendre de façon assez satisfaisante la géométrie et la dynamique en temps positif de $\mathcal{R}_+^\infty \subset W^s(\Lambda_{g_t})$.

On peut de même analyser la géométrie et la dynamique en temps négatif de $\mathbb{R}_{-}^{\infty} \subset W^{u}(\Lambda_{g_{t}})$.

Dans quelle mesure a-t-on décrit ainsi la dynamique de la plupart des orbites dans $W^s(\Lambda_{g_t})$, $W^u(\Lambda_{g_t})$ respectivement?

Notons \mathcal{E}_+ l'ensemble *exceptionnel* des points de $W^s(\Lambda_{g_t})$ dont l'orbite positive ne rencontre pas \mathcal{R}_+^{∞} .

On peut montrer que la dimension de Hausdorff de l'intersection de \mathcal{E}_+ avec n'importe quelle courbe instable γ

On peut montrer que la dimension de Hausdorff de l'intersection de \mathcal{E}_+ avec n'importe quelle courbe instable γ est majorée par $d_s^- < d_s$,

On peut montrer que la dimension de Hausdorff de l'intersection de \mathcal{E}_+ avec n'importe quelle courbe instable γ est majorée par $d_s^- < d_s$, et est donc strictement inférieure à la dimension de Hausdorff de l'intersection de Λ_{a_s} avec γ

Le contrôle bidimensionnel de \mathcal{E}_+ est moins satisfaisant,

Le contrôle bidimensionnel de \mathcal{E}_+ est moins satisfaisant, mais suffisant pour conclure que les ensembles $W^s(\Lambda_{g_t}),\ W^u(\Lambda_{g_t})$ sont de dimension de Hausdorff < 2 (Matheus-Palis-Y.).

Le contrôle bidimensionnel de \mathcal{E}_+ est moins satisfaisant, mais suffisant pour conclure que les ensembles $W^s(\Lambda_{g_t}),\ W^u(\Lambda_{g_t})$ sont de dimension de Hausdorff < 2 (Matheus-Palis-Y.).

En particulier, pour les paramètres $t \in E$, le difféomorphisme g_t n'a ni attracteur, ni répulseur dans $U \cup V$.

Le contrôle bidimensionnel de \mathcal{E}_+ est moins satisfaisant, mais suffisant pour conclure que les ensembles $W^s(\Lambda_{g_t}),\ W^u(\Lambda_{g_t})$ sont de dimension de Hausdorff < 2 (Matheus-Palis-Y.).

En particulier, pour les paramètres $t \in E$, le difféomorphisme g_t n'a ni attracteur, ni répulseur dans $U \cup V$.

La construction du bon ensemble de paramètres E est très compliquée ...

Merci de votre attention!