# A QUESTION OF BARRY SIMON 

M. R. HERMAN

Introduction. We propose to show that the Lyapunoff exponent of $R_{\alpha} \times\left(\begin{array}{cc}\lambda \cos (2 \pi \theta) & -1 \\ 1 & 0\end{array}\right)=R_{\alpha} \times A_{\lambda, 0}$ acting on $\mathbb{T}^{1} \times \mathbb{R}^{2}$ by $(\theta, y) \mapsto$ $\left(\theta+\alpha, A_{\lambda, 0}(\theta) y\right)$ is equal to 0 when $\alpha$ satisfies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|e^{2 \pi i n \alpha}-1\right|^{-1}=0 \tag{0.1}
\end{equation*}
$$

and $|\lambda| \leq 2$. This also implies that the Lyapunoff exponent of $R_{\alpha} \times$ $A_{\lambda, 0}$ is equal to zero when $\alpha$ belongs to a dense $G_{\delta}$ of $\mathbb{T}^{1}$ (i.e. the generic Liouville numbers). This is a counter example to a conjecture of Barry Simon as reported by Tom Spencer in the fall 1988 at Princeton University.

For $\lambda \in \mathbb{C}, E \in \mathbb{R}, \alpha \in \mathbb{R}$ we denote

$$
A_{\lambda, E}(\theta)=\left(\begin{array}{cc}
\lambda \cos (2 \pi \theta)+E & -1 \\
1 & 0
\end{array}\right)
$$

$R_{\alpha}: \theta \mapsto \theta+\alpha$, for $\theta \in \mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$.
We suppose that $\alpha$ satisfies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|e^{2 \pi i n \alpha}-1\right|^{-1}=0 \tag{0.2}
\end{equation*}
$$

(e.g. $\alpha$ is a diophantine number).

Proposition. If $\alpha$ satisfies (??) and $|\lambda| / 2 \geq 1$ then Lyapunoff $\left(R_{\alpha}, A_{\lambda, 0}\right)=$ $\log |\lambda / 2|$ (we suppose $\left(R_{\alpha}, A_{\lambda, 0}\right)$ acts on $\mathbb{T}^{1} \times \mathbb{R}^{2}$ in its natural way).

Proof. We denote

$$
B_{\lambda}(z)=\left(\begin{array}{cc}
\frac{\lambda}{2}\left(1+z^{2}\right) & -z \\
z & 0
\end{array}\right), \quad z \in \mathbb{C},
$$

[^0]$r_{\alpha}(z)=e^{2 \pi i \alpha} z$ and $\mathbb{S}_{r}=\{z \in \mathbb{C},|z|=r\} .\left(r_{\alpha}, B_{\lambda}\right)$ acts on $\mathbb{S}_{r} \times \mathbb{C}^{2}$ by $G:(z, y) \mapsto\left(r_{\alpha}(z), B_{\lambda}(z) y\right)$. We fix $\alpha \in \mathbb{R}$; then the following function is subharmonic
\[

$$
\begin{aligned}
\lambda_{+}(r) & =\text { Lyapunoff }\left(\left(r_{\alpha}, B_{\lambda}\right) \text { acting on } \mathbb{S}_{r} \times \mathbb{C}^{2}\right\} \\
& =\inf _{n \geq 1} \int_{0}^{1} \frac{1}{n} \log \| \| B^{(n)}\left(r e^{2 \pi i \theta}\right)\| \| d \theta
\end{aligned}
$$
\]

where $B^{n}=B_{\lambda} \circ r_{(n-1) \alpha} B_{\lambda} \circ r_{(n-2) \alpha} \cdots B_{\lambda} ;\|\cdot\|$ is a norm on $\mathbb{C}^{2}$ and $|||\cdot|||$ denotes the induced operator norm.

Hence the function $u \mapsto \lambda_{+}\left(e^{u}\right)$ is convex for $u \in \mathbb{R}$ and therefore continuous.

We have $\lambda_{+}(1)=$ Lyapunoff $\left(R_{\alpha}, A_{\lambda, 0}\right)$. It is enough to prove, when $r<1$,

$$
\lambda_{+}(r)=\log |\lambda / 2| .
$$

We look for $z \in \mathbb{D}=\{|z|<1\} \rightarrow v(z)=\binom{\eta(z)}{\eta_{1}(z)} \in \mathbb{C}^{2}$ an analytic function such that

$$
B_{\lambda}(z) v(z)=\frac{\lambda}{2} v \circ r_{\alpha}(z), \quad\|v(z)\| \neq 0, \forall z \in \mathbb{D}
$$

and $v(0)=\binom{1}{0} \in \mathbb{C}^{2}$.
As $\operatorname{det} B_{\lambda}(z)=z^{2}$ and on $\mathbb{S}_{r} v$ is continuous, for $0<r<1,\left(r_{\alpha}, B_{\lambda}\right)$ has a uniform hyperbolic structure (acting on $\mathbb{S}_{r} \times \mathbb{C}^{2}$ ) and

$$
\lambda_{+}(r)=\log \left|\frac{\lambda}{2}\right| .
$$

We have to show the existence of the function $v ; v(z)=\binom{\eta(z)}{\eta_{1}(z)}$ satisfies

$$
\begin{aligned}
\frac{\lambda}{2}\left(1+z^{2}\right) \eta-z \eta_{1} & =\frac{\lambda}{2} \eta \circ r_{\alpha} \\
z \eta & =\frac{\lambda}{2} \eta_{1} \circ r_{\alpha}
\end{aligned}
$$

hence

$$
\begin{gathered}
\frac{\lambda}{2}\left(1+z^{2}\right) \eta-\frac{2 e^{-2 \pi i \alpha}}{\lambda} z^{2} \eta \circ r_{-\alpha}=\frac{\lambda}{2} \eta \circ r_{\alpha} \\
\eta \circ r_{\alpha}-\eta=z^{2} \eta-4 \frac{e^{-2 \pi i \alpha}}{\lambda^{2}} z^{2} \eta \circ r_{-\alpha} .
\end{gathered}
$$

We write

$$
\eta(z)=\sum_{n \geq 0} a_{n} z^{n}, \quad a_{0}=1
$$

hence

$$
a_{2 p+1}=0, \quad p \geq 1 \quad p \in \mathbb{N}
$$

and

$$
a_{n+2}=\frac{1}{\lambda_{\alpha}^{n+2}-1}\left(1-\frac{4}{\lambda^{2}} \bar{\lambda}_{\alpha} \lambda_{\alpha}^{-n}\right) a_{n}, \quad \lambda_{\alpha}=e^{2 \pi i \alpha}
$$

therefore

$$
a_{2 n}=\prod_{p=1}^{n} \frac{1}{\lambda_{\alpha}^{2 p}-1} \varphi((2 p-2) \alpha)
$$

with

$$
\varphi(\theta)=\left(1-\frac{4}{\lambda^{2}} \bar{\lambda}_{\alpha} e^{-2 \pi i \theta}\right)
$$

For $|\lambda / 2| \geq 1$, we have

$$
\begin{aligned}
\int_{0}^{1} \log |\varphi(\theta)| d \theta & =0 \\
& =\int_{0}^{1} \log |\varphi(-\theta)| d \theta=\Re \frac{1}{2 \pi i} \int_{0}^{1} \log \left(1-\frac{4}{\lambda^{2}} z\right) \frac{d z}{z}=0
\end{aligned}
$$

When $\alpha$ satisfies (??), $2 \alpha$ satisfies (??) and by a result of Hardy and Littlewood

$$
\lim _{n \rightarrow \infty}\left(\prod_{p=1}^{n} \frac{1}{\left|\lambda_{\alpha}^{2 p}-1\right|}\right)^{1 / n}=1
$$

If $|\lambda / 2|>1, \lim _{n \rightarrow \infty}\left\|\prod_{p=1}^{n} \varphi((2 p-2) \alpha+\theta)\right\|_{C^{0}}^{1 / n}=1$, but when $|\lambda / 2|=$ 1 it is not difficult to see that

$$
\limsup _{n \rightarrow \infty}\left\|\prod_{p=1}^{n} \varphi((2 p-2) \alpha+\theta)\right\|_{C^{0}}^{1 / n} \leq 1
$$

In conclusion, when $|\lambda / 2| \geq 1$, we find a solution $\eta$ analytic on $\mathbb{D}$ (since $\lim \sup _{n \rightarrow \infty}\left|a_{2 n}\right|^{1 / 2 n} \leq 1$ ) with $\eta(0)=1$ and such that

$$
v(z)=\binom{\eta(z)}{\frac{2 \bar{\lambda}_{\alpha}}{\lambda} z \eta \circ r_{-\alpha}(z)}
$$

satisfies

$$
B_{\lambda}(z) v(z)=\frac{\lambda}{2} v \circ r_{\alpha}(z) .
$$

If for some $z_{0} \in \mathbb{D},\left\|v\left(z_{0}\right)\right\|=0$, as $\alpha \in \mathbb{R}-\mathbb{Q}$, we have $\left\|v\left(z_{0} e^{2 \pi i \theta}\right)\right\|=0$, $\forall \theta \in \mathbb{R}$; this implies $\eta(z)=0$ on $\mathbb{D}$ what contradicts $\eta(0)=1$ !

## Consequences

1) By Aubry's duality and Thouless formula Lyapunov $\left(R_{\alpha}, A_{\lambda, 0}\right)=0$ when $|\lambda / 2| \leq 1$.
2) Given $\lambda,|\lambda / 2| \leq 1$, then there exists a dense $G_{\delta}, G \subset \mathbb{T}^{1}-(\mathbb{Q} / \mathbb{Z})$ such that if $\alpha \in G$,

$$
\operatorname{Lyapunoff}\left(R_{\alpha}, A_{\lambda, 0}\right)=0
$$

This follows from the fact that $l: \alpha \in \mathbb{T}^{1} \rightarrow \operatorname{Lyapunov}\left(R_{\alpha}, A_{\lambda, 0}\right) \in$ $\mathbb{R}_{+}=\{x \in \mathbb{R}, x \geq 0\}$ is upper semi-continuous. $l^{-1}(0)$ is therefore a $G_{\delta}$; it is dense since it contains the numbers that satisfy (??). $l^{-1}(0) \cap$ $\left(\mathbb{T}^{1}-(\mathbb{Q} / \mathbb{Z})\right)$ is also a dense $G_{\delta}$.

Point 2) contradicts a conjecture (?) of B. Simon ?? ${ }^{2}$

[^1]
[^0]:    ${ }^{1}$ Ce document, extrait des archives de Michel Herman, a été préparé par R . Krikorian.

[^1]:    ${ }^{2}$ Question marks are by M.R Herman

