
Some questions and remarks about SL(2,R) cocycles

to Anatole Katok for his 60th birthday

0. There have been many deep results about cocycle maps in recent years, especially in the
quasiperiodic case with the achievements of Eliasson ([E]), Bourgain ([B], [B-G]) and Krikorian
([K1], [K2]) amongst others. The questions that we address here are much more elementary :
most of the time, we will be interested in locally constant cocycles with values in SL(2,R)
over a transitive subshift of finite type ; we want to determine whether this cocycle map is
uniformly hyperbolic and how it can bifurcate from uniform hyperbolicity. In our setting,
parameter space is finite-dimensional, and we would like to describe it in the same way that
one does for polynomials or rational maps, where hyperbolic components play a leading role
in the picture. It appears that even in this very much simplified situation, several interesting
questions appear.

I am very much indebted to Artur Avila, who explained to me the statement and the
proof of proposition 6 below. I thank Raphael Krikorian for many helpful conversations,
and also several participants from the July 2003 Oberwolfach meeting in Dynamical Systems,
Artur Avila, Bassam Fayad, Federico Hertz, for fruitful discussions. This is in a sense very
appropriate, since Anatole Katok has been for the last twenty years a most illuminating
presence in this series of meetings which happen every odd year.

1. Recall that a matrix A0 ∈ SL(2,R) is said to be positive hyperbolic (resp. negative hy-
perbolic, resp. hyperbolic, resp. positive parabolic, resp. negative parabolic, resp. parabolic,
resp. elliptic) if trA0 > 2 (resp. trA0 < −2, resp. |trA0| > 2, resp. trA0 = 2, resp. trA0 = −2,
resp. |trA0| = 2, resp. |trA0| < 2).

If f : X → X is a continuous map and A : X → SL(2,R) is another continuous map, the
cocycle (f, A) defined by these data is the map :

(f, A) : X ×R2 → X ×R2

(x, v) 7→ (f(x), A(x)v) .
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We have (f, A)n = (fn, An) for n ≥ 0, where

An(x) = A(fn−1(x)) . . . A(x) .

We will use the same symbol (f, A) to denote the quotient map at the projective level from
X ×P1(R) to itself.

Assume that X is compact.

A cocycle map (f, A) is said to be uniformly hyperbolic if there exists a (necessarily unique)
continuous section

es : X → P1(R)

x 7→ es(x)

which is invariant and repelling (in the P1(R) direction). This is equivalent to satisfy the
usual cone condition. When f is an homeomorphism, one also obtains another continuous
section eu which is invariant and contracting, with eu(x) 6= es(x) for all x ∈ X.

We will say that two cocycle maps associated to A, Â are conjugated if there exists a
continuous map B : X → SL(2,R) such that

(1X , B) ◦ (f, A) ◦ (1X , B)−1 = (f, Â) ,

i.e.

Â(x) = B(f(x))A(x)(B(x))−1,∀x ∈ X .

2. The following result is reminiscent of a classical theorem of Gottschalk and Hedlund ([G-H],
[H]). Assume that f : X → X is a minimal homeomorphism of the compact metric space X.
Let A : X → SL(2,R) a continuous map.

PROPOSITION 1 — Assume that, for some x0 ∈ X, the sequence of matrices (An(x0))n≥0 is

bounded. Then (f, A) is conjugated to a cocycle map (f, Â) with Â taking values in SO(2,R).

Proof — Consider the upper half-plane H with the usual SL(2,R) action and define the
fibered map

F (x, z) := (f(x), A(x).z)

from X ×H to itself. We equip H with its hyperbolic metric. The map A takes its values in
SO(2,R) iff the constant section z ≡ i is invariant. We have to show that F leaves invariant
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some continuous section σ : X → H.

The hypothesis in the proposition means that the positive orbit (F n(x0, i))n≥0 is relatively
compact in X ×H. Therefore we may choose a minimal compact non empty invariant subset
L contained in the closure of this orbit.

For x ∈ X, denote by Lx ⊂ H the fiber of L over x. This is a compact subset of H. As f
is minimal, Lx is non empty for all x ∈ X. We have, for all x ∈ X :

A(x)Lx = Lf(x) .

Consider the function

x 7→ diam Lx .

As f is minimal and SL(2,R) acts on H by isometries, this function is contant. If the
constant value is 0, L is the graph of a continuous section σ and we obtain the required result.
We nous assume that we have

diam Lx ≡ D > 0 .

Set

L(2)
x = {(z, z′) ∈ Lx × Lx , dH(z, z′) = D} ,

L(2) = {(x, z, z′) ∈ X ×H2 , (z, z′) ∈ L(2)
x } ;

then L(2) is compact, each L(2)
x is compact non empty and we have

(A(x)× A(x)) (L(2)
x ) = L

(2)
f(x) , ∀x ∈ X .

Denote by m(z, z′) the midpoint of the geodesic segment [z, z′]. Define

L′x = m(L(2)
x ) ,

L′ = {(x, w) ∈ X ×H, w ∈ L′x} .

Then L′ is compact, each L′x is compact, non empty, contained in the convex closure L̂x of
Lx, and we have (as SL(2,R) acts by isometries)

A(x) (L′x) = L′f(x) , ∀x ∈ X .
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Claim — One has diam L′x ≤ D′ < D with

chD′ =
chD

chD/2
.

Proof of claim — In a triangle in hyperbolic space with a right angle, adjacent sides d, d′ and
opposite side h, we have “Pythagoras theorem” :

ch(h) = ch(d)ch(d′)

Let (zε, z
′
ε) ∈ L(2)

x , ε = 0, 1 and wε = m(zε, z
′
ε). From dH(z0, z1) ≤ D , dH(z′0, z1) ≤ D, we

have dH(w0, z1) ≤ D. Similarly we have dH(w0, z
′
1) ≤ D. This gives

chD ≥ ch(max(dH(w0, Z1) , dH(w0, Z
′
1)))

≥ chD/2 chd(w0, w1) .

2

Let L(1) be a minimal non empty compact invariant subset of L′ ; the fibers L(1)
x are con-

tained in L̂x and their constant diameter satisfy D(1) < D. Among all minimal non empty com-
pact invariant subsets L̃, whose fibers L̃x are contained in L̂x, choose one for which the (con-
stant) diameter of the fibers is minimal. By the argument above, this diameter has to be 0 and
we find the required invariant section. 2

3. The following elementary result is probably well-known, but I could not find a reference.

Let f : X → X be a continuous self-map of the compact metric space X and let A : X →
SL(2,R) be continuous.

PROPOSITION 2 — The cocycle map (f, A) is uniformly hyperbolic iff the matrices An(x) are
uniformly exponentially increasing : there exists c > 0, λ > 1 such that

‖An(x)‖ ≥ cλn

for all n ≥ 0, x ∈ X.

Proof — If (f, A) is uniformly hyperbolic, An is uniformly exponentially increasing. Let us
show the converse.

The norm of matrices is the operator norm for matrices acting on the Euclidean plane. For
a matrix M ∈ SL(2,R) with ‖M‖ > 1 (i.e. M /∈ SO(2,R)), we denote by e(M) the (unique)
maximally dilated direction. We have the

LEMMA 1 — Let M, M ′ ∈ SL(2,R), C1 > 0 such that
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C−1
1 ‖M‖ ≤ ‖M ′‖ ≤ C1‖M‖ ,

‖M‖ > 1 , ‖M ′M‖ > 1 .

The angle between e(M), e(M ′M) is ≤ C0‖M ′M‖−1, with C0 depending only on C1.

Proof — It is sufficient to consider the case where

M =
(

λ 0
0 λ−1

)
M ′ =

(
λ′ 0
0 λ′−1

)(
cos θ − sin θ
sin θ cos θ

)
,

where λ = ‖M‖ , λ′ = ‖M ′‖. Then we have

M ′M =
(

λ′λ cos θ − λ′λ−1 sin θ
λλ′−1 sin θ λ′−1λ−1 cos θ

)

If ‖M ′M‖ is not large (≤ C0π
−1), there is nothing to prove. Otherwise we have

‖M ′M‖ = λλ′| cos θ|+ O(1) .

Maximizing the square norm of M ′M
(

cos ω
sin ω

)
over ω is now an easy computation leading

to the required result. 2

Let n > 0, x ∈ X, C1 = max
x
‖A(x)‖ ; choose m > 0 such that

C−1
1 ‖An(x)‖ ≤ ‖Am(fn(x))‖ ≤ C1‖An(x)‖ .

We have then

C−3
1 ‖An+1(x)‖ ≤ ‖Am−1(f

n+1(x))‖ ≤ C3
1‖An+1(x)‖ .

From the lemma, there exists C0 > 0 such that

angle(e(An(x)), e(Am+n(x))) ≤ C0‖Am+n(x)‖−1 ,

angle(e(An+1(x)), e(Am+n(x))) ≤ C0‖Am+n(x)‖−1
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if n is large enough (to have cλn > 1). We conclude that

angle(e(An(x)), e(An+1(x))) ≤ 2C0(Cλn)−1

The sequence of continuous sections

x 7→ e(An(x)) , n ≥ n0, x ∈ X

converges uniformly exponentially fast to a continuous section x 7→ e∞(x). The direction es(x)
orthogonal to e∞(x) is easily checked to be the required stable direction. 2

4. In the rest of the paper, we will concentrate on more specific cocycles.

Let A be a finite alphabet and let X ⊂ AZ be a transitive subshift of finite type (Most of
the time, we will be satisfied with the case of the full shift on two letters 0, 1). We will restrict
our discussion to maps A : X → SL(2,R) which only depend on the letter in position 0.
Such a map is thus determined by a family (Aα)α∈A ∈ (SL(2,R))A. This last space is the
parameter space for the cocycle maps we are interested in.

We denote by H ⊂ (SL(2,R))A the open set of parameters for which the associated cocycle
map is uniformly hyperbolic.

The finite group {+1,−1}A acts on the parameter space through

(εα) · (Aα) = (εαAα)

and H is invariant under this action.

5. We denote by PX the set of periodic orbits of X. Let (Aα) ∈ H, π ∈ PX , x ∈ π, n the
minimal period of π. The matrix An(x) is hyperbolic and its trace depends only on π, not on
the choice of x ∈ π. We thus define a map

τ : H → {+1,−1}PX

(Aα) 7→ (sgn(tr(An(x))))π∈PX

which is constant on each connected component of H. This map is covariant with the actions
of {+1,−1}a if one defines

(εα)α∈a · (τπ)π∈PX
= (

∏
α

εnα(π)
α · τπ)π∈PX

,

where nα(π) is the number of times the letter α appears in one period of π.
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Question 1 : Is the quotient map τ̄ from π0(H) into {+1,−1}PX essentially injective ?

We will see in the sequel that τ̄ is not always injective : there may exist a component
U0 and a matrix A∗ ∈ GL(2,R), detA∗ < 0, such that the component A∗U0(A

∗)−1 = U1 is
distinct from U0. Then U1 and U0 have the same image under τ̄ . Is this the only reason for
the lack of injectivity of τ̄ ?

Problem 1 : Describe the image of τ .

6. Let A∗ be a positive hyperbolic matrix. The parameter such that Aα = A∗ for all α ∈ A
belongs to H. The open subset of SL(2,R) formed by the positive hyperbolic matrices is con-
nected. We call principal component the connected component of H which contains these
uniformly hyperbolic parameters. The image of this component under τ satisfies τπ = +1 for
all π ∈ PX .

Question 1’ : Is there another component with the same image under τ ?

When X is the full shift AZ, it is possible to give a nice description of the principal com-
ponent and its boundary.

We assume till further notice, that X = AZ. Then, a necessary condition for the parameter
(Aα)α∈A to be uniformly hyperbolic is that each matrix Aα should be hyperbolic. If (Aα)α∈A
belongs to the principal component, we conclude that each Aα should be positive hyperbolic.
Denote by es(A

∗) (resp. eu(A
∗)) the stable (resp. unstable) direction of an hyperbolic matrix

A∗.

PROPOSITION 3 — A parameter (Aα)α∈A belongs to the principal component iff the following
conditions are satisfied
(i) each Aα is positive hyperbolic ;
(ii) there exist two disjoint intervals Is, Iu in P1(R) such that es(A

α) ∈ Is, eu(A
α) ∈ Iu for

every α ∈ A.

Remark : When X is not a full shift, it may happen that (Aα)α∈A is uniformly hyperbolic
but not all Aα are hyperbolic. Consider for instance A = {0, 1, 2}, A0 = 1, A1 = A2 = A∗

hyperbolic, and X the subshift of AZ which allows all transitions except consecutive 0’s.

Proof of proposition — We first observe that conditions (i) and (ii) imply uniform hyperbol-
icity : indeed, condition (ii) allows to define a constant cone field which is sent strictly inside
itself by each Aα, α ∈ A.

It is also very easy to check that the open set of parameters U defined by conditions (i),
(ii) is connected.
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To end the proof, we will show that any point in the boundary ∂U cannot belong to H. let
(Aα)α∈A ∈ ∂U . If Aα is not positive hyperbolic for some α ∈ A, it is positive parabolic. The
fixed point . . . ααα . . . of X = AZ then prevents uniform hyperbolicity. Assume now that Aα is
positive hyperbolic for each α ∈ A. Then condition (ii) is not satisfied by (Aα)α∈A but is satis-
fied by some arbitrarily small perturbations ; this means that there exist distinct α, β ∈ A with
es(A

α) = eu(A
β). Looking at the heteroclinic orbit . . . βββααα . . ., it is clear that the param-

eter is not uniformly hyperbolic. 2

The proof has also shown the

PROPOSITION 4 — Let (Aα)α∈A be a parameter on the boundary of the principal component of H.
Either some Aα is positive parabolic or there exist distinct α, β ∈ A with eu(A

β) = es(A
α) (or

both).

Problem 2 : Describe the principal component and its boundary when X is a general subshift
of finite type.

7. In this section and the next one, we assume that X = {0, 1}Z is the full shift on two letters.
We will describe components of H ⊂ (SL(2,R))2 which are not principal (nor deduced from
the principal one by the action of {+1,−1}2 !).

Let (A0, A1) ∈ (SL(2,R))2 such that

(∗) A0, A1 are positively hyperbolic and A0A1 (and thus also A1A0) is negatively hyperbolic.

PROPOSITION 5 — Condition (*) defines the union of two connected components of H.

Remark : As A0A1 is negatively hyperbolic while A0, A1 are positively hyperbolic, we see
that these components are not principal nor deduced from the principal one by the action of
an element of {−1, +1}2.

Proof — Let U be the open subset of (SL(2,R))2 defined by (*). We first observe that
for (A0, A1) ∈ U , the directions eu(A

0), eu(A
1), es(A

0), es(A
1) are always distinct : indeed

otherwise A0, A1 would have a common eigenvector ; as A0, A1 are positive hyperbolic, the
corresponding eigenvalues would be positive ; but then A0A1 would also be positive parabolic
or hyperbolic.

For the cyclic order of P1(R), we may only have

eu(A
0) < es(A

1) < eu(A
1) < es(A

0) < eu(A
0)(1)

or

eu(A
0) < es(A

0) < eu(A
1) < es(A

1) < eu(A
0) ,(2)
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the other possibilities being forbidden by proposition 3. By symmetry, it is sufficient to con-
sider the first of the two cases above.

Choose vectors e0, e1 in the directions of eu(A
0), eu(A

1) such that (e0, e1) is an oriented
basis of R2. In the basis (e0, e1), the matrices A0, A1 are rewritten as

Ã0 =

(
λ0 u0

0 λ−1
0

)
, λ0 > 1, u0 > 0(3)

Ã1 =

(
λ−1

1 0
u1 λ1

)
, λ1 > 1, u1 < 0(4)

We have then

Tr(Ã0Ã1) = λ0λ
−1
1 + λ−1

0 λ1 + u0u1

and the condition that A0A1 is negatively hyperbolic is equivalent to

|u0u1| > λ0λ
−1
1 + λ−1

0 λ1 + 2 .(5)

It is now clear that conditions (1), (3), (4), (5) define a connected subset of (SL(2,R))2,
and therefore that U has two connected components associated to the cases (1), (2) above.

Let

A0(λ) =

(
λ λ
0 λ−1

)
, A1(λ) =

(
λ−1 0
−λ λ

)
.

For λ > 2, (A0(λ), A1(λ)) belongs to the component of U associated to (1).

We have

A0(λ)A1(λ) =

(
1− λ2 λ2

−1 1

)

A1(λ)A0(λ) =

(
1 1
−λ2 1− λ2

)
Computing the stable and unstable directions, we obtain, for the cyclic order of P1(R) :

eu(A
0(λ)) < eu(A

0(λ)A1(λ)) < es(A
0(λ)A1(λ)) < es(A

1(λ)) < eu(A
1(λ)) <

< eu(A
1(λ)A0(λ)) < es(A

1(λ)A0(λ)) < es(A
0(λ)) < eu(A

0(λ)) .
(6)

This cyclic ordering of directions must be valid in all the component of U associated to (1) :
indeed, we have seen that in U , A0 and A1 cannot have a common eigenvector and therefore
A0A1 or A1A0 cannot have an eigenvector which is also an eigenvector of A0 or A1. Therefore
all inequalities in (6) must remain strict through the component of U .
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From (6), it is easy to see that parameters in the component of U associated to (1) are
uniformly hyperbolic : choose directions e0, e1, e01, e10 such that

es(A
0) < e0 < A0(e0) < eu(A

0) ,

es(A
1) < e1 < A1(e1) < eu(A

1) ,

eu(A
0A1) < A0(e10) < e01 < es(A

0A1) ,

eu(A
1A0) < A1(e01) < e10 < es(A

1A0) ,

(observe that A1(eu(A
0A1)) = eu(A

1A0) , . . . ).

Set

C0 = {e0 < e < e10} ,

C1 = {e1 < e < e01} ,

we have

A0C0 ⊂⊂ C0 ∩ C1 ,

A1C1 ⊂⊂ C0 ∩ C1 ,

and thus we can construct conefields which satisfy the conditions of uniform hyperbolicity.

On the other hand, it is obvious that a parameter on the boundary of U cannot be uni-
formly hyperbolic. The proof of the proposition is complete. 2

On the boundary of any of the two components of H defined by (*), one of the three
matrices A0, A1, A0A1 must be parabolic. This is in sharp contrast with the boundary of the

principal component : let A0 =
(

λ0 0
0 λ−1

0

)
, A1 =

(
λ−1

1 0
0 λ1

)
, with λ0, λ1 > 1 and log λ0

log λ1

irrational. Then (A0, A1) is on the boundary of the principal component of H, but there is no
periodic orbit of {0, 1}Z for which the corresponding product is parabolic.

Let A∗ be any matrix in GL(2,R) with negative determinant. Then A∗ conjugates each
of the two components of H contained in U to the other (see the comment after question 1).
The two components have the same image under τ̄ , that we will now determine.

Let π be a periodic orbit of the shift, which is not a fixed point ; let n be its period. We
can choose x ∈ π such that the period of π starting at x is

0m1 1n1 0m2 1n2 . . . 0ml 1nl

(with n = m1 + n1 + . . . + ml + nl). An easy calculation shows that, for Aε = Aε(λ) as in the
proof of proposition 5, we have

Tr An(x, λ) = (−1)lλn + 0(λn−2) .
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We conclude that the image of U under τ̄ is given by

τπ = (−1)l .

8. We describe in a shorter way another pair of components of H when X is the full shift on
two letters.

For (A0, A1) ∈ (SL(2,R))2, we now consider the condition

(∗∗) A0, A1, A0A1 are positive hyperbolic, A0(A1)2 is negative hyperbolic.

This open set is made of two symmetric parts corresponding to cyclic orderings (1) or (2).
We consider the case where (1) holds.

After conjugacy in SL(2,R), we can replace A0, A1 by

Ã0 =

(
λ0 u0

0 λ−1
0

)
, Ã1 =

(
λ−1

1 0
−u1 λ1

)
with λ0, λ1 > 1, u0, u1 > 0. Condition (∗∗) is then equivalent to

(∗∗′) λ0λ
−1
1 + λ−1

0 λ1 − 2 > u0u1 >
λ0λ

−2
1 + λ−1

0 λ2
1 + 2

λ1 + λ−1
1

.

One checks that this last relation defines a connected set in {λ0 > 1, λ1 > 1, u0 > 0, u1 > 0}.
Set

A0(λ) =
(

λ2 1
0 λ−2

)
, A1(λ) =

(
λ−1 0
−1 λ

)
.

For λ > 1, λ+λ−1 > 4, this value of parameter satisfies (∗∗′) (or (∗∗)). One then computes,
for large λ, the cyclic ordering of the stable and unstable directions for A0, A1, A0A1, A1A0, A0

(A1)2, A1A0A1, (A1)2A0 (we did not indicate the dependance on λ). One obtains

eu(A
0) < eu(A

0(A1)2) < es(A
0(A1)2) < es(A

1) < eu(A
1) <

< eu((A
1)2A0) < es((A

1)2A0) < es(A
0) < es(A

1A0) < eu(A
1A0) <

< eu(A
1A0A1) < es(A

1A0A1) < es(A
0A1) < eu(A

0A1) < eu(A
0) .
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Condition (∗∗) implies that A0, A1 cannot have a common eigenvector. This implies that
none of the following pairs can have a common eigenvector : (A0, A0(A1)2), (A0(A1)2, A1),
(A1, (A1)2A0), ((A1)2A0, A0), (A0, A1A0), (A1A0, A1A0A1), (A1A0A1, A0A1), (A0A1, A0).

This implies in turn that the cyclic ordering above is valid through the connected set de-
fined by (∗∗) and (1).

The cyclic ordering as above allows to construct cone fields with the properties required
for uniform hyperbolicity.

One chooses e1, e01, e10, e110, e101, e011 such that

es(A
1) < e1 < A1(e1) < eu(A

1) ,

es(A
0A1) < e01 < A0(e10) < eu(A

0A1) ,

es(A
1A0) < e10 < A1(e01) < eu(A

1A0) ,

es((A
1)2A0) < e110 < A1(e101) < eu((A

1)2A0) ,

es(A
1A0A1) < e101 < A1(e011) < eu(A

1A0A1) ,

es(A
0(A1)2) < e011 < A0(e110) < eu(A

0(A1)2) .

Next we set

C0 = {e10 < e < e110} ,

C01 = {e01 < e < e011} ,

C011 = {e10 < e < e101} ,

C111 = {e1 < e < e110} ,

with the following properties

A0C0 ⊂⊂ C01 ,

A1C01 ⊂⊂ C011 , C01 ⊂ C0 ,

A1C011 ⊂⊂ C111 , C011 ⊂ C0 ,

A1C111 ⊂⊂ C111 , C111 ⊂ C0 .

For x = (xn)n∈Z ∈ {0, 1}Z, we set
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C(x) =



C0 if x0 = 0 ,

C01 if x0 = 1 , x−1 = 0 ,

C011 if x0 = x−1 = 1 , x−2 = 0 ,

C111 if x0 = x−1 = x−2 = 1 .

The required properties are satisfied. The open connected set defined by (∗∗) and (1) is a
component ofH. On the boundary of this component, one of the matrices A0, A1, A0A1, A0(A1)2

has to be parabolic.

The image under τ̄ of this component is as follows : let π be a periodic orbit ; write its
minimal period, after cyclic permutation if necessary, as

0m0 1n0 0m1 1n1 . . . 0ml 1nl

with mi, ni > 0 (we assume that π is not a fixed point) ; let l∗ be the number of indices i such
that ni > 1. We have

τπ = (−1)l∗

The verification is left to the reader.

9. Consider again general transitive subshifts of finite type. For the components of H that
we have considered, the boundary points are of one (at least) of the two following types

• (“parabolic periodic”) there exists a periodic orbit π in X for which the associated
product matrix is parabolic ;

• (“heteroclinic connexion”) there exist periodic points x+, x− (not necessarily distinct),
a point x ∈ W s(x+) ∩W u

loc(x
−) and a large integer M such that

AM(x)eu(x
−) = es(x

+) .

Each of the two phenomena obviously prevents uniform hyperbolicity.

Question 2 : Are there boundary points of H which are not of one of these two types ?

There are many other questions relative to the boundary points of H.

13



Question 3 : Let (Aα)α∈A be a boundary point of H. Does there exist a component of
H, and a neighbourhood of this boundary point, such that the intersection of H with this
neighbourhood is contained in the component ?

A weaker version of this question is :

Question 3’ : Is any boundary point of H a boundary point of a connected component of H ?

Let E be the set of parameters such that there exists a periodic point x in X for which the
matrix An(x) is elliptic (n being the period of x). This is an open subset disjoint of H.

Question 4 : Does one have

∂H = ∂E = (H ∪ E)c ?

A point in ∂H of the “parabolic periodic” type belongs to ∂E ; we will also see in the last
section some evidence in the “heteroclinic connexion” case. The following result was explained
to me by Artur Avila [A].

PROPOSITION 6 — H ∪ E is dense in parameter space. More precisely, one has Hc = Ē.

Proof — Let A∗ be a matrix in SL(2,C) with trA∗ ∈ C− [−2, 2]. Then A∗ has two eigenvalues
λu and λs = λ−1

u satisfying |λu| > 1 > |λs|.

As a Möbius transformation of the Riemann sphere, A∗ has two fixed points with multi-
pliers λ2

u, λ
2
s. The eigenvalues λu, λs depend holomorphically on A∗ ; therefore, if A∗ = A∗(θ)

depend holomorphically on a complex parameter θ, the function θ 7→ log |λu(A
∗(θ))| is positive

harmonic. These considerations apply to prove the following :

LEMMA 2 — Let A1, . . . , An ∈ SL(2,R) ; for θ ∈ R, define Rθ =

 cos θ − sin θ

sin θ cos θ

 and

A∗(θ) = A1RθA
2Rθ . . . AnRθ. Assume that, for some θ0 > 0, A∗(θ) is hyperbolic for all |θ| < θ0.

Then we have

‖A∗(0)‖ ≥ exp (
1

2
√

3
θ0n) .

Proof of lemma 2 — Consider the action of SL(2,R) on the Poincaré disk ; then Rθ acts
by w 7→ e2iθw. For Imθ > 0, Rθ ∈ SL(2,C) still acts by w 7→ e2iθw and thus contracts
the Poincaré metrics by a factor equal or smaller than exp(−2 Im θ). On the other hand,
A1, . . . , An act by isometries ; therefore, the Poincaré metrics is contracted by a factor equal or
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smaller than exp(−2n Im θ) by A∗(θ) ; the multiplier λ2
s then satisfies |λ2

s| ≤ exp(−2n Im θ),
and we obtain

log |λu(A
∗(θ))| ≥ n Im θ .

Similarly, one obtains

log |λu(A
∗(θ))| ≥ n |Im θ|

for Im θ < 0. The matrix A∗(θ) satisfies

Tr(A∗(θ)) /∈ [−2, +2]

in the disk {|θ| < θ0} ⊂ C. Harmonicity of log |λu| now gives

log ‖A∗(0)‖ ≥ log |λu(A
∗(0))|

= 1
2π

∫ 2π

0
log |λu(A

∗(θ0e
it))| dt

≥ 1
2
√

3
θ0n .

2

Let now (Aα)α∈A be a parameter which is not in the closure of E . We show, using propo-
sition 2, that it belongs to H. Set Aα(θ) = AαRθ ; by hypothesis, there exists θ0 such that
(Aα(θ))α∈A does not belong to the closure of E for |θ| < θ0. Let y be a periodic point of X, of
period n. A rotation number argument shows that An(y, θ) must be hyperbolic for |θ| < θ0 ;
then by the lemma, we get

‖An(y)‖ ≥ exp (
1

2
√

3
θ0n)

From this inequality, we immediately deduce that there exists c > 0 such that, for all
x ∈ X, n ≥ 0 :

‖An(x)‖ ≥ c exp (
1

2
√

3
θ0n)

2

10. We now give some further evidence for a positive answer to questions 3, 4. We assume
again that X is the full shift on two letters 0, 1.

The principal component of the locus of uniform hyperbolicity H was described in propo-
sition 3, and its boundary in proposition 4. Here we want to consider a parameter (A0

0, A
1
0) on

15



the boundary such that A0
0, A

1
0 are positive hyperbolic and eu(A

1
0) = es(A

0
0). After conjugating

in GL(2,R), we can assume that

A0
0 =

(
λ̄0 0
0 λ̄−1

0

)
, A1

0 =
(

λ̄−1
1 0

ū1 λ̄1

)
,

with λ̄0, λ̄1 > 1 and ū1 ≥ 0. We assume that A0
0, A

1
0 do not commute, i.e. ū1 > 0.

PROPOSITION 7 — The boundary of the principal component of H is locally near (A0
0, A

1
0) an

hypersurface which is the complement of H ∪ E in a neighbourhood of (A0
0, A

1
0). In other

terms, a “half-neighbourhood” of (A0
0, A

1
0) is contained in E.

Proof — Let (A0, A1) be close to (A0
0, A

1
0). In the basis (eu(A

0), eu(A
1)), we have

A0 =
(

λ0 u0

0 λ−1
0

)
, A1 =

(
λ−1

1 0
u1 λ1

)
with λ0 close to λ̄0, λ1 close to λ̄1, u1 close to ū1 and u0 close to 0.

If u0 > 0, the parameter (A0, A1) is uniformly hyperbolic and belongs to the principal
component of H. If u0 = 0, it belongs to the boundary of this component. We will show that
for u0 < 0, |u0| small enough, the parameter (A0, A1) belongs to E .

LEMMA 3 — Let m0, n0, m1, n1 ≥ 0. The trace of (A0)m0(A1)n0(A0)m1(A1)n1 is equal to P +
u0u1Q + u2

0u
2
1R, with

P = λm0+m1
0 λ

−(n0+n1)
1 + λ

−(m0+m1)
0 λn0+n1

1 ,

R =
λm0

0 − λ−m0
0

λ0 − λ−1
0

λm1
0 − λ−m1

0

λ0 − λ−1
0

λn0
1 − λ−n0

1

λ1 − λ−1
1

λn1
1 − λ−n1

1

λ1 − λ−1
1

,

Q = λm0
0 λ−n0

1
λm1

0 − λ−m1
0

λ0 − λ−1
0

λn1
1 − λ−n1

1

λ1 − λ−1
1

+ λm1
0 λ−n1

1
λm0

0 − λ−m0
0

λ0 − λ−1
0

λn0
1 − λ−n0

1

λ1 − λ−1
1

+ λ−m0
0 λn1

1
λm1

0 − λ−m1
0

λ0 − λ−1
0

λn0
1 − λ−n0

1

λ1 − λ−1
1

+ λ−m1
0 λn0

1
λm0

0 − λ−m0
0

λ0 − λ−1
0

λn1
1 − λ−n1

1

λ1 − λ−1
1

Proof — Compute ! 2

Set u = u0u1(λ0 − λ−1
0 )−1(λ1 − λ−1

1 )−1. We rewrite P + u0u1Q + u2
0u

2
1R as P + Q̄u + R̄u2

with

16



Q̄ = Q(λ0 − λ−1
0 )(λ1 − λ−1

1 )

R̄ = (λm0
0 − λ−m0

0 )(λm1
0 − λ−m1

0 )(λn0
1 − λ−n0

1 )(λn1
1 − λ−n1

1 ) .

Set

Q∗ = λm0+m1
0 λ−n0+n1

1 + λm0+m1
0 λn0−n1

1 + λ−m0+m1
0 λn0+n1

1 + λm0−m1
0 λn0+n1

1 ,

R∗ = λm0+m1
0 λn0+n1

1 .

For λm0
0 , λm1

0 , λn0
1 , λn1

1 > 2, one obtains

(3
4
)2Q∗ < Q̄ < Q∗ ,

(3
4
)4R∗ < R̄ < R∗ .

We assume now that

λm0
0 ≤ 1

100
min(λm1

0 , λn0
1 , λn1

1 ) .(7)

Then, we have, with Q̂ = λm1−m0
0 λn0+n1

1

Q̂ ≤ Q∗ ≤ (1 + 3.10−4)Q̂ .

We will choose m0, m1, n0, n1 in order to have (7) and also

1/2 < λm0+m1
0 λ

−(n0+n1)
1 < 2 ,(8)

which is equivalent to

2 ≤ P < 5/2 .(9)

Then we obtain :

R̄u2 ≤ R∗u2 ≤ 2.10−4λ4m1
0 u2 , by (7), (8) ;

Q̄|u| ≤ (1 + 3.10−4)Q̂|u| ≤ 2(1 + 3.10−4) λ2m1
0 |u| , by (8) ;

Q̄|u| ≥ (3
4
)2 1

2
λ2m1

0 |u| , by (8) .

We conclude that, for

4(P − 2)λ−2m1
0 ≤ −u ≤ λ−2m1

0 ,(10)
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the matrix (A0)m0(A1)n0(A0)m1(A1)n1 is elliptic.

The last step in the proof of the proposition is the :

Claim — For every ε > 0, there exists m1(ε) such that, for m1 ≥ m1(ε), one can find m0, n0, n1

such that λm0
0 > 2, P < 2 + ε and (7) is satisfied.

Choose m(ε) such that, for any m∗ ∈ Z, there exists n ∈ Z, m ∈ Z with m∗ ≤ m <

m∗ + m(ε) and 1 < λm
0 λ−n

1 < 1 + ε. Let m∗
0 such that λ

m∗
0

0 > 2 and m1(ε) >> m∗
0 + m(ε). For

m1 ≥ m1(ε), one can find n > 0 and m0 ∈ [m∗
0, m

∗
0 + m(ε)) such that 1 < λm0+m1

0 λ−n
1 < 1 + ε.

It is now sufficient to write n as n0 + n1 with |n0 − n1| ≤ 1.

Take ε ≤ λ−2
0 . For any m1 large enough, one can find m0, n0, n1 such that the matrix

(A0)m0(A1)n0(A0)m1(A1)n1 is elliptic for λ
−(2m1+2)
0 ≤ −u ≤ λ−2m1

0 . This ends the proof of the
proposition. 2
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